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Abstract

Dynamic malware analysis aims at revealing malware’s runtime behavior. To evade analysis, advanced malware is able
to detect the underlying analysis tool (e.g., one based on emulation.) On the other hand, existing malware-transparent
analysis tools incur significant performance overhead, making them unsuitable for live malware monitoring and forensics.
In this paper, we present IntroLib, a practical tool that traces user-level library calls made by malware with low overhead
and high transparency. IntroLib is based on hardware virtualization and resides outside of the guest virtual machine
where the malware runs. Our evaluation of an IntroLib prototype with 93 real-world malware samples shows that
IntroLib is immune to emulation and API hooking detection by malware, uncovers more semantic information about
malware behavior than system call tracing, and incurs low overhead (< 15% in all-but-one test case) in performance
benchmark testing.

Keywords: Malware Forensics, Library Call Introspection, Virtualization

1. Introduction

Malware analysis, which aims at revealing the goal and
detailed behavior of malware, is important to malware de-
fense. To complement the static malware analysis tech-
niques (Moser et al., 2007), many current malware analy-
sis tools (Willems et al., 2007; Bayer et al., 2006; Norman,
2012; International Secure Systems Lab, 2012) adopt the
dynamic analysis approach, where malware samples are
run in a controlled environment to capture and analyze
their runtime behavior. To make sure the analysis tools are
not tampered with and have higher privilege over the exe-
cution of malware, such environments are often emulated
or virtualized with emulators (e.g. QEMU) or hypervisors
(e.g. Xen, KVM).

As a counter-measure, malware authors have devised
anti-analysis methods to thwart dynamic analysis. Before
executing malicious functionality, a malware program may
first check if it is running in an analysis environment. If the
malware finds itself being analyzed, it will withhold its ma-
licious behavior and appear to be benign, exhibit random
behavior or even simply terminate. The kind of checks
performed by malware depends on the dynamic analysis
approaches it tries to detect. For example, traditional dy-
namic analysis approaches like software breakpoints and
instrumentation could easily be detected by malware using
checksum verification since they need to modify the code of
malware. Full system emulators such as QEMU naturally
offer higher degree of transparency because they enable
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instruction-level analysis without the use of any in-guest
components that could be observed by malware. However,
detection (Ferrie, 2006, 2007; Raffetseder et al., 2007) is
still possible by exploiting any discrepancy of instruction
semantics between the emulator and real hardware, since
perfect emulation of every instruction is not feasible. In
fact, Dinaburg et al. (2008) has proved that determining
whether an emulator achieves perfect emulation is unde-
cidable.

Such kind of analysis-dodging malware widely exists
in the wild—a recent study (Chen et al., 2008) showed
that more than 40% of the real-world malware samples
they captured were equipped with techniques such as anti-
debugging and anti-virtualization to detect presence of
analysis environment. In response to this trend, Ether
(Dinaburg et al., 2008) is the first to leverage hardware
virtualization to build more transparent dynamic anal-
ysis systems upon hypervisors. A later work MAVMM
(Nguyen et al., 2009) features similar design. Hardware
virtualization brings two benefits: first, moving malware
analysis systems to hypervisor gives them higher privilege
than the malware being analyzed; second, in hardware vir-
tualization, guest instructions run natively on CPU, hence
the problem of instruction semantic discrepancies in em-
ulators is avoided. Both Ether and MAVMM succeed
in remaining transparent to subject malware. However,
both systems suffer from significant performance overhead
when performing fine-grained live malware analysis. They
both use single-stepping to trigger a transition between
guest and hypervisor for each guest instruction to enable
instruction-level analysis. Although detailed performance
numbers are not reported, the slowdown can be inferred
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by considering the fact that common instructions such as
MOV take a few CPU cycles, whereas a transition between
guest and hypervisor usually take hundreds or thousands
of CPU cycles. The authors of Ether acknowledge in their
paper that their fine-grained analysis “is not meant to be
used for real-time analysis” and “induces a significant per-
formance penalty.”

Another category of tools aim to execute malware trans-
parently in an emulator for more efficient fine-grained anal-
ysis. Kang et al. (2009) proposed to guide the execution
of malware in emulators using transparent reference sys-
tems, such as Ether. Execution traces of a malware sample
are captured in both environments and compared using
trace alignment algorithm to find out divergence, which
indicates that the malware has detected the emulator and
chose to execute another path. To fix the divergence, a
runtime patch will be generated to force the next run of
emulation following the path in the reference system. The
idea is appealing, however, the tool incurs high perfor-
mance penalty when obtaining execution traces. Although
it only needs to run Ether in fine-grained tracing mode
once to get the execution trace, the hundred-fold slow-
down during that step is not desirable for live malware
analysis. A more recent work V2E (Yan et al., 2012) aims
to solve the transparency issue of emulator yet remain
efficient by selectively emulating instructions: For those
instructions that are fully emulated, V2E let the emula-
tor translate and execute them; for the remaining instruc-
tions, instead of translating them, V2E records the state
changes caused by them in a reference system and replays
the state changes in the emulator. This could significantly
boost performance since the reference system only needs
to capture state changes caused by instructions that are
not fully emulated. However, how to enumerate all such
instructions remains a challenge.

As our effort towards practical malware forensics with
(1) high efficiency for live monitoring and analysis and (2)
improved transparency compared with emulation-based tools,
we present IntroLib, a tool that performs library call in-
trospection on malware from outside the virtual machine
(VM) where the malware is executing. IntroLib externally
tracks and logs the sequence of user-level library calls made
by the malware without significant slow-down. Compared
with the traditional system call based introspection tech-
niques (e.g., VMscope (Jiang and Wang, 2007)), IntroLib
is more informative and provides more insights into mal-
ware attack goals and behaviors. Compared with tech-
niques that rely on instruction-level dynamic analysis, In-
troLib is more lightweight and suitable for live malware
forensics. Compared with emulation-based tools, IntroLib
is more immune to malware’s emulation detection logic by
adopting hardware virtualization. IntroLib covers all kinds
of user-mode library calls, such as Windows API library
functions and C library functions.

To address the challenge of intercepting user-level li-
brary calls which, unlike system calls, cannot be easily
trapped into the hypervisor under hardware virtualization,

we propose a page table-based mechanism that creates
a “barrier” in memory between the malware binary and
the library binaries that it calls. Any control flow transi-
tion crossing the barrier will be intercepted by IntroLib.
Similar mechanisms have been used in previous works to
capture kernel-level control flow transitions(Srivastava and
Giffin, 2011). We have developed a prototype of IntroLib
using the KVM hypervisor. Our IntroLib prototype sup-
ports malware analysis on both Windows XP and Ubuntu
Linux 11.04 (guest) operating systems. We evaluate In-
troLib with more than 90 real-world Windows-based mal-
ware programs. The analysis results from IntroLib un-
cover interesting behaviors of the malware that cannot
be revealed by (lower-level) system call tracing logs. We
also compare the anti-detection capability of IntroLib with
state-of-the-art malware analysis systems (e.g., Anubis (In-
ternational Secure Systems Lab, 2012) and CWSandbox
(Willems et al., 2007)) using both synthetic and real-world
analysis-detecting malware samples; and our results find
samples that detect Anubis and/or CWSandbox but not
IntroLib. Finally, our performance evaluation using the
PCMark05 (Futuremark, 2012) benckmarks shows that In-
troLib incurs reasonably low overhead (< 15% in all but
one test) compared with running the same workload on
vanilla KVM.

2. Goal and Assumptions

The goal of IntroLib is to reveal malware’s intent and
behavior by tracing its user-level library calls. As such,
IntroLib helps analyzes user-land (instead of kernel-level)
malware. The design requirements of IntroLib are as fol-
lows:

R1. Trustworthiness: The tracing result should cover all
user-mode library calls made by the malware, and
should not be tampered with.

R2. High transparency to malware: The presence of In-
troLib should be difficult to detect by advanced anti-
analysis malware. However, we point out that, be-
cause of the VM-based nature of IntroLib, it is a no-
goal for us to thwart the detection of VM by a malware
program. Instead, we aim at avoiding the malware’s
other anti-analysis logic such as that for the detection
of emulation or library API hooking.

R3. Efficiency: The performance overhead incurred by In-
troLib should be reasonably low for live forensic anal-
ysis.

To meet the above requirements, we have to make a
number of assumptions. First, we assume that our trusted
computing base consists of the hardware, the hypervisor
(and its host OS), and the guest OS. In particular, the in-
tegrity of the guest OS kernel can be protected by existing
techniques as SecVisor (Seshadri et al., 2007), NICKEL
(Riley et al., 2008), and HookSafe (Wang et al., 2009).
Second, we only trace calls to functions in the dynami-
cally linked libraries. For statically-linked libraries, their
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functions called by the malware will be embedded into the
malware’s binary, making it impossible to distinguish the
library functions from the malware code. Our study of
both Windows and Linux-based malware shows that dy-
namic library linking is more often used by malware for the
sake of footprint minimization and efficient propagation.

3. Design and Implementation

IntroLib is based on a hypervisor that utilizes hardware
virtualization. We present key aspects of its design in the
following subsections.

3.1. Intercept Control-flow Transitions

To intercept control-flow transitions between malware
and library functions, we utilize the shadow page table
(SPT) to set a transparent barrier in memory. Shadow
paging is a memory virtualization technique widely used
in hypervisors. The guest OS still manages its own con-
ventional page tables. Such a guest page table (GPT)
maps guest virtual address (GVA) to guest physical ad-
dress (GPA). However, since the physical address space
of the guest is virtualized by the hypervisor, GPA cannot
be directly used by the CPU to access memory. Instead,
the CPU translates GVA to the final physical address for
memory access using SPT, which maps GVA to host phys-
ical address (HPA). SPT is managed by the hypervisor
according to GPT and kept invisible to the guest OS by
shadowing the CR3 register: When the guest OS tries to
read the CR3 register, it gets the value that points to GPT
instead of SPT. That is, from the view of the guest OS,
SPT is transparent.

Normally, the hypervisor only maintains one SPT for
each guest. In IntroLib, we maintain two mutually exclu-
sive SPTs for each guest to trigger events that could be
captured by the hypervisor when control-flow transitions
between malware and library functions happen. The two
SPTs have exactly the same virtual-to-physical address
mappings; they are mutually exclusive in the sense that
no user-mode page is set as executable in both of these
SPTs. In one of the two SPTs, which we call malware
SPT (MSPT), we set the pages containing the malware
code to executable, and pages containing library code to
non-executable; in the other SPT, which we call library
SPT (LSPT), we do the opposite. Other user-mode pages
are set to non-executable in both SPTs. At any time dur-
ing the execution of malware, only one of the two SPTs is
active, namely, being used as the current SPT: when exe-
cuting the malware code, MSPT is active; when executing
the library code, LSPT is active.

To better illustrate the technique, let us take a closer
look at what happens when the malware calls a library
function. As shown in Figure 1, since the page containing
code of the target library function is set as non-executable
in the active SPT—MSPT, a page fault will occur. We
set the hypervisor to intercept all guest page faults, so a

VMExit will be triggered due to the page fault and switch
execution from the guest to the hypervisor. The hyper-
visor will find out that the reason for the page fault is
that the malware attempted to make a library call; it will
then record detailed information about this call, such as
the function name, the caller address and the parameters.
Before resuming the guest, the hypervisor must switch the
active SPT from MSPT to LSPT, as the guest will execute
the library code after resume. The guest is completely un-
aware of the page fault as the hypervisor handled it trans-
parently. Later on, when the library function finishes and
returns to the malware caller, similar steps will be taken,
and this time the hypervisor will record the return value
of the call. We note that the two mutually exclusive SPTs
are only maintained for a process being traced. For other
processes, the hypervisor still use one SPT for their exe-
cution.

Special care must be taken when context switches hap-
pen in the guest. It is possible that the guest context-
switches from a execution context running the malware
code to another context running the library code; or vice
versa. Such a context switch could happen between differ-
ent malware processes, or even between different threads of
the same multi-threaded malware process. Consequently,
we must switch the active SPT to ensure that it is consis-
tent with the new execution context. Since it’s infeasible
to transparently trap context switches into hypervisor un-
der hardware virtualization, we choose to switch SPT in a
passive way: When the active SPT is inconsistent with the
current execution context, a page fault will be triggered
due to instruction-fetch from a non-executable page. The
hypervisor will then catch that page fault and switch the
active SPT to the consistent state.

3.2. Identify Memory Layout

To create the “barrier” between malware and library
code, we must first identify the memory layout of the mal-
ware process. We categorize user-mode pages into three
types: malware code, library code and data pages. Since a
malware program might generate new code (e.g., binary
packers) and load additional libraries at runtime, data
pages could become either malware code or library code
pages; our identification mechanism must be able to cap-
ture such changes of memory layout and update SPTs ac-
cordingly.

We introduce a mechanism called lazy identification to
solve the problem. With lazy identification, an area of
code pages is not identified until there is an instruction-
fetch from one of its pages. Hence, when the area is being
mapped, all of its pages are assumed as data pages and
set as non-executable in the two mutually exclusive SPTs
(Section 3.1). When the first instruction fetch from one
of its pages happens, a page fault will be triggered and
captured by the hypervisor.

Given the address of the faulting page, the hypervisor
uses VM introspection (Garfinkel and Rosenblum, 2003)
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Figure 1: Execution snapshots of a library call.

to gather information from the guest to infer the posi-
tion and size of the area containing the page, and deter-
mine whether the area contains malware code or library
code. In both Windows and Linux, a binary executable
and its dependent libraries are loaded into memory for
execution through file mapping, a mechanism that asso-
ciates an area of virtual memory space with the content
of a binary file. For each process, the kernel maintains
data objects to record information of the files it mapped
in its virtual memory space, including the path of the as-
sociated file and the starting and ending addresses of the
mapped area. By traversing these data objects of the cur-
rent process, the hypervisor can locate the mapped area
containing the faulting page. For Windows guests, the hy-
pervisor will further examine the path of the correspond-
ing associated file to determine the type of code stored
in the mapped area: If the associated file is the binary
executable itself, then the mapped area contains code of
the malware binary; otherwise the mapped area contains
library code. The path of the binary executable could be
obtained by following the link in another kernel object:
EPROCESS→SectionObject→Segment→ControlArea
→FilePointer. For Linux guests, the hypervisor deter-
mines the type of the mapped area by checking if the fault-
ing page falls between the starting and ending addresses
of the area containing code of the malware binary, which
could be read from start code and end code fields in the
task struct.mm kernel object respectively.

If the faulting page does not fall into any file-mapped
area, it means that the code being executed in that page
is not loaded into memory through file mapping, which is
usually the standard mechanism used by the kernel to load
binaries. Note that even if the malware loads additional
libraries at runtime through APIs provided by the OS (e.g.
LoadLibrary function in Windows), such libraries are still
loaded using file mapping. Hence, the faulting page which
is not associated with a binary file indicates that code in
the page is generated by the malware itself at runtime, so

it is categorized as a malware code page.
After the hypervisor knows the position and size of

the area, the hypervisor will set the two exclusive SPTs
accordingly, switch the active SPT to match the execution
context if needed, and resume execution of the guest.

3.3. Logging

When IntroLib intercepts a control flow transition be-
tween malware code and library code, it will read the
source and destination addresses of the transition from the
Last Branch Record (LBR) stack. LBR stack is a circular
stack that stores information about the recent branches
taken by the processor. It could be enabled by setting the
lowest bit of the IA32 DEBUGCTL Model Specific Reg-
ister (MSR). Another MSR holds the LBR top-of-stack
(TOS) pointer, indicating which entry in the LBR stack
stores source and destination addresses of the most recent
branch. The most recent branch must be a control flow
transition, as the hypervisor captures a transition as soon
as it happens.

IntroLib then tries to locate the code areas which con-
tain the source and destination addresses by looking up in
the memory layout it has obtained. If the area is associ-
ated with a library, IntroLib will get all functions exported
by the library by parsing the library file. In a DLL file,
the addresses and names of the exported functions could
be read in the PE export table section (Microsoft, 2010);
In a shared object file, such information could be read in
the ELF symbol table (TIS Committee, 1995). We use a
copy-on-write disk to run malware and always let IntroLib
read the original disk to make sure the library file parsed
by IntroLib is not tampered. IntroLib will further trans-
late the source and destination addresses into the format
of function name plus an offset.

If the destination address is the entry address of a li-
brary function, it means the control flow transition is a li-
brary call. IntroLib will read the function arguments from
the stack according to the function prototype we prepared
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in a database. We extracted function prototypes of C li-
brary functions, most Windows APIs and Linux APIs by
extending cproto (Huang, 2012) to parse header files in
Windows SDK and Linux. The caller address, the called
library name, function name and values of arguments will
all be logged. For each call it logs, IntroLib will read and
record its return address from stack. If the destination ad-
dress of a control flow transition matches one of the return
addresses recorded by IntroLib, it means the transition is
a return from library call. IntroLib will read the function
return value from the EAX register and match it with the
corresponding library call in the log.

3.4. Improving Transparency to Malware

3.4.1. Avoid Timing Attack

In KVM, given a period of time T , the execution on a
CPU consists of three parts:

(1) execution in host mode, which includes hypervisor,
host OS and applications, which takes time Th;

(2) execution in guest mode, which includes guest OS and
its applications, which takes time Tg;

(3) switch between host and guest, which takes time Ts.

Without special handling, the time seen by the guest is
the total time T . Assuming the CPU could execute N in-
structions per time unit, and the guest is only executing
malware code. After that period of time, a total number
of (N ·Tg) instructions is executed in guest. From the mal-

ware’s view, the CPU only executed (N · Tg

T ) instructions
per time unit, which is less than expected. Such discrep-
ancy could be exploited by malware to detect the existence
of IntroLib.

To avoid such timing attack, we must subtract Th and
Ts from the time seen by the guest, so the guest only see
the time it actually runs for. We use the unit of the Time
Stamp Counter (TSC) as our time unit. Th could be ob-
tained in this way: execute a RDTSC instruction right
after the guest exits to the host to get a read of the TSC
T1, and execute it again right before the host resumes the
guest to get another read T2. Then Th = T2 − T1. We
could not measure Ts at runtime, but an empirical value
could be instrumented beforehand by executing a loop of
RDTSC in the guest. Since Ts may vary on different sys-
tems, the empirical Ts value for a specific system should
be instrumented before running IntroLib on it.

We set the TSC offset field in the virtual machine con-
trol data structure (VMCS) to the value of −(Th + Ts),
so that when the guest queries the TSC, the offset is au-
tomatically applied to the result. Guest accesses to other
internal time resources such as the 8254 programmable
interval timer (PIT) and the advanced programmable in-
terrupt controller (APIC) timer, are all controlled by the
hypervisor thus can also be adjusted using the offset.

3.4.2. Shadow LBR Stack

IntroLib must enable the LBR feature all the time to
ensure precise logging. However, if the malware knows

that IntroLib must use LBR, it may try to turn off LBR
and see if the LBR stack is still recording the recent branches.
If the malware found that LBR could not be turned off,
or if LBR still functions even if it appears to have already
been turned off, the existence of IntroLib will be revealed
by such discrepancy.

To hide from malware, IntroLib must conceal its use of
LBR. Fortunately, LBR are accessed through MSRs using
RDMSR and WRMSR instructions, which could be inter-
cepted by the hypervisor. First, the IA32 DEBUGCTL
MSR needs to be shadowed. That is, the hypervisor main-
tains a shadow of this MSR, and all guest read and write
accesses to this MSR go to the shadow. Modification to the
MSR, except the lowest bit of it, should be synchronized
to the real MSR.

We may also need to shadow the LBR stack and the
LBR TOS pointer depending on whether the guest cur-
rently enables LBR. When the guest tries to turn off LBR,
we copy the current LBR stack and the TOS pointer to
their shadows. Any further accesses to the LBR stack and
the TOS pointer when LBR is disabled in guest go to the
shadows. When the guest turns on LBR, we copy the val-
ues stored in the shadows to the real LBR stack and the
TOS pointer. The guest will access the real LBR stack
and the real TOS pointer when LBR is enabled. Note this
won’t affect the trustworthiness of our tracing result as our
hypervisor will always read the most recent branch right
after the branch happens, before the guest has a chance to
modify it.

4. Evaluation

In this section, we present the evaluation of IntroLib
in three aspects: functionality, transparency (to malware),
and performance. Our experiments are done on a Dell
Inspiron 15R laptop with Intel(R) Core(TM) i5-2410M
2.30GHz CPU and 4GB memory. We use Ubuntu Linux
11.04 64bit with kernel version 2.6.38 as the host OS. We
allocate a 10GB raw image file as the hard disk and 1GB
memory for the guest VM. The guest VM runs Windows
XP with no service pack.

4.1. Functionality

We have evaluated IntroLib with a pool of 93 real-
world, Windows-based malware samples obtained from an
online malware repository (http://www.offensivecomputing.net/)
and security researchers. IntroLib is able to disclose more
semantic information of malware execution compared with
the traditional system call introspection techniques (Jiang
and Wang, 2007). We present two case studies to demon-
strate such benefits.

4.1.1. Case Study I

In the first case study, we traced a malware sample
of Win32/FakeRean 1, which is a malware disguised as

1MD5 hash: 9e7e65802546c273b6157d4bbe4e02fc.
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[ANTI-EMULATION]
sample.exe(120): sample.exe:0x101a => wldap32.dll:ldap_count_references([0x1] = , [0x1] = , ) = 0x0(0)
 
[UNPACKING]
sample.exe(120): sample.exe:0x118c => kernel32.dll:HeapCreate(262145(0x40001), 0x6c1e, 0x83b5, ) = 0x370000(3604480)
00370000-00379000 [unknown](00000000)
sample.exe(120): [unknown]:0x8ca => kernel32.dll:GetProcAddress(0x77e60000, [0x371149] = "VirtualAlloc", ) = 0x77e7980a(2011666442)
sample.exe(120): [unknown]:0xdcd => ntdll.dll:RtlDecompressBuffer = 0x0(0))
sample.exe(120): [unknown]:0xa5f => kernel32.dll:VirtualProtect([0x400000], 0x1d6000, 64(0x40), [0x12fde4] = 1244784(0x12fe70), ) = 0x1(1)
sample.exe(120): [unknown]:0x9f5 => kernel32.dll:LoadLibraryA([0x403552] = "ntdll.dll", ) = 0x77f50000(2012545024)
...
sample.exe(120): [unknown]:0xb08 => kernel32.dll:VirtualProtect([0x400000], 0x1000, 2(0x2), [0x12fde4] = 1244784(0x12fe70), ) = 0x1(1)
sample.exe(120): [unknown]:0xb5f => kernel32.dll:VirtualProtect([0x401000], 0x1194, 32(0x20), [0x12fde4] = 64(0x40), ) = 0x1(1)
....
 
[VERIFY CHECKSUM]
sample.exe(120): sample.exe:0x2003 => kernel32.dll:GetTempPathA(259(0x103), [0x12fb8c] = "", ) = 0x21(33)
sample.exe(120): sample.exe:0x201b => kernel32.dll:GetTempFileNameA([0x12fb8c] = "C:\DOCUME~1\Tyrael\LOCALS~1\Temp\", [0x0] = "", 0(0x0), [0x12fc90] = "", ) = 0x1(1)
sample.exe(120): sample.exe:0x202d => kernel32.dll:CopyFileA([0x12feb8] = "C:\samples\sample.exe", [0x12fc90] = "C:\DOCUME~1\Tyrael\LOCALS~1\Temp\1.tmp", 0(0x0), ) = 0x1(1)
sample.exe(120): sample.exe:0x16db => kernel32.dll:CreateFileA([0x12fc90] = "C:\DOCUME~1\Tyrael\LOCALS~1\Temp\1.tmp", 2032127(0x1f01ff), 1(0x1), [0x0], 3(0x3), 2147483648(0x80000000), 0x0, ) 
= 0x54(84)
sample.exe(120): sample.exe:0x16f0 => kernel32.dll:CreateFileMappingA(0x54, [0x0], 4(0x4), 0(0x0), 0(0x0), [0x0] = "", ) = 0x58(88)
sample.exe(120): sample.exe:0x1706 => kernel32.dll:MapViewOfFile(0x58, 983071(0xf001f), 0(0x0), 0(0x0), 0x0, ) = 0xbc0000(12320768)
...
sample.exe(120): sample.exe:0x204b => ntdll.dll:RtlImageNtHeader = 0xbc00f8(12321016)
sample.exe(120): sample.exe:0x206c => imagehlp.dll:CheckSumMappedFile = 0xbc00f8(12321016)
 
[EXPLOIT SPOOLSV.EXE]
sample.exe(120): sample.exe:0x1fd8 => kernel32.dll:GetModuleHandleA([0x40329c] = "ntdll.dll", ) = 0x77f50000(2012545024)
sample.exe(120): sample.exe:0x1fdf => kernel32.dll:GetProcAddress(0x77f50000, [0x40328c] = "ZwConnectPort", ) = 0x77f7e5a3(2012734883)
sample.exe(120): sample.exe:0x150f => kernel32.dll:VirtualProtect([0x404808], 0x14, 64(0x40), [0x12fb40] = 4207244(0x40328c), ) = 0x1(1)
sample.exe(120): sample.exe:0x2188 => ntdll.dll:memcpy([0x404808], [0x77f7e5a3], 5(0x5), ) = 0x404808(4212744)
sample.exe(120): sample.exe:0x15bf => kernel32.dll:WriteProcessMemory(0xffffffff, [0x77f7e5a3], [0x12fb38] = 3941235001222121(0xe0088483963e9), 0x5, [0x12fb40], ) = 0x1(1)
...
sample.exe(120): sample.exe:0x10ed => winspool.drv:AddPrintProvidorA([0x12fb5c] = "10edd", 1(0x1), 0x12fb6c, ) = 0x12f558(1242456)
sample.exe(120): sample.exe:0x1f30 => ntdll.dll:RtlPrefixUnicodeString([0x12f4a8] = "\RPC Control", [0x12f558] = "\RPC Control\spoolss", 1(0x1), ) = 0x7ffd2001(2147295233)
sample.exe(120): sample.exe:0x480d => ntdll.dll:NtConnectPort+0x5(1329416(0x144908), [0x12f558] = "\LPC Control\spoolss", ) = 0x0(0)
sample.exe(120): sample.exe:0x10f3 => ntdll.dll:RtlGetLastWin32Error = 0x6be(1726)
 
[EXTRACT PRIVACY.EXE]
sample.exe(260): sample.exe:0x1635 => ntdll.dll:RtlAllocateHeap = 0xc90020(13172768)
sample.exe(260): sample.exe:0x1693 => ntdll.dll:RtlDecompressBuffer = 0x0(0)
...
sample.exe(260): sample.exe:0x198c => kernel32.dll:CreateFileA([0x12f660] = "C:\Documents and Settings\All Users\Application Data\privacy", 1073741824(0x40000000), 1(0x1), [0x0], 2(0x2), 0
(0x0), 0x0, ) = 0x6c(108)
...
sample.exe(260): sample.exe:0x19b3 => kernel32.dll:WriteFile(0x6c, [0xc90434], 817152(0xc7800), [0x12f62c] = 1(0x1), [0x0], ) = 0x1(1)
...
sample.exe(260): sample.exe:0x1a32 => kernel32.dll:MoveFileA([0x12f21c] = "C:\Documents and Settings\All Users\Application Data\privacy", [0x12f660] = "C:\Documents and Settings\All Users
\Application Data\privacy.exe", ) = 0x1(1)
...
sample.exe(260): sample.exe:0x1c1f => kernel32.dll:CreateProcessA([0x0] = "", [0x12f660] = "C:\Documents and Settings\All Users\Application Data\privacy.exe", [0x0], [0x0], 0(0x0), 0(0x0), 
[0x0], [0x0] = "", [0x12f5e0], [0x12f628], )
 
[CONNECT TO URL]
sample.exe(260): sample.exe:0x1174 => wininet.dll:InternetOpenA([0x403198] = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)", 0(0x0), [0x0] = "", [0x0] = "", 0(0x0), )
sample.exe(260): sample.exe:0x11d6 => wininet.dll:InternetCrackUrlA([0x12f970] = "http://getmilfs.com/logo/go.php?id=96", 0(0x0), 2147483648(0x80000000), [0x12f5b8], ) = 0x1(1)
sample.exe(260): sample.exe:0x11ed => wininet.dll:InternetConnectA(13369348(0xcc0004), [0x12f4f8] = "getmilfs.com", 80(0x50), [0x0] = "", [0x0] = "", 3(0x3), 0(0x0), [0x0] = , ) = 0xcc0008
(13369352)
sample.exe(260): sample.exe:0x122e => wininet.dll:HttpOpenRequestA(13369352(0xcc0008), [0x403200] = "GET", [0x12ece0] = "/logo/go.php?id=96", [0x0] = "", [0x0] = "", [0x0], 2215117056
(0x84080100), [0x0] = , ) = 0xcc000c(13369356)
sample.exe(260): sample.exe:0x1251 => wininet.dll:InternetSetOptionA(13369356(0xcc000c), 31(0x1f), [0x12f5f4], 4(0x4), ) = 0x1(1)
sample.exe(260): sample.exe:0x12a5 => wininet.dll:HttpSendRequestA(13369356(0xcc000c), [0x12f0f8] = "", 4294967295(0xffffffff), [0x0], 0(0x0), )
 
[KILL PROGRAMS]
privacy.exe(320): privacy.exe:0x15d5d9 => kernel32.dll:CreateToolhelp32Snapshot = 0x20c(524)
privacy.exe(320): privacy.exe:0x15d5f9 => kernel32.dll:Process32First = 0x1(1)
privacy.exe(320): privacy.exe:0x15d619 => kernel32.dll:Process32Next = 0x1(1)
...
privacy.exe(320): privacy.exe:0x7eb4 => kernel32.dll:OpenProcess(1(0x1), 0(0x0), 260(0x104), ) = 0x200(512)
privacy.exe(320): privacy.exe:0x7f34 => kernel32.dll:TerminateProcess(0x200, 0(0x0), ) = 0x1(1)
privacy.exe(320): privacy.exe:0x15d619 => kernel32.dll:Process32Next = 0x1(1)
privacy.exe(320): privacy.exe:0x15d619 => kernel32.dll:Process32Next = 0x0(0)
privacy.exe(320): privacy.exe:0x7c64 => kernel32.dll:CloseHandle(0x20c, ) = 0x1(1)

Figure 2: Library call log of Win32/FakeRean.

a rogue anti-virus tool. The malware pretends to scan
disks to find virus and spyware; in fact, it just displays
the names of the files it iterates through without reading
them. It will randomly choose some files and display them
as “malware.” The malware will also close running pro-
grams in order to prevent the user using security tools to
terminate it after knowing he/she has been lied to.

Part of the library call trace of this malware is shown in
Figure 2 2. When the malware was executed, it first called
a function ldap count references. The two pointer argu-
ments were assigned value 1, which was apparently not a
valid pointer address. Observe that the call is made in
an exported function named antiemu33. We disassembled
this function and verified that it was an anti-emulation
trick. In this function, the malware tried to trigger an
SEH exception by calling ldap count references with in-
valid pointer arguments, which should then be caught by

2In Figure 2 and 3, the comments on top of each block (e.g.
[ANTI-EMULATION]) are not part of the original trace. They are
added manually for better readability.

the SEH handler and the function would return 1. If the
exception was not triggered, or if an emulator failed to
handle SEH exceptions, this function would return 0 and
lead to termination. We searched on the Internet about
this anti-emulation technique and found an online article
(Kaspersky Lab, 2012) that confirms our analysis.

After determining that it is not being emulated, the
malware called HeapCreate to allocate a heap area of 0x83b5
bytes, starting at address 0x370000. The heap area was
then identified as a malware code area when the malware
began to execute code from it. This code area actually
stored the unpacking routine of the packer used by the
malware, which was identified from the following library
calls it made: (1) It called RtlDecompressBuffer to de-
compress the packed binary; (2) It made a lot of calls
to the functions LoadLibrary and GetProcAddress to load
the libraries required by the packed binary and fill the im-
ported function addresses; (3) It first called VirtualProtect
to set the entire region of the original binary as writable
to write the unpacked binary there, then called Virtual-
Protect again to set the access control for each section of
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the unpacked binary after it finished unpacking. We later
used PEiD (Jibz et al., 2012) to check the packer used in
this malware; although PEiD could not precisely identify
which packer is used, its entropy scan confirmed this mal-
ware was packed. Note that a system call based technique
would not capture the calls to RtlDecompressBuffer and
GetProcAddress which are important hints to reveal the
unpacking behavior.

The malware then copied its binary executable to a file
in the temporary path, mapped the file into memory and
called CheckSumMappedFile to verify its checksum. Af-
ter that, it tried to use several attack strategies similar to
the TDL4 rootkit to avoid being detected by host-based
intrusion prevention systems (HIPS). It first hooked an
undocumented function NtConnectPort in ntdll.dll. From
the log, we can see it first called GetProcAddress to locate
the address of ZwConnectPort function (an alias of Nt-
ConnectPort), then copied the first 5 bytes of the function
to a code buffer at 0x404808 using memcpy, and called
WriteProcessMemory to overwrite these bytes with a rel-
ative jump instruction. This technique is referred to as
“inline hooking” and is widely used by malware to de-
tour the control-flow of a function. The malware then
called AddPrintProviderA to load itself as a print provider
into the spool service process (spoolsv.exe), which is a
trusted system process. This is the reason why it hooked
NtConnectPort : AddPrintProviderA calls NtConnectPort
to connect to the LPC port of the spool service process,
and this might be intercepted by HIPS. More specifically,
HIPS intercepts all calls to NtConnectPort and checks if
the name of the LPC port being connected to is \RPC
Control\spoolss, which is the LPC port name of the spool
service process. In order to avoid detection by HIPS, the
malware called RtlPrefixUnicodeString in the hooked Nt-
ConnectPort function to determine if the LPC port name
starts with \RPC Control. We can see in the following call
to the original NtConnectPort, the LPC port name had
been modified to \LPC Control\spoolss. This is slightly
different from the TDL4 rootkit: in TDL4, the LPC port
name is prepended with \??\GLOBALROOT (Rodionov
and Matrosov, 2012), so AddPrintProviderA could still
connect to the same port. In this malware, the modified
LPC port name was invalid, so the connection would fail.
The calls to RtlGetLastWin32Error returned 0x6be, con-
firming that AddPrintProviderA had failed. A system call
tracer could not capture the CheckSumMappedFile call, so
it would be infeasible to know the reason of mapping the
executable; regarding the attack, it could only capture the
event of WriteProcessMemory and an attempt to connect
to LPC port \LPC Control\spoolss, which is insufficient
to precisely understand the attack.

The malware then extracted another malicious binary
executable it carried. It allocated an area in the heap,
then called RtlDecompressBuffer to decompress the binary
executable into that area. After that, it created a file
named “privacy” in the C:\Documents and Settings\All
Users\Application Data directory and wrote the binary

executable from memory into the file. The malware then
renamed the file to privacy.exe and called CreateProcessA
to execute it. The reason why it did not directly create
and write to the file privacy.exe is that most HIPS consider
writing to files with name extensions of binary executable
(e.g. “.exe”, “.dll”) as malicious behavior.

The newly spawned malware process of privacy.exe was
also packed and had the same unpacking behavior as the
primary process. The last behavior of the primary pro-
cess was to call functions in wininet.dll to connect to
a broken URL “http://getmilfs.com/logo/go.php?id=96”;
then it was killed by the new process. The new process
did the following in a infinite loop: it called CreateTool-
help32Snapshot to get a list of all running processes, then
used Process32First and Process32Next to iterate through
the list and selected some processes to terminate. The
way it determines whether a process should be terminated
could not be directly inferred from the log, so we dumped
the instructions near these library call sites and disassem-
bled them for further investigation. Our investigation sug-
gested that the malware selected those processes whose
names were not in a predefined list of system processes (e.g
“explorer.exe”, “csrss.exe”) to terminate. To verify our
analysis, We renamed an executable file to “explorer.exe”
and executed it; the executable ran successfully and was
not terminated by the malware.

4.1.2. Case Study II

In the second case study we investigated a malware
sample of Win32/Dorkbot.AJ 3, which is a variant of worm
Win32/Dorkbot.A. This variant is packed with an advanced
packer Armadillo (Silicon Realms, 2012), which features
multiple levels of packing and encryption/decryption to
prevent static analysis. The malware sample also used sev-
eral anti-debugging and anti-VM tricks to thwart dynamic
analysis.

As shown in the library call log in Figure 3, the mal-
ware first called GetModuleHandleA and GetProcAddress
to find the address of the function IsProcessorFeaturePre-
sent after it started. This function is used to determine
whether a specified feature is supported by the CPU. The
malware called this function with argument of value 0 to
check if the floating point precision error exists. This error
is also called the “FDIV bug” (Wikipedia, 2012), which is
a FPU bug in old Pentium processors; modern processors
should not have this bug so the call should return 0. How-
ever, some emulators do not handle this check well and
return 1, which could be exploited by the malware to de-
tect their existence. Our system returns 0 so the malware
continues to run.

The malware then began to unpack itself. It first called
FindResourceA and LoadResource to locate and extract
the unpacking module from the resource section. It created
a file named “eYdW8ae54dqjE6aVew.tmp” in the tempo-
rary directory and wrote the content of the unpacking

3MD5 hash: f27dd9ba200266d7c9df2d345b8f882f.

7



[DETECT FPU PRECISION ERROR]
sample.exe(208): sample.exe:0xb94 => kernel32.dll:GetModuleHandleA([0x409194] = "KERNEL32", ) = 0x77e60000(2011561984)
sample.exe(208): sample.exe:0xba4 => kernel32.dll:GetProcAddress(0x77e60000, [0x409178] = "IsProcessorFeaturePresent", ) = 0x77e8063f(2011694655)
sample.exe(208): sample.exe:0xbb0 => kernel32.dll:IsProcessorFeaturePresent(0(0x0), ) = 0x0(0)
 
[EXTRACT AND LOAD UNPACKING MODULE]
sample.exe(208): sample.exe:0x10ff => kernel32.dll:FindResourceA(0x0, [0x1c0] = "", [0xa9] = "", ) = 0x40d1b0(4247984)
sample.exe(208): sample.exe:0x1122 => kernel32.dll:LoadResource(0x0, 0x40d1b0, ) = 0x40f088(4255880)
sample.exe(208): sample.exe:0x125c => kernel32.dll:CreateFileA([0x12fd58] = "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\eYdW8ae54dqjE6aVew.tmp", 3221225472(0xc0000000), 0(0x0), [0x0], 2(0x2), 128
(0x80), 0x0, ) = 0x34(52)
sample.exe(208): sample.exe:0x128c => kernel32.dll:WriteFile(0x34, [0x40f088], 3072(0xc00), [0x12ff20] = 2147348538(0x7ffdf03a), [0x0], ) = 0x1(1)
sample.exe(208): sample.exe:0x1322 => kernel32.dll:LoadLibraryA([0x12fd58] = "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\eYdW8ae54dqjE6aVew.tmp", )
sample.exe(208): sample.exe:0x1397 => msimg32.dll:GradientFill(0x1010058, [0x12fefc], 2(0x2), [0x12fef4], 1(0x1), 0(0x0), ) = 0x1(1)
sample.exe(208): sample.exe:0x13a4 => kernel32.dll:GetProcAddress(0x10000000, [0x12fee4] = "fNdieoaefRfl", ) = 0x10001000(268439552)
 
[UNPACKING FIRST LAYER]
sample.exe(208): eYdW8ae54dqjE6aVew.tmp:0x10fb => kernel32.dll:CreateProcessA([0x12fbc8] = "C:\sample.exe", [0x142310] = ""C:\sample.exe" ", [0x0], [0x0], 0(0x0), 36(0x24), [0x0], [0x0] = 
"", [0x12fcc8], [0x12fd1c], ) = 0x1(1)
sample.exe(208): eYdW8ae54dqjE6aVew.tmp:0x1136 => kernel32.dll:VirtualAllocEx(0x48, [0x400000], 0x1d000, 12288(0x3000), 64(0x40), ) = 0x400000(4194304)
sample.exe(208): eYdW8ae54dqjE6aVew.tmp:0x1149 => kernel32.dll:WriteProcessMemory(0x48, [0x400000], [0x40fe7c] = 12894362189(0x300905a4d), 0x400, [0x0], ) = 0x1(1)
...
sample.exe(208): eYdW8ae54dqjE6aVew.tmp:0x11e3 => kernel32.dll:ResumeThread(0x4c, )
 
[DECRYPT AND UNPACKING SECOND LAYER]
sample.exe(220): [unknown]:0x149d => advapi32.dll:CryptAcquireContextA([0x12ff10], [0x0] = "", [0x40410c] = "Microsoft Base Cryptographic Provider v1.0", 1(0x1), 8(0x8), ) = 0x1(1)
sample.exe(220): [unknown]:0x1504 => advapi32.dll:CryptHashData(0x150fe0, [0x843e70] = 89(0x59), 10(0xa), 0(0x0), ) = 0x1(1)
sample.exe(220): [unknown]:0x1520 => advapi32.dll:CryptDeriveKey(0x1439c8, 0x6801, 0x150fe0, 0(0x0), [0x12ff08], ) = 0x1(1)
sample.exe(220): [unknown]:0x152f => advapi32.dll:CryptDecrypt(0x151aa8, 0x0, 1(0x1), 0(0x0), [0x897ab8] = 210(0xd2), [0x12ff00] = 96768(0x17a00), ) = 0x1(1)
sample.exe(220): [unknown]:0x1104 => kernel32.dll:CreateProcessA([0x12fac0] = "C:\sample.exe", [0x142310] = ""C:\sample.exe" ", [0x0], [0x0], 0(0x0), 4(0x4), [0x0], [0x0] = "", [0x12f828], 
[0x12f880], ) = 0x1(1)
sample.exe(220): [unknown]:0x1120 => kernel32.dll:VirtualAllocEx(0x8c, [0x400000], 0x4f000, 12288(0x3000), 64(0x40), ) = 0x400000(4194304)
sample.exe(220): [unknown]:0x1131 => kernel32.dll:WriteProcessMemory(0x8c, [0x400000], [0x897ab8] = 12894362189(0x300905a4d), 0x400, [0x0], ) = 0x1(1)
...
sample.exe(220): [unknown]:0x11bc => kernel32.dll:ResumeThread(0x90, )
sample.exe(220): [unknown]:0x1747 => kernel32.dll:DeleteFileA([0x12f8b8] = "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\eYdW8ae54dqjE6aVew.tmp", ) = 0x1(1)
 
[DETECT VM BY QUERYING HARD DISK INFO]
sample.exe(244): [unknown]:0xf2fa => kernel32.dll:CreateFileA([0x14ad00] = "\\.\C:", 0(0x0), 3(0x3), [0x0], 3(0x3), 0(0x0), 0x0, ) = 0x58(88)
sample.exe(244): [unknown]:0xf352 => kernel32.dll:DeviceIoControl(0x58, 2954240(0x2d1400), [0x12fd88], 12(0xc), [0x12f988], 1024(0x400), [0x12fd94] = 0(0x0), [0x0], ) = 0x1(1)

Figure 3: Library call log of Win32/Dorkbot.AJ.

module into that file. To observe the behavior of this mod-
ule, we manually added it as part of the malware code. It
called LoadLibraryA to load the unpacking module, then
called GradientFill to draw a blue rectangle on the top
left corner of the screen. After that, it located and called
a function named “fNdieoaefRfl” in the unpacking module
to do the actual work.

The unpacking method used in this malware is different
from our first malware sample. Instead of unpacking into
the existing process, the unpacking module first created a
new process as a placeholder and then wrote the unpacked
binary into the newly created process for execution. The
new process was created with the CREATE SUSPENDED
flag so it would not execute before the unpacking finished.
Then the unpacking module called VirtualAllocEx to al-
locate an area of memory in the address space of the new
process, and called WriteProcessMemory to write the un-
packed binary into that area. After that, it called Re-
sumeThread to resume the execution of the new process.

The unpacking module only unpacked the first layer of
the malware. The unpacking of the second layer was done
by the newly created process, using a similar unpacking
method. The difference here is that the unpacked binary
was decrypted before injected into a new process. From the
log we can see the malware called CryptAcquireContextA
to request cryptography service of “Microsoft Base Cryp-
tographic Provider v1.0”. It first called CryptCreateHash
and CryptHashData to hash the 10 bytes starting from
0x843e70. The value of the second argument of CryptCre-
ateHash was 0x8003, which indicates MD5 was used for
hashing here. It then called CryptDeriveKey to compute
a key from the hash. Again, we could infer that the RC4
algorithm was used for decryption as the value of the sec-
ond argument was 0x6801. After that, the malware called
CryptDecrypt to decrypt the unpacked binary using the
derived key and inject the decrypted binary into the last

process for execution. Finally, it deleted the file of the
unpacking module used in the unpacking of the first layer
and then exited. Note that a system call tracing tool would
not observe the decryption behavior as no system call was
involved here.

Surprisingly, in our experiment, we did not observe
any malicious behavior of the last process, which was as-
sumed to execute the actual payload of the malware. We
suspected our system was detected, so we submitted this
sample to CWSandbox for reference. The result confirmed
that the last process did have malicious behavior such as
spawning remote threads in other processes. We found out
the reason when we looked at the library call log again:
the malware called DeviceIoControl with the control code
IOCTL STORAGE QUERY PROPERTY to detect us by
querying the description of hard disk. Since KVM use
QEMU to emulate hardware devices, the disk model is
“QEMU HARDDISK” and the disk vendor is “QEMU”,
which is apparently not a real disk drive. Note that it’s the
hypervisor we choose to implement IntroLib but not the
design of IntroLib that leads to the detection. If we imple-
ment IntroLib on another hypervisor that allows the guest
to directly access real hardware devices, such as BitVi-
sor(Shinagawa et al., 2009), then such method of detecting
emulated devices would fail.

4.1.3. Summary

It is impossible to get such detailed understanding of
the malware samples as above without the fine-grained li-
brary call tracing logs. Some malicious behavior would not
be revealed with system call tracing, either because the be-
havior does not even involve a system call, or because the
system call is too low-level to enable reconstruction of the
high-level semantics of malware behavior. Even if some-
times the behavior could not be directly observed in the
log, the library call sites in the log could help to pinpoint
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the function or narrow the range of the code that has to
be manually inspected by analysts.

4.2. Transparency to Malware

To evaluate the transparency of IntroLib to malware,
we first crafted synthetic anti-emulation samples using de-
tection code in previous work (Ferrie, 2006, 2007; Raf-
fetseder et al., 2007). We chose the detection code tar-
geting QEMU, as QEMU is most commonly used by re-
searchers to build dynamic analysis systems. Each of these
samples executes some instructions that are not perfectly
emulated (e.g., the emulator fails to generate an excep-
tion.) We traced these samples using IntroLib to see if
any detection happened. As we expected, none of these
samples were able to detect our system. IntroLib is built
on hardware virtualization which executes instructions na-
tively on the CPU, so anti-emulation attacks that rely on
detecting imprecise instruction emulation would not work.

We then verified transparency of IntroLib against real-
world malware. Among the 93 real-world malware sam-
ples we analyzed, 3 of them crashed before showing any
behavior. We submitted these 3 samples to Anubis and
CWSandbox and found out these samples also crashed in
their analysis environments. They still crashed when being
executed in an unmodified KVM, which means the crashes
were not due to detection of IntroLib.

We successfully use IntroLib to obtain library call logs
of all the remaining 90 samples. By manually inspecting
the call logs, we were able to identify malicious behavior
of each sample. We then submitted these 90 samples to
Anubis and CWSandbox for comparison.

Anubis failed to analyze 6 of these 90 samples. From
the screenshot captured by Anubis, we observed three sam-
ples 4 showed a message box with text “OK CRC er-
ror! File content has been modified. If you run a sys-
tem debugger, clear all breakpoints before running this pro-
gram!” and then exited, which clearly indicated that Anu-
bis had been detected. Further investigation showed that
these 3 samples are packed with tElock, which is known
to be able to detect Anubis. In contrast, from the li-
brary call logs generated by IntroLib, we were able to
identify that the goal of these 3 samples is to steal user
accounts of online games by hijacking their executable
file paths in registry. The other 3 samples 5 are vari-
ants of worm Win32/Dorkbot.A. All of them are packed
using Armadillo. It is known that Anubis could be de-
tected by Armadillo, so it’s no surprise that these samples
showed no behavior in Anubis. In IntroLib, all of them
exhibited malicious behavior. One of these 3 samples, the

4MD5 hash: eb26dbddcd3913ef93eb9e212baabd39,
c61121bae21bb01a34b7f4f00d378139 and
eceea0402dbb1bcc2c2b802c0a28350d.

5MD5 hash: d7f673210ccd361f69b4676e9c8752ce,
eafab52ac69dee4de4e02da1f5ccd9c4 and
f27dd9ba200266d7c9df2d345b8f882f.

Win32/Dorkbot.AJ, has been thoroughly analyzed in our
second case study.

CWSandbox successfully analyzed all these 90 sam-
ples. However, this does not mean it is transparent; in fact
CWSandbox could be easily detected even by user-mode
malware as it relies on user-mode API hooking. To prove
this, we wrote a small user-mode sample using the detec-
tion code in (Royal, 2008). The detection code checks if
CreateFileA is hooked by reading the first two bytes of the
function. If the value of the first two bytes is 0xff25, which
is the opcode of a jump instruction, it means the function is
hooked by CWSandbox; the program will then create a file
named “in cwsandbox” to indicate detection. We submit-
ted our sample to CWSandbox and its log showed the file
“in cwsandbox” was created, which meant it was detected.
We ran the same sample in IntroLib and the sample exited
without creating the file. IntroLib could maintain trans-
parency to all similar attacks which detect the presence
of analysis system in memory, as it neither resides in nor
introduces any modification to guest memory.

4.3. Performance Overhead

We measured the performance of IntroLib using PC-
Mark05, an industry standard benchmark for testing the
comprehensive performance of a system. The system test
suite of PCMark05 includes both computation intensive
test cases such as image decompression, and library call
intensive ones such as emulating Windows XP startup.
We ran the benchmark in three environments: unmodified
KVM, IntroLib in standby mode and IntroLib in tracing
mode. In standby mode, IntroLib was not tracing any
process, but it was ready to identify and trace specified
processes as soon as they appeared; in tracing mode, we
let IntroLib trace the benchmarking process to see how
much IntroLib affected the performance of the program
being traced. In this part of evaluation, we turned off the
logic of handling timing attack in IntroLib to make sure
that PCMark05 in the guest VM measured the real elapsed
time instead of the time adjusted by IntroLib.

The result of the performance test is shown in Table
1. We can see that in computation intensive test cases
such as file encryption, decryption and compression, the
performance degradation introduced by IntroLib is about
6% to 12%. As we expected, in these cases, IntroLib did
not introduce much more overhead in tracing mode than
in standby mode. On the other hand, for library call in-
tensive ones such as emulating Windows XP startup, the
overhead is much larger when IntroLib is performing li-
brary call tracing. The size of the log we obtained during
the test in tracing mode is 86.3MB, which confirmed a lot
of library calls had been made. We point out that, unlike
Windows XP startup, most malware programs are not as
library call-intensive and hence will incur much less tracing
overhead. We also measured the total time used for execu-
tion in each testing environment, respectively. When In-
troLib is standby, the total performance overhead is about
3.62%. Even when IntroLib is fully working at library call
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Test Case Vanilla KVM IntroLib(Standby) IntroLib(Tracing) Overhead(Standby) Overhead(Tracing)
HDD-XP Startup 7.15 MB/s 7.13 MB/s 5.10 MB/s 0.26% 40.17%
Html Render 3.96 Pages/s 3.53 Pages/s 3.57 Pages/s 12.26% 11.21%
File Decryption 80.67 MB/s 74.93 MB/s 74.78 MB/s 7.67% 7.88%
Text Edit 102.60 Pages/s 95.4 Pages/s 90.67 Pages/s 7.54% 13.16%
Image Decompression 15.90 MPixel/s 14.10 MPixel/s 14.18 MPixel/s 12.71% 12.11%
File Compression 3.49 MB/s 3.26 MB/s 3.23 MB/s 6.91% 7.99%
File Encryption 20.26 MB/s 19.04 MB/s 18.88 MB/s 6.39% 7.29%
Total Time 552 s 572 s 633 s 3.62% 14.67%

Table 1: Performance overhead of IntroLib measured by PCMark05 benchmarks.

tracing, the performance overhead is only 14.67%. This
is acceptable for deployment in live malware forensics sys-
tem.

5. Discussion

We have verified IntroLib’s transparency property based
on the formal requirements defined in (Dinaburg et al.,
2008). The formal proof is elided due to lack of space.
Still, IntroLib is not completely undetectable. For exam-
ple, when IntroLib intercepts a control flow transition and
switches the SPT, the TLB will be flushed and attackers
can use method as described in (Ptacek, 2012) to detect
the change. We may use tagged TLB to associate TLB en-
tries with the SPT and avoid the TLB flush, but the prob-
lem still exists: as the TLB entries become tagged, when
we switch SPT, the TLB entries associated with the pre-
vious SPT will be inactive in the context of the new SPT.
Such change could still be detected by carefully crafted
malware. However, TLB-based detection incurs high false
positive rate as the TLB changes are not solely caused
by IntroLib. For example, context switches in the guest
also cause TLB flushes; and some Intel CPUs with hard-
ware virtualization support also flush the TLB on every
VMExit.

It’s worth noting that IntroLib tries to conceal itself,
but not the underlying virtualization platform, from mal-
ware. Detection of virtualization is still possible. How-
ever, as virtualization becomes widely used in production
systems, malware that identifies all virtualized systems as
analysis environments will lose a considerable and increas-
ing number of targets.

Our control flow transition interception mechanism re-
lies on page level protection, so intra-page transitions could
not be intercepted. Attackers could move library code to
the same page of the malware code to avoid being inter-
cepted. However, as the code section of many library bina-
ries are larger than the minimum page size in x86 (4KB),
it is difficult (if at all possible) to co-locate the needed
library code with the malware code in one single page.

IntroLib relies on some in-guest data when perform-
ing memory layout identification and library call logging,
for example, kernel objects that describe file mapping and
metadata of library binaries. Although we leverage the
copy-on-write disk to make sure that IntroLib only reads

un-tampered metadata, attackers might still thwart trac-
ing by not presenting the required data. Malware could
obfuscate its memory layout, for example, load library
without using file mapping, or move the library code to
another area after loading. To frustrate library function
identification, the malware could copy an existing library
to a new file and load it; since the new file does not exists
on the original read-only disk, IntroLib will fail to read it.

To address this problem, one possible solution is content-
based identification of library code area and functions. We
can first build a database which consists library function
binaries of all existing libraries on the disk. When a con-
trol flow transition is detected, we could identify the tar-
get function by matching its binary (content) with those
in the database (and skipping those relocatable bytes). To
thwart such a solution, malware authors would have to
polymorph in-memory library functions, which is known
to be hard to implement. We leave the development of
this solution as our future work.

IntroLib does not capture system calls directly made by
malware. In such case, we could utilize existing system call
tracing work (Jiang and Wang, 2007) as a complement.

6. Conclusion

We have presented IntroLib, a tool that performs ef-
ficient and transparent library calls tracing for malware
forensics. IntroLib utilizes hardware virtualization to el-
evate its transparency to malware, and use page table-
based mechanism to efficiently intercept user-level library
calls at hypervisor level. We evaluate our KVM-based In-
troLib prototype using 93 real-world Windows malware
samples. The result shows that IntroLib uncovers richer
information about malware intent and behavior than sys-
tem call tracing-based approaches, yet it remains trans-
parent to malware with emulation detection logic. Our
performance test shows that IntroLib incurs low overhead
and can therefore be applied to live malware analysis and
forensics.
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