
IEEE Communications Magazine • November 20012

QoS-Aware Middleware for Ubiquitous
and Heterogeneous Environments

0163-6804/01/$10.00 © 2001 IEEE

ABSTRACT

Middleware systems have emerged in recent
years to support applications in heterogeneous
and ubiquitous computing environments. Specifi-
cally, future middleware platforms are expected
to provide quality of service support, which is
required by a new generation of QoS-sensitive
applications such as media streaming and e-com-
merce. This article presents four key aspects of a
QoS-aware middleware system: QoS specifica-
tion to allow description of application behavior
and QoS parameters; QoS translation and com-
pilation to translate specified application behav-
ior into candidate application configurations for
different resource conditions; QoS setup to
appropriately select and instantiate a particular
configuration; and finally, QoS adaptation to
adapt to runtime resource fluctuations. We also
provide a comparison of existing QoS-aware
middleware systems in these four aspects.

INTRODUCTION
A new generation of distributed applications,
such as telemedicine and e-commerce applica-
tions, are being deployed in heterogeneous and
ubiquitous computing environments. These
applications are expected to deliver adaptive and
satisfactory quality of service (QoS), in order to
be accepted by general users. This poses a chal-
lenge in the support of QoS specification, setup,
and enforcement for these applications.

In the past decade, various architectures, pro-
tocols, and algorithms have been proposed to
address these challenging issues. For example,
solutions have been proposed for setting up and
enforcing QoS in IP or asynchronous transfer
mode (ATM) networks, in operating system
(OS) kernels, and in applications themselves.
While network and OS-level solutions provide

native and generic QoS support, they may not be
easily and rapidly deployed on a large scale and
for all new applications. On the other hand,
application-level solutions, such as adaptive or
layered video coding, may be applicable only to
a certain application domain.

More recently, various solutions at the mid-
dleware layer have also been presented, which
reside between applications and OS kernels. In
comparison, middleware solutions provide more
flexibility when assisting new applications in
ubiquitous computing environments. In this arti-
cle we propose our solution to QoS specifica-
tion, setup, and enforcement at the middleware
layer. Our middleware easily cooperates with
existing solutions at OS, network, and applica-
tion levels. Furthermore, even when OS or net-
works are best effort rather than QoS-enabled,
the middleware system can still assist applica-
tions with QoS adaptations. Our solution spans
from QoS specification and translation in the
development phase of an application to QoS
setup and adaptation at runtime. We believe
that these capabilities are essential to any QoS-
aware middleware system.

The remainder of this article is organized as
follows. We will present an architectural overview
of our QoS-aware middleware and discuss QoS
specification and compilation issues. Then we will
present QoS setup and adaptation approaches,
compare existing middleware solutions in related
work, and conclude with lessons learned.

QOS-AWARE
MIDDLEWARE ARCHITECTURE

Our QoS-aware middleware architecture favors
applications modeled by a generic application
component model. In this model we view a col-
lection of interconnected application components

Klara Nahrstedt, University of Illinois at Urbana-Champaign

Dongyan Xu, Purdue University

Duangdao Wichadakul, University of Illinois at Urbana-Champaign

Baochun Li, University of Toronto

DESIGN METHODOLOGIES FOR
ADAPTIVE AND MULTIMEDIA NETWORKS

IEEE Communications Magazine • November 2001 3

on a single host as a set of tasks, with input-out-
put dependencies. Beyond a single end host, we
group the entire distributed application into
clients and services. The collection of clients and
services form another directed graph represent-
ing the service provider-consumer relations. This
graph is called an application functional graph, as
illustrated in Fig. 1a.

In fact, our QoS-aware middleware is a com-
ponent base system itself. Its architecture is
shown in Fig. 1b, with components at both QoS-
aware resource management and QoS-aware ser-
vice management levels. An instance of this
architecture is running in every end host in the
environment:
• QoS-aware resource management consists of

resource brokers, resource adaptors, and
observers. They are responsible for resource
reservation, enforcement, adaptation, and
monitoring. QoS-aware resource manage-
ment is built on top of individual OS and
network resource management functions,
such as the reservation and scheduling of
CPU, disk, and network bandwidth.

• QoS-aware service management is represent-
ed by a collection of middleware compo-
nents, collectively referred to as the
QoSProxy. The decisions and actions of a
QoSProxy are driven by resource conditions
reported by the underlying resource man-
agement components. The definitions of
these decisions and actions are initially
injected via QoS specification and compila-
tion (to be described in the next section),
and they reflect the middleware’s capabili-
ties of service discovery, application config-
uration selection/reselection/instantiation,
and coordinated multiresource allocation. It
is worth noting that QoSProxies operate
only on the control/management plane of
an application, not on its data plane. There-
fore, they do not hinder the processing and

transmission of the application data.
For an application, the QoS-aware middle-

ware provides support spanning from its devel-
opment phase to its runtime phase:
• During the development phase (see the next

section), the application developer specifies
QoS parameters, possible configurations,
and applicable environments of an applica-
tion. The specifications are then translated
by the QoS compiler, a companion develop-
ment tool of the middleware (not shown in
Fig. 1b), into internal representations,
which will be injected into the middleware
and used at runtime.

• During the runtime phase, the QoS-aware
middleware performs QoS setup and adap-
tation for the application. QoS setup (dis-
cussed later) takes place right before the
execution of the application, while QoS
adaptation (also discussed later) is trig-
gered during the application execution by
resource fluctuation, user mobility, and
change of user preference.

APPLICATION DEVELOPMENT PHASE

QOS SPECIFICATION
During the application development phase, an
application developer provides QoS specification
about the target application. The format of QoS
specification varies in different QoS-aware mid-
dleware systems. For example, in QoSME [1],
QoS is described via a Quality of Service Assur-
ance Language (QuAL); in Agilos [2], QoS is
defined via rules and membership functions;
while in Q-RAM [3], QoS is represented by
resource utility functions. However, QoS specifi-
cations share the following characteristics:
• They are application-specific.
• Their formats are tailored for the targeted

application domains.
• They need translations from the original

■ Figure 1. QoS-aware middleware architecture: an overview.

Resource coordinator

Service configurator

Host states

Application-neutral control values

Operating systems and protocol stack

QoS-aware resource management

Enforce resource reservations
Resource variations

as "triggers"

Application

QoS-aware service management

Tracking algorithms

QoSProxy

Client

Services

C1

C3

C2 C4

C6

(a) An application functional graph (b) Components in a QoS-aware middleware architecture

C5

Services

C8C7

GUI display

Video streaming
Image decoder

Application-specific control actions

Component configurator

Resource broker Resource adaptor Observer

IEEE Communications Magazine • November 20014

application-level notations into the system-
level QoS parameters and representations.
For QoS specification of applications in ubiq-

uitous environments, we adopt a representation
which includes:
• An application description detailing the set

of participating application components,
the application QoS parameters and levels,
and the mapping function from user-per-
ceived QoS levels to the application QoS
levels

• Application adaptation policies indicating
when and how the application should adapt
to changing environments and resource
conditions (to be detailed later)

• An application state template defining the
necessary state information with which the
application execution can properly pause
and resume

For example, the application state template of a
media streaming application may be specified as
its current video and audio frame numbers. Our
middleware supports a companion QoS program-
ming environment that helps developers conform
to such a QoS specification format.

QOS COMPILATION
After accepting the QoS specification of an appli-
cation, the QoS compiler translates the specifica-
tion into a QoS profile. The QoS profile serves as
both a “contract” and a “script” to be followed by
the QoS-aware middleware at runtime. QoS com-
pilation is analogous to program compilation: the
application source code is translated into an
object code by the language compiler so that at
runtime the object code will be executed by the
runtime support system. Similarly, the QoS pro-
file — the “object code” generated by the QoS
compiler — will be “executed” by the QoS-aware
middleware system for the setup, delivery, and
adaptation of application QoS.

With QoS specification as the “source code,”
QoS compilation proceeds as follows (more
details can be found in [4]):
• Step 1:The QoS compiler translates the

QoS specification into a set of application
functional graphs. Each graph contains a
different set of application components,
representing a possible configuration of the
application. In ubiquitous and heteroge-
neous environments, it is desirable for an
application to have multiple configurations,
each suited to a different QoS requirement,
resource condition, or physical environment
of users.

• Step 2: The QoS compiler associates each
application functional graph with appropri-
ate system service components — compo-
nents which perform domain-specific but
application-independent functions, such as
CPU monitors, buffers, or Real-Time
Transfer Protocol (RTP)-based senders and
receivers. Step 2 can be seen as a refine-
ment of the application functional graphs
generated in step 1.

• Step 3: The QoS compiler derives the end-
to-end resource assignment to application
components in each application functional
graph (i.e., each application configuration).
This is done by either analytical resource

calculation or experimental resource prob-
ing. Our QoS compiler only determines the
minimum end-to-end resource assignment
for each configuration of the application.
The resultant QoS profile consists of three

parts:
• Candidate application configurations and

their resource assignments
• Application adaptation policies
• Application state template

RUNTIME PHASE: QOS SETUP
After QoS compilation, the application is ready
for deployment: the application components will
be installed in the servers or clients of this appli-
cation; the QoS-aware middleware runs in each
host in the environment; and the result of QoS
compilation — the QoS profile — will first be
stored in the QoSProxy of the application server.
At runtime, parts of the QoS profile will be
downloaded to the QoSProxy of each client, as
will be described shortly.

In this section we present the runtime QoS
setup performed by the QoS-aware middleware.
QoS setup begins when a user starts an applica-
tion with a certain QoS requirement, and ends
when the application begins to execute. The
entities involved in this phase are shown in Fig.
2. During QoS setup, the middleware customizes
the application by selecting one of the prespeci-
fied configurations. The selection is driven by
the user’s QoS requirement and current end-to-
end resource condition.

QOS SETUP PROTOCOL
Major steps in QoS setup include service discov-
ery, application configuration selection, and
resource allocation. In addition, if the user is
mobile, QoS setup also performs application-
level handoff when the user’s location or physical
environment changes.

•Step 1 (Service Discovery): The user’s
request does not have to designate the location
of the corresponding application server. Instead,
the user specifies a descriptive service query,
including the QoS requirement. The query will
then be submitted to a Service Discovery System,
which is a public infrastructural service (like the
DNS) responsible for discovering the server of
an application. From a user’s point of view, the
Service Discovery System accepts a service query,
and returns service handles of a set of qualified
servers. Looking into the Service Discovery Sys-
tem, it consists of three types of entities: user
agent (UA), directory agent (DA), and service
agent (SA).1 As part of the QoSProxies, the UAs
and SAs run in clients and in servers, respective-
ly. The DAs are logically independent brokers
between UAs and SAs. A UA intercepts a user’s
service query and submits it to the DA. Mean-
while, an SA sends a service handle on behalf of
the server to the DA. Upon receiving a service
query from a UA, the DA pulls out every quali-
fied service handle that satisfies the query. If
there are multiple qualified service handles,
either the DA or the UA will make a choice
among them. Examples of Service Discovery Sys-
tems include the IETF Service Location Proto-
col (SLP) [5], Jini by Sun Microsystems [6], and

1 We use these terms in
accordance with the Inter-
net Engineering Task
Force (IETF) Service
Location Protocol specifi-
cation [5].

Major steps in

QoS setup

include service

discovery,

application

configuration

selection, and

resource

allocation. In

addition, if the

user is mobile,

QoS setup also

performs

application-level

handoff when

the user’s

location or

physical

environment

changes.

IEEE Communications Magazine • November 2001 5

Berkeley’s Service Discovery Service (SDS) [7].
QoS awareness is also an important require-

ment for a Service Discovery System. It requires
that a discovered server be able to deliver satis-
factory QoS to the querying client. To make a
Service Discovery System QoS-aware, there exist
both server-based and client-based approaches:
the former involves the reporting of current serv-
er performance status by the SA to the DA; the
latter leverages the client feedbacks about recent-
ly perceived application QoS from the UA back
to the DA [8]. The DA will then use the server
report or QoS feedback to make QoS-aware serv-
er selections for upcoming service queries.

•Step 2 (Application Configuration Selec-
tion): After the application server has been dis-
covered, the next step is to customize, or
configure, the application. In ubiquitous environ-
ments, the end-to-end resource conditions
observed by clients are highly heterogeneous.
For example, the server load or end-to-end net-
work bandwidth may fluctuate, and different
clients may have different processing capabili-
ties. Therefore, it is desirable that a ubiquitous
application does not execute in a single form.
Instead, different configurations will be selected
dynamically under different end-to-end resource
conditions. Application configuration selection is
based on both the user QoS requirement and
the QoS profile generated during QoS compila-
tion. First, the current end-to-end resource con-
dition is collected by querying the resource
brokers (RBs) in the client and the server. Sec-

ond, the server-side QoSProxy compares the cur-
rent resource condition with the resource assign-
ment of each candidate application configuration
in the QoS profile. The configuration is then
selected as the one whose resource assignment is
satisfied by the current resource condition, and
whose resultant end-to-end QoS is equal to or
better than the QoS requirement specified by
the user. If no candidate configuration is able to
deliver the required QoS, the user may be noti-
fied, and the configuration that delivers the best
possible end-to-end QoS under the current
resource condition may be selected.

In a selected application configuration, there
may be application components that run on
some auxiliary application servers. These compo-
nents perform QoS customization under the
resource condition that this configuration tar-
gets. Locations of the auxiliary application
servers also have to be discovered. This is again
performed by querying the Service Discovery
System.

•Step 3 (Resource Allocation): After the
application configuration has been selected, and
the location of every participating server discov-
ered, the next step is to make multiresource allo-
cation. First, an end-to-end allocation plan will
be generated according to the end-to-end
resource assignment given in the QoS profile.
Second, the end-to-end allocation plan will be
fragmented and dispatched to the QoSProxies
running on the server (locally), the client, and
the auxiliary server(s) — if any. Third, after

■ Figure 2. Entities involved in runtime QoS setup.

DA or a network of DAs

RB RB

QoS-aware
middleware

C

C C

C

Auxiliary application server

Application server

Inside a QoSProxy:

SA or UA

C: Application component
RB: Resource broker

Service Discovery System:

SA: Service agent
UA: User agent
DA: Directory agent

Application data

Application data

Service handle(s) Service query/result(s)

Service handle(s) Service query/result(s)

Adapted application data

QoS-aware
middleware

RB RB

QoS-aware
middleware

C C

UA QoSProxy

RB RB

Application client

Application client

C C

C C

QoS-aware
middleware

UA QoSProxy

RB RB

C C

SAQoSProxy

SAQoSProxy

QoS profile (from
QoS compilation)

IEEE Communications Magazine • November 20016

receiving the corresponding segment of the end-
to-end resource allocation plan, the QoSProxy
running on that host will further dispatch the
plan to the local RBs. Finally, the RBs will make
the actual allocations.

•Step 4 (QoS Profile Downloading): The
client-side QoSProxy will download the following
two parts of the QoS profile from the server-side
QoSProxy: application adaptation policies and an
application state template. Application adaptation
policies are for QoS adaptation (see a later sec-
tion), while the application state template is for
the support of application-level mobility.

When the four steps are completed, the
QoSProxy on each host will start the local appli-
cation component(s) involved in the selected
configuration. The execution of the application
will then begin.

APPLICATION-LEVEL MOBILITY SUPPORT
In ubiquitous environments, the mobility of
users should be treated as a normal case instead
of as an exception. This requires that the QoS
setup also incorporates support for user mobili-
ty, as illustrated in Fig. 3. A user may start an
application, and then move to another location.
The user may move with the same client
machine, with no client machine, or even with

multiple client machines such as a laptop com-
puter, PDA, and cellular phone. At the new
location, the QoS setup must accommodate the
continuation of the application: its intermediate
execution state has to be restored; and its client
machine as well as the corresponding application
configuration may have to be redetermined. The
reason for a possible change of client machine is
the user’s changing physical environment. For
example, a user at home uses a desktop PC to
view an online music video. However, when
he/she gets into a car, the same music will be
delivered in audio-only form to the sound system
controlled by an onboard computer. Such a sce-
nario involving user mobility and application
continuity is called application-level handoff.

Mechanisms to support application-level
handoff need to be incorporated into the QoS
setup protocol. First, the deployment of a user
tracking system is necessary. It keeps track of
users, and maintains information about each
user, including the user’s ID, carry-on device(s),
and current location. Second, the following addi-
tional steps are performed during QoS setup for
a mobile user:
• When the user arrives at a new location,

the user tracking system is invoked to rec-
ognize the user, and to update and retrieve

■ Figure 3 User mobility and application-level handoff.

User moves

"Leaving"

User information

Inside user tracking system:

User information:

User ID Devices

....

Current location

"Arriving"

Application server

Resumed application data
?

C: Application component
RB: Resource broker

RB RB

C C

SAQoSProxy

RB RB

C C

UA QoSProxy

User tracking system

...

IEEE Communications Magazine • November 2001 7

the corresponding user information. Con-
tact with the user tracking system can be
either initiated manually by the user (e.g.,
via user logon) or triggered automatically
by an active user detection device — for
example, each user could carry an intelli-
gent badge capable of automatic handshake
with a computer, based on the computer’s
proximity to the user.

• A pausing application started earlier by this
user does not have to be requested again.
Instead, QoS setup can resume its execu-
tion automatically. First, the usual steps of
QoS setup will be performed, including ser-
vice discovery (which may be necessary due
to the user’s location change), application
configuration (re)selection, and resource
allocation.

• Then the intermediate execution state of the
application will be retrieved and restored by
the client-side QoSProxy. The execution
state can be retrieved either as part of the
user information from the user tracking sys-
tem, or from the user’s carry-on device, one
the user always carries with him/her (e.g., a
PDA). However, this requires that the state
be captured when the user moves away from
the previous location. To do this, when the
user moves away, the QoSProxy of the previ-
ous client takes a “snapshot” of the applica-
tion execution, according to the downloaded
application state template (recall step 4 in the
previous section). The snapshot, which con-
tains necessary state information to properly
resume the application, is then sent to either
the user tracking system or the user’s carry-
on device.

RUNTIME PHASE: QOS ADAPTATION
At runtime, after QoS setup, the QoS-aware
middleware may perform QoS adaptation during
the execution of an application. Recall that in an
earlier section the end-to-end resource assign-
ment for each application configuration is the
minimum assignment, based on the lowest
acceptable QoS delivered by this configuration.
Therefore, during the execution, the delivered
application QoS should be dynamically adjusted

according to the actual resource availability. In a
worse case, the environment might not even sup-
port resource reservations. In both cases, run-
time QoS adaptation is necessary.

QoS adaptation takes place at both the
resource management and service management
levels. At resource management level, Resource
observers and adaptors perform application-neu-
tral adaptation. At the service management level,
QoSProxies perform adaptation on application
components and configurations based on applica-
tion adaptation policies, a part of the QoS profile
(discussed earlier). An integrated model of all
adaptations is shown in Fig. 4 as a control loop.

QOS ADAPTATION BY RESOURCE ADAPTORS
Resource adaptors are neutral to applications and
specific to resource types, such as CPU and net-
work bandwidth. A resource adaptor controls all
concurrent applications sharing the same resource
in an end host. It reacts to resource fluctuation by
fairly reallocating the available resource to the
sharing applications and notifying them of the
changes. Each application, in turn, will adapt the
rate, volume, or fidelity of its application data
according to the resource allocation changes.
Notice that in this type of QoS adaptation, only
application data are adapted, while the applica-
tion configuration remains unchanged.

QOS ADAPTATION BY
COMPONENT CONFIGURATORS

As part of the QoSProxy, a component configura-
tor performs QoS adaptation at a higher level.
This type of QoS adaptation involves the
replacement, deletion, or addition of application
component(s) in the application configuration.
Actions of component configurators are defined
in the application adaptation policies (part of the
QoS profile). The policies are based on the fuzzy
control model [2]. The adoption of fuzzy logic is
justified by the observation that multiple recon-
figuration and parameter-tuning options span
different domains, and that the controllable
regions and variables within the application are
discrete and nonlinear. In such a scenario, fuzzy
logic allows the specification of such a decision-
making process with a small number of fuzzy

■ Figure 4. Viewing QoS adaptation as a control loop.

Resource
adaptor

Observed values

Application-neutral
control values

Resource variations

Resource
demands

Application-neutral
control values

Application-level
QoS parameters

Component
configurator

Service
configurator

Resource brokers

Observer

Interface Application server

Interface Application client

IEEE Communications Magazine • November 20018

rules. The nonlinearity of the fuzzy controller
naturally matches the complexities brought by
having multiple adaptation choices.

The fuzzy control model utilizes fuzzy logic to
express application adaptation policies as a con-
figurable rule base, which “fuels” a generic fuzzy
inference engine to derive the exact control deci-
sions. It contains two parts: linguistic rules con-
sisting of a set of linguistic variables and values,
and membership functions for linguistic values. A
typical linguistic rule is:

if (cpu is high) and (rate is low)
then rateaction : = activate_encoder;

Such a rule specifies that if the CPU adaptor
allocates CPU in high amounts but the band-
width adaptor allocates bandwidth at low rates,
reconfigure the application to activate the video
encoder application component. A typical mem-
bership function for a linguistic value such as
high can be expressed with four deterministic
points of any trapezoid-shaped membership
functions, depending on adaptation require-
ments. The output of the function is in the range
of [0,1], representing the possibility that adapta-
tion should happen.

The application-neutral output of the
resource adaptors is piped into the component
configurator, fuzzified as input to the inference
engine based on its rule base. Any output from
the inference engine is then the QoS adaptation
decision for the application. For example, in Fig.
5a, the application-neutral output of the band-
width adaptor may be decrease new bandwidth
resource requests to x, and the output of the com-
ponent configurator may be activate the video
encoder H.261.

QOS ADAPTATION BY SERVICE CONFIGURATORS
As part of the QoSProxy, the service configurator
performs QoS adaptation in an end-to-end fash-
ion, removing the limitation that QoS adaptation
can only be performed in a single end host. More
specifically, the service configurator is able to
change the application configuration selected dur-
ing the QoS setup phase (see the previous sec-
tion). For example, in Omnitrack, a distributed
visual tracking application [2], when the end-to-
end bandwidth becomes unacceptably low, the
service configurator will decide that the best QoS

adaptation is to switch to another video camera
server with a low-bit-rate video codec.

Internally, the service configurator maintains
a state table for each of the clients and servers,
as well as an application functional graph repre-
senting the currently selected application config-
uration (as shown in Fig. 5b). If a
reconfiguration occurs, the graph will be updat-
ed correspondingly. The central processing mod-
ule makes the QoS adaptation decisions. We
again adopt the fuzzy-logic-based fuzzy inference
engine for the purpose of processing input states
from hosts and generating an application recon-
figuration decision. As in the component configu-
rator, such an inference process is also based on
application adaptation policies (part of the QoS
profile) expressed as a rule base, and on states of
individual hosts in the application functional
graph. In the Omnitrack example, a rule in the
rule base can be:

if (server_load is low) and (serv-
er_angle is close) then server_rank-
ing is high;

In this example, server_angle is a dynami-
cally generated value derived from the state of a
particular client and server, including the actual
angle of the client’s desired view, the view that
the server offers, and the difference between
them. On the other hand, server_load is the
observed CPU load on a server. The better a
server matches this criteria, the higher the rank-
ing of a server will have. The highest ranked
server should be selected to serve the client;
therefore, the application configuration involving
this server will be selected and instantiated.

A COMPARISON OF
QOS-AWARE MIDDLEWARE SYSTEMS
Table 1 provides a comparison of existing QoS-
aware middleware systems: 2KQ [9], Agilos [2],
QoS services in CORBA, TAO [10], QuO [11],
QoSME [1], Hafid and Bochmann’s QoS man-
agement framework [12], and Q-RAM [3]. We
compare these systems in the following aspects:
QoS specification, QoS translation, supported
applications, QoS enforcement, and QoS adapta-
tion.

■ Figure 5. QoS adaptation at the service management level.

Application functional graph

Service configurator

S1
S3

C3

C1

S2
C2

Topology updatesComponent configurator

Fuzzy interference engine

Application-specific rule base

Application-
neutral
control
values

"Decrease new
bandwidth resource

requests to x"

Application-
specific
control
actions

"Activate video encoder"

Resource
adaptor

Application
components

(a) QoS adaptation by component configurator

Component configurator tier Applications
(application component model)

Resource
adaptation tier

(b) QoS adaptation by service configurator

Central processing module

C1 states

C2 states

C3 states

Client states

S1 states

S2 states

S3 states

Service states

Rule base

Fuzzy inference engine

IEEE Communications Magazine • November 2001 9

CONCLUSION

QoS-aware middleware systems have emerged to
assist a new spectrum of applications that require
QoS in heterogenous and ubiquitous computing
environments. In this article we have shown that,
using an application component model, it is pos-
sible to provide end-to-end application QoS via
QoS-aware middleware systems, by:
• Generating appropriate QoS specifications
• Translating and compiling multiple applica-

tion configurations for the same application

to be run in heterogeneous environments
• Selecting an appropriate configuration and

discovering the participating application
components

• Adapting QoS at multiple levels and with
different granularities in case of QoS degra-
dations.
Our own experiences with QoS-aware mid-

dleware systems, such as 2KQ and Agilos, provid-
ed us with several lessons. First, it is difficult to
design a uniform QoS specification language to
allow for QoS description in different applica-

■ Table 1. Comparison of QoS-aware middleware systems.

QoS middleware QoS specification QoS translation Range of supporting QoS enforcement QoS adaptation
system applications

2KQ QoS specifications using Multiphase QoS Multiple domains of Guaranteeing Intraconfiguration
a QoS programming compilations applications via minimum-amount adaptation and
environment customizable QoS reservation of dynamic

specifications and multi- resources reconfiguration
phase compilations

Agilos Fuzzy rules and Internal analytical Applications suited for Best effort (with Three-tier data,
membership functions translation with the control-based QoS control-based component, and

help of QualProbe adaptation adaptation) service adaptations

QoS in CORBA audio/ Predefined IDL Internal translation Audio/video streaming Performed by Adaptation at
video streaming interfaces extending the applications available network
service standard CORBA IDL transport protocols transport layer

interfaces

CORBA messaging Predefined IDL N/A Messaging applications Message queue N/A
interfaces extending the ordering in a
standard CORBA IDL “router process”
interfaces

Real-time CORBA Predefined IDL N/A Real-time applications Performed by N/A
interfaces extending the real-time extensions
standard CORBA IDL in standard OS
interfaces

Fault-tolerant CORBA Predefined IDL N/A Fault-tolerant applications Maintaining x N/A
interfaces extending the replicas for a certain
standard CORBA IDL fault-tolerant level
interfaces

TAO Predefined IDL N/A Real-time messaging Based on priority N/A
interfaces applications queues in ORB

QuO A set of Quality N/A Messaging applications Performed by Depending on
Description Languages individual individual
(QDLs) application-specific application-specific

implementation implementation
and specification and specification
via QDLs via QDLs

Hafid and Bochmann’s N/A Translation from Distributed multimedia Performed by QoS Application
QoS management in user-level QoS applications negotiation and reconfiguration
distributed multimedia parameters to a resource allocation via dynamic
applications suitable application protocols negotiation

configuration

QoSME Quality Assurance N/A Applications requiring Performed by Using a set of
Language (QuAL) QoS in transport protocols available predefined

and in OS transport protocols operators for
and POSIX- QoS renegotiation
compliant OS

Q-RAM Resource utility N/A Applications running in Based on their By their adaptive
functions a resource-sharing resource allocation resource allocation

environment and model algorithms
requiring QoS provision

IEEE Communications Magazine • November 200110

tion domains, and further research is needed.
Second, QoS compilations may require applica-
tion code instrumentation, and hence developer
awareness, because not all translations from
application QoS to resource assignment can be
automated. Third, the resource-level QoS sup-
port via resource brokers, such as CPU and
bandwidth brokers, are highly desirable for the
provision of end-to-end application QoS. A mid-
dleware system can deliver much better end-to-
end QoS if it collaborates with the underlying
OS and network QoS support. Finally, QoS
adaptation capability is necessary in middleware
systems, especially if they are to assist applica-
tions on top of best effort OS and networks.

Overall, the results from our current develop-
ment of QoS-aware middleware systems are
encouraging. We believe that such middleware
will become an integral constituent of the appli-
cation-enabling platform for emerging ubiqui-
tous and heterogeneous environments.

ACKNOWLEDGMENTS
We would like to thank the anonymous review-
ers for their valuable comments on this article.
This work was supported by the Air Force under
contract F30602-97-2-0121, ONR MURI under
contract NAVY CU 37515-6281, and the Nation-
al Science Foundation under contracts NSF
CCR 0086094, NSF EIA 9972884, and NSF EIA
9870736.

REFERENCES
[1] P. G. S. Florissi, “QoSME: QoS Management Environ-

ment,” Ph.D. thesis, Columbia Univ., 1996.
[2] B. Li and K. Nahrstedt, “A Control-Based Middleware

Framework for Quality of Service Adaptation,” IEEE
JSAC, Special Issue on Service Enabling Platforms, vol.
17., no. 9, Sept. 1999, pp. 1632–50.

[3] R. Rajkumar et al., “A Resource Allocation Model for
QoS Management,” IEEE Real-Time Sys. Symp., Dec.
1997, pp. 298–307.

[4] D. Wichadakul and K. Nahrstedt, “Distributed QoS Com-
piler,” Technical Report UIUCDCS-R-2001-2001, Dept.
Comp. Sci., Univ. of IL at Urbana-Champaign, submit-
ted for journal publication, Feb. 2001.

[5] E. Guttman, “Service Location Protocol: Automatic Dis-
covery of IP Network Services,” IEEE Internet Comp.,
vol. 3, no. 4, 1999, pp. 71–80.

[6] J. Waldo, “The Jinni Architecture for Network-Centric
Computing,” Commun. ACM, vol. 42, no. 7, July 1999.
pp. 76–82.

[7] S. Czerwinski et al., “An Architecture for a Secure Dis-
covery Service,” ACM Mobicom, Sept. 1999, pp. 24–35.

[8] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS-Aware
Discovery of Wide-Area Distributed Services,” Proc.
IEEE/ACM Int’l. Symp. Cluster Comp. and Grid, CCGrid
’01, May 2001, pp. 92–99.

[9] K. Nahrstedt, D. Wichadakul, and D. Xu, “Distributed
QoS Compilation and Runtime Instantiation,” Proc. 8th
IEEE/IFIP Int’l. Wksp. QoS, June 2000, pp. 198–207.

[10] D. Schmidt, D. Levine, and C. Cleeland, “Architectures
and Patters for High-Performance, Real-Time CORBA
Object Request Brokers,” Advances in Comp., Marvin
Zelkowitz, Ed., Academic Press, 1999.

[11] J. Zinky, D. Bakken, and R. Schantz, “Architecture Sup-
port for Quality of Service for CORBA Objects,” Theory
and Practice of Object Sys., vol. 3, no. 1, Jan. 1997.

[12] A. Hafid and G. Bochman, “An Approach to QoS Man-
agement in Distributed Multimedia Applications:
Design and Implementation,” Multimedia Tools and
Applications, vol. 9, no. 2, 1999.

BIOGRAPHIES
KLARA NAHRSTEDT (klara@cs.uiuc.edu) [M] is an associate
professor at the University of Illinois at Urbana-Champaign,
Computer Science Department. Her research interests are

directed toward reconfigurable multimedia services, multi-
media protocols, multimedia security, middleware systems,
Quality of Service (QoS) provision, QoS routing, and QoS-
aware resource management in distributed multimedia sys-
tems. She is the co-author of the widely used multimedia
book Multimedia: Computing, Communications and Appli-
cations published by Prentice Hall, the recipient of the Early
NSF Career Award, the Junior Xerox Award, and IEEE Com-
munication Society Leonard Abraham Award for Research
Achievements. Since June 2001 she serves as editor-in-chief
of ACM Multimedia Systems Journal. She received her B.A.
in mathematics from Humboldt University, Berlin, Ger-
many, in 1984, and her M.Sc. degree in numerical analysis
from the same university in 1985. She was a research sci-
entist in the Institute for Informatik in Berlin until 1990. In
1995 she received her Ph.D. from the University of Pennsyl-
vania in the Department of Computer and Information Sci-
ence. She is member of ACM and SPIE.

DONGYAN XU (d-xu@cs.uiuc.edu) [StM] received his B.S. in
computer science from Zhongshan University, China. He is
currently a Ph.D. candidate in the Department of Computer
Science at the University of Illinois at Urbana-Champaign.
His research interests include QoS in distributed multimedia
systems, mobile computing and networking, and Internet
computing. He is a student member of ACM.

DUANGDAO WICHADAKUL (wichadak@cs.uiuc.edu) received her
B.E. in computer engineering from Chulalongkorn Universi-
ty, Thailand, and her M.S. in computer science from the
University of Illinois at Urbana-Champaign. Currently she is
a Ph.D. candidate in the Department of Computer Science
at the University of Illinois at Urbana-Champaign. Her
research interests include QoS in distributed object com-
puting and ubiquitous environments, QoS specification and
compilation, monitoring, and probing techniques.

BAOCHUN LI (bli@eecg.toronto.edu) received his B.E. in com-
puter science from Tsinghua University, China, and his M.S.
and Ph.D. degrees in computer science from the University
of Illinois at Urbana-Champaign. Currently he is an assis-
tant professor at the Department of Electrical and Comput-
er Engineering of the University of Toronto. His research
interests include QoS, application-level monitoring and
adaptation, multimedia, and mobile computing.

The results from

our current

development of

QoS-aware

middleware

systems are

encouraging. We

believe that such

middleware will

become an

integral

constituent of

the application-

enabling platform

for emerging

ubiquitous and

heterogeneous

environments.

