
Detecting Attacks Against Robotic Vehicles: A Control Invariant
Approach

Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xiangyu Zhang, Dongyan Xu,

Xinyan Deng

{choi293,lee1938,yaafer,feif,tu17,xyzhang,dxu,xdeng}@purdue.edu

Purdue University

ABSTRACT
Robotic vehicles (RVs), such as drones and ground rovers, are a type

of cyber-physical systems that operate in the physical world under

the control of computing components in the cyber world. Despite

RVs’ robustness against natural disturbances, cyber or physical

attacks against RVs may lead to physical malfunction and subse-

quently disruption or failure of the vehicles’ missions. To avoid or

mitigate such consequences, it is essential to develop attack detec-

tion techniques for RVs. In this paper, we present a novel attack

detection framework to identify external, physical attacks against

RVs on the fly by deriving and monitoring Control Invariants (CI).

More specifically, we propose a method to extract such invariants

by jointly modeling a vehicle’s physical properties, its control algo-

rithm and the laws of physics. These invariants are represented in a

state-space form, which can then be implemented and inserted into

the vehicle’s control program binary for runtime invariant check.

We apply our CI framework to eleven RVs, including quadrotor,

hexarotor, and ground rover, and show that the invariant check can

detect three common types of physical attacks – including sensor

attack, actuation signal attack, and parameter attack – with very

low runtime overhead.

CCS CONCEPTS
• Security and privacy → Embedded systems security; • Com-
puter systems organization→ Embedded and cyber-physical sys-
tems; Evolutionary robotics;

KEYWORDS
CPS Security; Robotic Vehicle; Control Invariant; Attack and De-

tection

ACM Reference Format:
Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xiangyu

Zhang, Dongyan Xu, Xinyan Deng. 2018. Detecting Attacks Against Robotic

Vehicles: A Control Invariant Approach. In 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’18), October 15–19, 2018,
Toronto, ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/

10.1145/3243734.3243752

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243752

1 INTRODUCTION
Robotic Vehicles (RVs) are a type of cyber-physical systems (CPS)

that consist of both cyber and physical components working jointly

to support the vehicle’s operations in the physical world. RVs are

becoming an integral part of our daily life. Self-driving vehicles [15,

17, 79] are expected to be commonly seen on streets and work sites.

Unmanned Aerial Vehicles [4, 62] such as drones are widely used

in defense scenarios [51] and start to appear in many commercial

and personal applications. Amazon [3] has already demonstrated

the feasibility of employing drones for order delivery. The first

passenger drone, Ehang 184 [74], was introduced in 2016.

With increasing usage of RVs in a wide range of application

domains, the security of RV has become an essential requirement

and imperative challenge. Many recent efforts in RV security have

focused on protecting the cyber components (e.g., control soft-

ware and firmware) of an RV from cyber attacks [14, 43, 60], by

software security approaches such as control flow integrity (CFI)

[14, 60], memory isolation [43], and software/firmware hardening

[16, 18, 20, 67]. These solutions are effective in defending against

attacks launched via a cyber vector such as program vulnerability

exploitation and with cyber payloads, such as injected or trojaned

code and ROP.

To make attacks against RVs harder to detect, adversaries have

started to target the physical components of a victim vehicle. First,

the vehicle’s sensors can be maliciously misguided through exter-

nal, non-cyber vectors. For instance, GPS spoofing [35, 75, 78] can

disturb GPS sensor readings. Optical sensor spoofing [21] allows

an attacker to acquire an implicit control channel, by deceiving

the optical flow sensor of a drone with a physically altered ground

plane. Gyroscopic sensor spoofing through acoustic noises [72]

can lead to drone crashes. In [69], it is shown that an automobile’s

anti-lock braking system (ABS) [69] can be attacked by injecting

magnetic fields to tamper with the wheel speed sensor readings.

In [76], it is shown that attackers can manipulate the measurements

from MEMS accelerometers via analog acoustic signal injection.

Second, attackers may disrupt vehicle communications, such as

the wireless channel between a drone and the ground station [34].

Third, attackers may compromise important parameter values (e.g.,

those deciding control gains) stored in memory through physical
interference. In [70], it is demonstrated that values in EEPROM

and Flash memory can be corrupted by heating up a memory cell

inside a memory array without damaging the device. These phys-

ical attacks – contrary to cyber attacks – pose new challenges as

they cannot be effectively handled by traditional computer security

techniques.

Meanwhile, invariant checking is a well-established approach to

detecting runtime anomalies caused by program bugs or exploits.

https://doi.org/10.1145/3243734.3243752
https://doi.org/10.1145/3243734.3243752
https://doi.org/10.1145/3243734.3243752

Traditionally, invariants are properties of the program execution

state that should always hold. Such invariants are manually speci-

fied by developers or automatically extracted via program analysis.

For instance, DAIKON [29] infers invariants from execution using

pre-defined templates and then monitors the invariants to detect

runtime exceptions. Runtime verification (e.g., [12, 65]) represents

legitimate program state transitions in an automaton that can be

validated at runtime. Control Flow Integrity (CFI) derives control

flow invariants [1] (e.g., function gee() can only be invoked by

function foo(). Invocations from any other caller are considered

exceptions). There is a large body of work [7, 22, 37, 42, 71, 83]

demonstrating that invariant checking can prevent a wide spec-

trum of software oriented (i.e., cyber) attacks.
Inspired by program invariant checking, we propose a novel

control invariant (CI) checking framework for detecting external,

physical attacks against RVs. The novelty lies in the fact that we

do not aim to check the traditional program-based invariants, but

rather control invariants that model both control and physical prop-

erties/states of the vehicle. The control invariants are determined

jointly by physical attributes of the RV (e.g., weights and shapes), its

underlying control algorithm and the laws of physics (e.g., inertia

and effects of gravity). The control invariants reflect (and set con-

straints to) an RV’s normal behaviors according to its control inputs

(e.g., make a 30
o
turn) and current physical states (e.g., velocity and

position); any deviation from them will be deemed anomalous.

Our control invariant (CI) framework works as follows. First, it

leverages a control system engineering methodology called system
identification (SI), the “physical” counterpart of program reverse

engineering, to extract the control invariants from a subject RV.

The SI method takes a control invariant template (equations with

unknown coefficients) and a large set of vehicle profiling measure-

ment data (such as system inputs, outputs, and states), as input.

It then instantiates the template’s coefficients so that the resulted

equations provide the best fit for the measurement data. These

equations will be used at runtime to predict the behaviors of the

vehicle based on inputs and states and hence serve as the control
invariants of the vehicle. A key observation – well-established in

control system engineering – is that the same control invariant

template can be used to instantiate control invariants for a family

of vehicles with a similar physical organization (e.g., all quadro-

tors [9]). In other words, their control invariants can be based on the

same equation template, only differing in coefficient values. This

significantly reduces a subject RV’s modeling space in SI, making

our framework generic and practical.

Next, the CI framework involves instrumenting the vehicle’s con-

trol program binary to insert a piece of control invariant checking
code into the main control loop. At runtime, the code will periodi-

cally observe the current system state and independently compute

the expected state using the control invariant equations. If the dis-

crepancy between the computed and observed states accumulates

and exceeds a threshold within a monitoring window, an alarm

will be raised. The window is defined to filter out transient errors

caused by physical disturbances (e.g., winds).

Contribution. The salient features of our CI framework include

the following: (1) By modeling the physical/control properties and

normal dynamics of a subject vehicle, the control invariants directly

Figure 1: Acoustic noise attack and the affected flight trajectory
while performing a simple flight mission

expose any violation caused by physical, external attacks (which

may not cause any program-level anomaly); (2) Based on the generic

method of SI, our framework is applicable to a wide range of RVs

and does not require per-vehicle controller program reverse engi-

neering to derive control invariants; (3) With monitoring window

and threshold, our framework achieves high detection accuracy

by filtering out false positive invariant violations. To realize these

features we have addressed a number of design and engineering

challenges, such as vehicle mission planning for profile data gener-

ation, monitoring window size determination, and binary control

program instrumentation; (4) Our framework enables software-

based detection of physical attacks without hardware modification

or addition.

We have developed a prototype of the CI framework and ap-

plied it to 11 robotic vehicles including quadrotors, hexarotors and

ground rovers. Our evaluation results demonstrate effectiveness of

the framework: The derived control invariants are able to detect

three types of common attacks including sensor spoofing, control

signal spoofing, and parameter corruption; the inserted control in-

variant checking code incurs low runtime overhead (<2.3%); and the

attack detection logic achieves zero false positives during normal

operation of subject vehicles.

2 MOTIVATION
To further motivate our framework, we describe, as a working exam-

ple, an external sensor spoofing attack [21, 35, 46, 58, 69, 72, 75–78]

against an IRIS+ quadrotor. A sensor spoofing attack misleads sen-

sor inputs by perturbing the physical environment being sensed.

Given the malicious sensor inputs, the vehicle’s controller will gen-

erate erroneous outputs which will disrupt or damage the vehicle.

A typical RV utilizes a number of sensors to measure the cur-

rent physical states of the vehicle. In the quadrotor, its Inertial

Measurement Unit (IMU) has gyroscopes, accelerometer sensors,

and magnetometers, which measure the angular and linear state

information. Among these sensors, our sample attack aims to spoof

the gyroscope readings, from which erroneous angular state will

be inferred, leading to a crash[72, 77]. In particular, the attacker in-

tentionally injects acoustic noises at the resonant frequency of the

gyroscope, causing the gyroscope to generate abnormal readings.

We note that the attack is an external, physical one without access

to the internals of the victim vehicle, and it cannot be detected by

existing software security techniques.

1 main_loop () {
2

3 angles = read_AHRS ();

4

5 targets = navigation_logic ();
6

7 // invariant monitoring
8 inv_monitor(targets , angles);
9

10 inputs = attitude_controller(
targets , angles);

11

12 motor.update(inputs);
13 }

(a) main loop

1 attitude_controller(targets ,angles) {
2

3 error = targets - angles;
4

5 // example pid controller
6 P = kp * error;
7 I = ki * error_sum;
8 D = kd * (angles -angles_last);
9

10 inputs = P + I + D;
11

12 return inputs;
13

14 }

(b) attitude controller

1 inv_monitor(targets , angles) {
2

3 y = Cx + D*targets;
4 x = Ax + B*targets;
5

6 i_err = y - angles;
7 i_err_sum += i_err;
8 if(i_err_sum > threshold) {
9 raise_alram ();
10 }
11

12 if(window == expired)
13 i_err_sum = 0;
14 }

(c) invariant monitor

Figure 2: Simplified example of a control loop and invariant monitor

Figure 1 illustrates the attack and its consequences. In the flight

mission, the quadrotor is supposed to take off from the home posi-

tion to an altitude of 20 meters and then move to waypoints 1 and 2

and then go back to the base. The white line indicates the expected

trajectory. Between waypoints 1 and 2, the attack is launched. The

red line shows the actual flight trajectory. Observe that after the

attack is launched, the drone deviates from the planned route and

eventually crashes.

To understand how the attack induces the abnormal behavior,

Figures 2(a) and (b) show the related code snippets in the quadro-

tor’s control program. (They have been substantially simplified for

readability.) Figure 2(a) shows the main control loop. The loop is

invoked by a real-time scheduler at a certain frequency. In each

iteration, the loop starts by reading sensor inputs. At line 3, the

angular information is obtained through the Attitude and Heading

Reference System (AHRS). At line 5, the target states are computed

by the autonomous navigation logic based on the flight plan. At

line 10, the control loop invokes the attitude controller to generate

control signals (e.g., rotational speeds of the four rotors) based on

the difference between the current and target states.

Figure 2(b) shows the attitude controller based on the classic

Proportional-Integral-Derivative (PID) control algorithm. Line 3 in

attitude_controller calculates the error. In lines 6 to 8, the PID

algorithm determines the control signals based on the error and a

weighted sum of the propositional (P), integral (I), and derivative

(D) terms.

During the spoofing attack, the sensor generates wrong angular

position readings such that variable angles at line 3 in (a) has

a faulty state. Subsequently, in the attitude controller, the error
value at line 3 in (b) is corrupted, leading to wrong actuation signal

in inputs at line 10 in (a). In the next control loop iteration, the

real angular position (due to the wrong actuation signal) will not

be reported by the spoofed sensor, further disrupting the vehicle’s

attitude and eventually leading to its crash.

The CI Approach. Under the CI framework, we can detect such an

external attack by checking whether the (perceived) physical state

of the vehicle is consistent with its expected state determined by its

control model. The control model in turn is defined by the RV’s sys-

tem properties and control algorithm, mathematically represented

by our control invariants. For example, the weight, frame shape,

and parameter values in a PID controller determine how a drone

would respond to external environmental conditions and control

signals. Intuitively, the control invariants will predict the next move

of the vehicle based on its current state and inputs. An external

attack, by definition, will influence the vehicle to deviate from its

normal, expected actions/motions, without accurate knowledge

about the RV’s internals, especially the controller’s current input,

state, and output values. Hence the deviation can be manifested

by violation of the control invariants, as if the vehicle is no longer

following the control and physics laws.

state new state

input

output

Figure 3: State-space representation of a quadrotor’s control

More specifically, our CI framework will work as follows. Given

a subject RV, the system identification (SI) method will first be ap-

plied to “reverse engineer” the dynamics and control model of the

vehicle. More specifically, the control model will be represented by

two equations [56]: the output equation that determines the control

output (e.g., new angle of a drone) based on the system’s current

state (e.g., attitude and position) and its input (e.g., target position);

and the state equation that determines the next system state from

the current state and input. Figure 3 shows the two equations for a

quadrotor drone, with x(t), u(t), y(t), and x ′ denoting its control

state at time t , input at t , output at t , and next expected state, respec-
tively. Different systems have differentA, B,C , and D matrices. The

SI method will concretize the values of the matrices for a specific

vehicle, based on its measurement and profile data.

In our working example, we conduct SI on the quadrotor to de-

rive the matrices, which allows us to estimate the output y and

future state x at lines 3-4 in Figure 2 (c) with y denoting the pre-

dicted value of angles. Then, line 6 calculates the error between

the observed and the expected angle values. To avoid false positives

due to transient errors, we would not raise an alarm every time an

error is observed. Instead, we accumulate the errors in a monitor-

ing window (line 7 in (c)) and compare the aggregated error with

a threshold (line 8). We develop an analysis tool to determine the

monitoring parameters: window size and threshold (to be described

in Section 4.2). In an external attack, the attacker cannot precisely

obtain and control the (internal) RV controller’s current states; and
the malicious sensor readings inflicted by the attacker cannot ac-

curately reflect the physical properties or planned moves of the

RV. As a result, the spoofed sensor readings would undermine the

validity of the feedback loop, leading to substantial errors.

0 10 20 30 40 50 60
time (sec)

-400

-200

0

200

400

an
gle

 (d
eg

)

measured
invariant

takeoff wp1 attack

measured
Invariant

Figure 4: Roll changes during flight

Figure 4 shows the changes of roll angle, one of the attitude

angles of a quadrotor under attack. The red curve indicates the

sensor readings and the blue curve shows the corresponding values

predicted by the control invariants. During normal operation (the

green area), the two have negligible difference. During the attack,

the roll values fluctuated in the red area and substantially deviated

from the predicted values. Note that the red values are what the

vehicle (under attack) perceived. The vehicle’s controller thus tried

to correct the (bogus) errors. Such correction conversely made the

drone oscillate and eventually lose balance. In comparison, the

predicted values (the blue curve in the red region in Figure 4) did

not fluctuate as much because they follow the control model and

physics.

Technical Challenges. Leveraging on SI’s generality, the CI frame-

work should be applicable to a wide range of RVs. To develop the

framework, we need to address the following challenges, especially

under the assumption of no control program source code: (1) We

need to derive the control invariants (i.e., concretizing the matrices

in the state and output equations). The SI method requires a set of

training flights to determine the matrices. In addition, treating an

RV as a black box during SI may lead to a very large search space

(for the model) such that it might not converge with good precision

within a reasonable amount of time. (2) We need to identify – from

the control program binary – the main control loop and program

variables that denote the current system states. The main control

loop needs to be located for the insertion of control invariant check-

ing code in the loop; the state variables need to be recognized as

they are needed in the evaluation of the two control model equa-

tions. (3) We need to set an appropriate size of the monitoring

window and the detection threshold (at lines 8 and 12 in Figure 2

(c)). If the threshold is too large, we may not be able to detect an

attack in time. If the threshold is too small, transient errors (e.g.,

overshoot when a drone turns) and environmental disturbances –

both correctable by the controller – may be reported as attacks.

3 FRAMEWORK OVERVIEW
Figure 5 gives an overview of the CI framework, which consists

of three main components: control invariants extraction, control

program reverse engineering, and monitor (i.e., control invariant

check code) generation.

System	
Identification

Monitoring

Monitoring	
Parameter	
Selection

Invariants	
Instrumentation

InvD

Inv, 𝛜th, ƛ

B’

B, LAddr
Vt ,VmBinary	Reverse	Engineering	

Invariant	Extraction Monitor	Generation

Data	
Collection

Control	Loop	
RE

State	Variables	
RE

Figure 5: Overview of the CI framework

In the "invariant extraction" step, system identification (SI) is

performed to instantiate the invariant equation matrices. First, a set

of missions (i.e., flights or rides) to be performed by the subject RV

are generated and executed. During the missions, we measure and

record the runtime inputs (target states) and system states. These

data will be used in SI to derive unknown coefficients.

We then set up a control model template for the target RV. Such

a template includes equations of a certain degree/form with unin-
stantiated parameters (e.g., quadratic functions) and can be deter-

mined by the vehicle’s physical properties and the type of control

algorithm used. A family of RVs, for example, drones of the sim-

ilar physical form (e.g., quadrotors), share the same template but

have different parameters (e.g., weight, control gain, inertia, etc.).

Quadrotors, hexarotors, and rovers belong to different families

hence require different templates. With the model template and

measurement data from the test missions, SI determines the op-

timal template parameters that best fit the data. The instantiated

equations reflect the vehicle’s control model and hence serve as its

control invariants.

Next, to instrument the (binary) control program with invariant-

checking logic, we locate the main control loop and state variables,

which will be accessed by the invariant checking code when evalu-

ating the invariant equations. This is achieved by dynamic program

analysis. Specifically, the control loop is identified by observing the

instruction sequences that are periodically executed. The program
variable corresponding to a model variable is identified by compar-

ing the value sequences of the program variable with those of the

model variable. The latter are generated by running the model with

the same mission.

In the “monitor generation” step, we determine the critical moni-

toring parameters: error threshold ϵth and monitoring window size

λ. We first determine the window size by calculating the maximum

temporal deviation between the actual state sequences (e.g., the

attitude variations overtime) and the corresponding model-derived

sequences via a sequence alignment algorithm for the training runs.

Once the window is determined, we calculate the accumulated

transient errors in each monitoring window and use the maximum

observed error to set the error threshold.

Finally, we use detour-based binary rewriting [36] to insert the

invariant-checking code into the control program binary.

Adversary Model. In this paper, we focus on attacks that interfere

with RV operations by corrupting or injecting (actuation or sensor)

signals through external means (e.g., distorting actuation signals or

misleading sensors to generate erroneous readings).We assume that

the attacker does not have access to the control program running on-

board and hence cannot compromise/bypass the invariant-checking

code. We note that the more traditional cyber attacks (launched via

software/firmware) are not the focus of this paper as they can be

effectively handled by existing software security techniques (e.g.,

CFI).

We assume that the attacker does not know at least one of the

following three aspects about the vehicle: (1) the physical properties

of the vehicle, such as weight and detailed frame shape specifica-

tion; (2) the low-level control algorithm parameter setting; and

(3) the maneuver commands from the auto-navigation system or

human operator. The first two determine how the vehicle react to

control signals and environment condition changes, whereas the

third represents mission semantics of the vehicle. Finally, attacks

targeting non-vehicle control logic (e.g., a vehicle’s computer vision

system) are outside the scope of this paper.

4 DESIGN
We continue to use the quadrotor as an example to describe the

CI framework in detail. We point out that CI is generic and can be

applied to a range of RVs, as shown in Section 5.

4.1 Control Invariant Extraction
Given a subject RV, we need to extract its control invariants that

capture how its controller responds to commands and sensor in-

puts, based on its current state. The control invariants are largely

determined by two aspects: vehicle dynamics and the underlying

control algorithm.

Computing	System	(Controller)

Σ

Physical	System

Control	
Algorithm

Sensors

Noise	
v(t)

+ -

Setpoint
u(t) e(t) c(t) y(t)

Cyber	
Domain

Physical
Domain

Autonomous
Control	
Logics

Commands
(Missions) Actual	

BehaviorActuators

Controller

Disturbance
w(t)x(t)

Figure 6: A typical closed-loop control system

Control Invariant. Figure 6 describes a typical RV control system,

which consists of both cyber and physical components. The cyber

component includes an autonomous control subsystem that takes

commands or mission directives from the user and execute the

controller program to determine the target state u(t) at time t . The
controller implements a control algorithm that compares the target

state with the current state perceived by the sensors and determines

the error e(t). The control algorithm then computes the control

signal c(t) from e(t). The control signal drives the actuators and
produces output y(t), which is affected by the external disturbance

w(t). The resulting state is perceived by the sensors and fed back

to the control loop. The RV’s control invariants are represented by

a state-space model of the system, consisting of the state (1) and

output (2) equations:

x ′ = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)

where u(t) (i.e., the target state) is system input and y(t) is system
output. As such, the two equations determine the next state and

output of the system based on the current state and control signal.

The goal of SI is to determine matricesA, B,C and D for the subject

vehicle.

Data Collection. Intuitively, derivation of the matrices is equiv-

alent to determining unknown parameters in a number of mathe-

matical equations. To do so, we need to collect the subject vehicle’s

operation profile data, including the series of state (e.g., velocity),

input (e.g., target attitude), and output (e.g., updated attitude) values.

We develop a test generation tool that can produce random (but

legitimate) missions with environmental effects. Details of the tool

are in Appendix A. Note that the SI method only requires a small

amount of data (i.e., data from a few flight/missions) to accurately

derive the uninstantiated parameters, as shown in our evaluation

(Section 5). The amount of data needed by our framework is much

smaller than learning-based approaches (e.g., [2, 13, 40, 68]). Intu-

itively, we just need to collect enough data to solve a few equations

with their templates known a priori.

System Identification (SI). The procedure of SI to extract control
invariants works as follows. It takes a model template for the RV.

Intuitively, a template contains some algebraic equations with un-

known coefficients, describing the structure of the vehicle (with

unknown metrics) and the nature of its control algorithm (with

unknown parameters). We call the former dynamics template and
the latter control template. It also takes the profile data that contain

the state, input and output values recorded during the vehicle’s

SI missions. We then invoke the MATLAB System Identification

Toolbox [49] to determine the coefficients that best fit the profile

data.

We have two key observations from control engineering practice

and our own experience: (1) All vehicles of similar type/organiza-
tion share the same dynamics template. For example, all quadrotors

share a dynamics template whereas (ground) rovers share another

template, due to their different physical properties. Intuitively, ve-

hicles with the same architecture operate in a similar fashion. The

dynamics templates for standard vehicle types are readily avail-

able in textbooks and literature. (2) The basic PID controller can
approximate complex control algorithms reasonably well for external
attack detection, as shown in our evaluation (Section 5). Ideally, we

would like to precisely model the control algorithm implemented

in each subject vehicle. However, this is impractical as modern

control algorithms are highly customized and complicated. Reverse

engineering their implementations is highly challenging, not to

mention that the source code may be unavailable. Although the PID

controller is not as sophisticated as the control algorithms in real

RVs, it controls the vehicle reasonably well and the errors it induces

are correctable and of a much smaller scale – compared with those

caused by external attacks. For example, a simple PID controller

may lead to over-shoot when making a turn, which would not hap-

pen under a more advanced controller. But such (correctable) errors

are much smaller compared to errors inflicted by external attacks.

Conveniently, all PID controllers share the same equation template.

We further note that the basic PID model can sufficiently ap-

proximate higher-order dynamics – a common control engineering

practice. Even for nonlinear control systems, the majority of con-

trol effort is from its linear (i.e., PID) portion. Since second-order

response dominates RV dynamics, the lumped vehicle dynamics is

a third-order system with the basic PID control. In summary, the

PID model is sufficient to capture an RV’s closed-loop behaviors.

As such, we can use the dynamics template for the specific vehi-

cle type and the PID control template during SI, avoiding manual,

per-vehicle control model generation.

Detailed Example. In the following, we first briefly explain the

dynamics of the quadrotor and the PID algorithm, which constitute

the model template. We then explain how to instantiate the model.

yB
z

y

x

zB

xB

R

nose

tail
yaw

roll

pitch

12

3 4

Figure 7: The inertial and body frames of a quadrotor

(1) Determining Quadrotor Dynamics. A quadrotor operates in two

frames, the body frame and the inertial frame, as shown in Figure 7.

The inertial frame (on the left) is determined by gravity, which

points in the negative z direction. The body frame is defined by the

orientation of the quadrotor, with the rotor axes pointing in the

positive zB direction and the arms pointing in the xB and yB direc-

tions. Intuitively, the thrusts of the rotors are computed in the body

frames whereas their effects (e.g., linear and angular accelerations)

can only be determined by projecting to the inertial frame.

Themotion of a quadrotor is determined by its linear acceleration

along the x , y, and z dimensions (of the inertial frame), denoted as

Üx , Üy, and Üz, and its angular acceleration along the three dimensions

in the body frame: pitch, yaw, and roll, denoted as Ûvy , Ûvz , and Ûvx ,
respectively. The linear motion can be described by the following

Newton-Euler equation.

m

Üx
Üy
Üz

 = Rk

0

0

Σ4i=1ω
2

i

 +

0

0

−mд

 +

−kd Ûx
−kd Ûy
−kd Ûz

 (3)

Variablem denotes the mass of the quadrotor, wi the speed of

the ith rotor, д the gravity, and R the conversion matrix from the

body frame to the inertial frame. k and kd are constant factors, and

Ûx , Ûy, Ûz are velocities.
The equation shows that the product of the mass and the ac-

celerations (on the left) is equal to the sum of three terms on the

right, denoting the thrust, gravity effect, and the drag force (i.e.,

air resistance), respectively. Observe that the thrust is along the

zB axis of the body frame (with the values along the xB and yB
axises being 0), and proportional to the sum of squares of the rotor

speeds. To reason about its effect in the inertial frame, it has to be

transformed to the inertial frame by the R matrix. In the second

term, the effect of the gravity is along the opposite direction of z

(in the inertial frame) and hence there is a negative sign. The drag

force also has negative signs and is proportional to the speed of

the quadrotor. Intuitively, the larger the speed, the stronger the

resistance. The linear velocities and positions of the vehicle can be

computed from the accelerations and time. The angular motion can

be described as follows:
Ûvx
Ûvy
Ûvz

 =

lk(−ω2

2
+ ω2

4
)I−1xx

lk(−ω2

1
+ ω2

3
)I−1yy

b(ω2

1
− ω2

2
+ ω2

3
− ω2

4
)I−1zz

 (4)

where l is the distance between the rotor and the center of mass,

k is a constant, and b is a constant related to drag force. Ixx/yy/zz
denote the rotational analogue to mass along the xB , yB , zB axes,

respectively. The larger the Ixx values, the more difficult it is to

rotate around the xB axis (and thus the smaller the Ûvx value). The

equation essentially specifies that increasing the 4th rotor velocity

and decreasing the 2nd rotor velocity causes rolling; increasing the

3rd and decreasing the 1st causes pitching; and changing all four

rotors causes yawing.

(2) Instantiating PID Controller. A PID controller [56] can be de-

scribed by the following formula.

u(t) = Kpe(t) + Ki
∫ t

0

e(τ)dτ + Kd
de(t)
dt

(5)

The first term is the proportional term P, which aims to adjust

the control signal (e.g., the rotor currents) proportionally to the

error. The second term is the integral term I, which aims to consider

the history of the error. Intuitively, it compensates for P’s inability

to reduce the error in the previous rounds. The third term is the

derivative term D, which aims to avoid changing the error too

quickly (otherwise, the vehicle may overshoot), analogous to a

brake. Different coefficient values of Kp , Ki , Kd result in different

PID controllers.

By combining the aforementioned equations, specifically, com-

puting e(t) from the accelerations and time interval t and feeding

it to the PID equation, we obtain a formula that computes the new

states from the previous states, which is the control model template

described earlier.

(3) Completing System Identification. Next, we apply the System

Identification tool in MATLAB[49] to determine the values of the

unknown coefficients in the invariant template.

1 for i = 1:N
2 data{i} = iddata(y{i}, u{i}, Ts)
3 end
4 tf = tfest(data , np, nz)
5 [num , den] = tfdata(tf)
6 [A,B,C,D] = tf2ss(num , den)

Figure 8: SimplifiedMATLAB code for system identification.

Figure 8 shows a simplified MATLAB code snippet for the proce-

dure. In the first 3 lines (1-3), the program imports N time-domain

datasets collected in N missions of the vehicle, each containing

data sampled at a sequence of time instances. The data is combined

into an IDDATA object data in the MATLAB workspace, which

consists of input and output value matrices and a fixed sampling

interval Ts. The input u and output y values collected in mission i
are represented as vectors y{i} and u{i}.

At line 4, the tfest function (provided by the tool) identifies

the optimal coefficients for the model template from the vehicle’s

profile data. Parameters np and nz represent the encoding of the

model template after applying Laplace transformation to the tem-

plate equations. The transformation turns a time-domain function

into the frequency domain and hence substantially reduces the com-

plexity of fitting the profile data. The details are elided as they are

not centrally related to our problem. Interested readers are referred

to [56]. At line 5, function tfdata accesses the resultant model: num
and den that encode the model (with instantiated coefficients) in

the frequency domain. They are essentially polynomials regarding

the Laplace complex number variable s.

H (s) = 6.395s2 − 0.1866s + 66.45
s3 + 6.102s2 + 10.54s + 63.71

(6)

However, they are not directly usable as we do not want to pro-

duce state/output values in the frequency domain. Instead, we aim

to estimate states/outputs in the time domain. At line 6, function

tf2ss converts the model back to the time domain. The result-

ing A, B, C and D matrices concretize our model (i.e., the control

invariants).

The following shows the example model of roll angle for our

3DR IRIS+ quadrotor with the ArduCopter controller obtained by

SI. The output (roll angle) and the internal state of the system are

denoted as y(t) and x(t), respectively.

x ′ =

0.9884 −0.0493 −0.0242
0.0025 0.9999 0

0 0.0025 1.0

 x(t) +

0.0025

0

0

 u(t) (7)

y(t) =
[
1.8651 16.8655 10.0631

]
x(t) +

[
0

]
u(t) (8)

The equations for other outputs and other RVs can be similarly

derived and hence elided.

4.2 Monitoring Parameters Selection
The model constructed in the previous section represents the con-

trol invariants that will be monitored at runtime. Our model is an

approximation of the real RV for the following reasons: (1) We use

the same dynamics template for vehicles of the same type. However,

as individual vehicles may have minor structural differences, our

invariant extraction procedure may not be able to capture the small

differences in the corresponding dynamics equations. (2) Our proce-

dure does not model uncertain environmental perturbations, such

as temperature and wind gusts. (3) We use the basic PID controller

to approximate the more advanced controller (e.g., non-linear con-

troller) implemented in the vehicle. All these factors may lead to

errors during monitoring. We call them the transient errors induced

by our approximation. Hence an important challenge is to distin-

guish transient errors from the errors caused by attacks, which we

call inflicted errors.
With the assumption that attackers cannot keep accurate track

of the vehicle controller’s (internal) execution, our key observation

is that transient errors are much smaller than externally inflicted

errors as the attacker cannot generate malicious signals that closely
follow the invariants for unknown target states (runtime inputs),

without accurate knowledge about the controller program’s execu-

tion. This implies that, on one hand we should not treat transient

errors as indication of true attacks (e.g., the model may lead to

overshoot when making a turn due to the simplicity of the PID

controller; whereas the real vehicle will not); on the other hand, we

do not want to miss or delay true attack detection. Our solution is to

accumulate errors (between the model output and the real vehicle

output) for a time window, called themonitor window, and compare

the accumulated errors with a threshold. This section explains how

to systematically determine the window size and the threshold.

Intuitively, our invariant model can be considered a less sophis-

ticated version of the real system. It can (virtually) fulfill a given

mission with a little extra latency. For example, assume the real

vehicle needs x seconds to make a turn. The model may take x +w
seconds to make the same turn. Therefore, our idea of determining

the monitor window is to look for the maximumw in all the prim-

itive operations (e.g., take-offs, turns, and moving-to-waypoint).

Once the window is decided, the error threshold is then computed

from the maximum observed model-induced errors within the win-

dow.

time warp

time
(a) not aligned (b) aligned

s1

s2

time

s1

s2

Figure 9: Time alignment of two time sequences. The dashed lines
indicate the alignment

To determine w , we adapt the dynamic time-warping (DTW)

technique [66] that was originally proposed for speech recognition

to recognize words when they are pronounced by different persons

with varying speeds [63]. Given two time series (e.g., sequences of

output sample values over a period of time), time-warping looks for

an order-preserving alignment of the timestamps of the sequences,

so that the sum of the value differences at the aligned timestamps

are minimal. Here, “order-preserving” means that if a timestamp t1
precedes t2 in a sequence, its alignment also precedes t2’s alignment

in the other sequence. This procedure can be illustrated by Figure 9.

Figure (a) shows two time series before DTW. Observe that the

lower series s2 is a stretched and skewed version of the upper series

s1. Figure (b) shows that DTW finds an alignment. Observe that

the first peaks in the two series are aligned. We use the maximum

difference between aligned timestamps, called the time warp, as the
window size.

The window size and threshold are both vehicle-specific. How-

ever, similar to the SI procedure, the determination of the two

parameters is highly automated. To achieve good precision, we use

the data collection missions (Section 4.1) for this procedure. We

note that our data collection missions cover a wide range of normal

vehicle operation sequences and disturbances. With monitoring

parameters set by such missions, unusual RV operations and severe

disturbances would lead to alarms, which is reasonable. For the

IRIS+/ArduCopter sample RV, our technique determines that the

window size is 2.6 seconds and the error threshold is 91 degree for

the roll angle. As shown in Section 5, it takes much shorter than

2.6s to detect attacks.

4.3 Control Program Reverse Engineering and
Instrumentation

Based on the control invariants and monitoring parameters de-

termined, our monitoring function, which will check and detect

violation of the control invariants at runtime, needs to be inserted

into the RV’s control program. Commodity RVs may only provide

binary executables of control programs without source code. Hence

insertion of the monitoring function will have to be via binary

code instrumentation. This raises three challenges: (1) We need to

identify a location in the binary to insert the function so that it can

be periodically executed as part of the control loop. (2) We need to

locate the (program-level) control variables to be accessed by the

control invariant checking function. (3) We need to perform ARM

binary rewriting as most RVs’ microcontrollers are ARM-based.

libc-2.19.so
(below main)

99.97%
(0.00%)

1×

ArduCopter.elf
main

99.97%
(0.00%)

1×

99.97%
1×

ArduCopter.elf
HAL_SITL::run(int, char* const*, AP_HAL::HAL::Callbacks*) const

99.97%
(0.01%)

1×

99.97%
1×

ld-2.19.so
0x0000000000001260

100.00%
(0.00%)

0×

ArduCopter.elf
0x000000000040363e

99.97%
(0.00%)

1×

99.97%
1×

99.97%
1×

ArduCopter.elf
AC_AttitudeControl::rate_bf_to_motor_pitch(float)

0.51%
(0.10%)
87657×

ArduCopter.elf
AP_AHRS_NavEKF::get_gyro() const

1.27%
(0.24%)
383334×

0.29%
87657×

ArduCopter.elf
NavEKF::getFilterFaults(unsigned char&) const

3.05%
(1.54%)

1137274×

1.02%
381730×

ArduCopter.elf
AC_AttitudeControl::rate_bf_to_motor_yaw(float)

0.51%
(0.10%)
87657×

0.29%
87657×

ArduCopter.elf
AC_AttitudeControl::rate_controller_run()

1.56%
(0.13%)
87657×

0.51%
87657×

0.29%
87657×

0.51%
87657×

ArduCopter.elf
AP_AHRS::update_trig()

1.70%
(0.55%)
174913×

ArduCopter.elf
AP_AHRS_NavEKF::get_dcm_matrix() const

0.58%
(0.11%)
174913×

0.58%
174913×

libc-2.19.so
isnanf
2.79%

(2.79%)
23392463×

0.12%
1049478×

0.47%
174511×

ArduCopter.elf
AP_AHRS_DCM::drift_correction(float)

0.97%
(0.36%)
87657×

ArduCopter.elf
AP_AHRS_DCM::matrix_update(float)

0.65%
(0.19%)
87657×

ArduCopter.elf
Matrix3<float>::rotate(Vector3<float> const&)

0.88%
(0.66%)
359465×

0.21%
87657×

ArduCopter.elf
Vector3<float>::operator+(Vector3<float> const&) const

0.87%
(0.87%)

4382095×

0.21%
1078395×

ArduCopter.elf
AP_AHRS_DCM::update()

4.02%
(0.09%)
87657×

0.85%
87657×

0.97%
87657×

0.65%
87657×

ArduCopter.elf
Matrix3<float>::to_euler(float*, float*, float*) const

2.09%
(0.26%)
359466×

0.51%
87657×

libm-2.19.so
atan2f
3.01%

(0.23%)
1460032×

1.44%
718932×

0.54%
4549096×

ArduCopter.elf
Vector3<float>::is_nan() const

1.44%
(0.84%)

1690823×

0.97%
1137274×

ArduCopter.elf
AP_AHRS_NavEKF::get_position(Location&) const

1.68%
(0.11%)
91676×

0.24%
91273×

ArduCopter.elf
NavEKF::getLLH(Location&) const

0.63%
(0.27%)
95699×

0.63%
91273×

ArduCopter.elf
NavEKF::getPosNED(Vector3<float>&) const

1.28%
(0.48%)
176881×

0.63%
87220×

ArduCopter.elf
NavEKF::healthy() const

0.89%
(0.50%)
289473×

0.27%
87222×

ArduCopter.elf
location_diff(Location const&, Location const&)

0.61%
(0.37%)
391234×

0.17%
107351×

0.54%
176881×

ArduCopter.elf
AP_AHRS_NavEKF::get_relative_position_NED(Vector3<float>&) const

0.95%
(0.07%)
89291×

0.24%
88890×

0.64%
88890×

ArduCopter.elf
AP_AHRS_NavEKF::update()

38.07%
(0.09%)
87657×

4.02%
87657×

ArduCopter.elf
AP_AHRS_NavEKF::update_EKF1()

33.88%
(0.36%)
87657×

33.88%
87657×

0.85%
87256×

ArduCopter.elf
NavEKF::UpdateFilter()

31.08%
(0.16%)
87256×

31.08%
87256×

ArduCopter.elf
NavEKF::getEulerAngles(Vector3<float>&) const

0.60%
(0.03%)
88027×

0.60%
87256×

ArduCopter.elf
NavEKF::SelectMagFusion()

24.96%
(0.17%)
87255×

24.96%
87255×

ArduCopter.elf
NavEKF::SelectVelPosFusion()

1.65%
(0.92%)
87255×

1.65%
87255×

ArduCopter.elf
NavEKF::UpdateStrapdownEquationsNED()

2.63%
(0.52%)
87255×

2.63%
87255×

ArduCopter.elf
NavEKF::readIMUData()

1.17%
(0.33%)
87257×

1.17%
87256×

ArduCopter.elf
Quaternion::to_euler(float&, float&, float&) const

0.55%
(0.10%)
88034×

0.55%
88027×

ArduCopter.elf
AP_Baro::calibrate()

0.54%
(0.00%)

1×

ArduCopter.elf
HALSITL::SITLScheduler::delay(unsigned short)

1.90%
(0.00%)

350×

0.54%
25×

ArduCopter.elf
HALSITL::SITLScheduler::delay_microseconds(unsigned short)

47.12%
(0.07%)
92024×

1.45%
4367×

ArduCopter.elf
AP_GPS::update()

0.86%
(0.03%)
10957×

ArduCopter.elf
AP_GPS_UBLOX::read()

0.83%
(0.12%)
10951×

0.83%
10951×

ArduCopter.elf
HALSITL::SITLUARTDriver::read()

0.69%
(0.10%)
214126×

0.68%
210900×

ArduCopter.elf
HALSITL::SITLUARTDriver::available()

0.82%
(0.67%)
488501×

0.40%
214126×

ArduCopter.elf
AP_HAL::Scheduler::delay_microseconds_boost(unsigned short)

45.68%
(0.01%)
87657×

45.67%
87657×

ArduCopter.elf
HALSITL::SITL_State::wait_clock(unsigned long)

47.03%
(0.58%)
92023×

47.03%
92023×

ArduCopter.elf
AP_InertialNav_NavEKF::update(float)

3.28%
(0.07%)
87657×

1.61%
87657×

0.93%
87657×

ArduCopter.elf
AP_InertialSensor::_init_gyro()

0.52%
(0.00%)

1×

0.52%
305×

ArduCopter.elf
AP_InertialSensor::calc_vibration_and_clipping(unsigned char, Vector3<float> const&, float)

2.79%
(0.62%)
543618×

ArduCopter.elf
LowPassFilter<Vector3<float> >::apply(Vector3<float>, float)

2.24%
(1.40%)

1174893×

2.07%
1087236×

ArduCopter.elf
Vector3<float>::operator-(Vector3<float> const&) const

0.55%
(0.55%)

2794488×

0.11%
543618×

0.14%
1174893×

0.23%
1174893×

ArduCopter.elf
Vector3<float>::operator*(float) const

1.44%
(1.44%)

8066012×

0.21%
1174893×

ArduCopter.elf
Vector3<float>::operator+=(Vector3<float> const&)

0.94%
(0.94%)

4319709×

0.26%
1174893×

ArduCopter.elf
AP_InertialSensor::init(AP_InertialSensor::Sample_rate)

0.52%
(0.00%)

1×

0.52%
1×

ArduCopter.elf
AP_InertialSensor::wait_for_sample()

45.83%
(0.01%)
87658×

ArduCopter.elf
AP_InertialSensor::wait_for_sample() [clone .part.6]

45.83%
(0.10%)
87963×

45.82%
87658×

45.68%
87657×

ArduCopter.elf
AP_MotorsMatrix::output_armed_stabilizing()

0.94%
(0.40%)
29530×

ArduCopter.elf
AP_MotorsMulticopter::output()

1.33%
(0.12%)
87657×

0.94%
29530×

ArduCopter.elf
AP_Scheduler::run(unsigned short)

5.78%
(1.33%)
87657×

ArduCopter.elf
void Functor<void>::method_wrapper<Copter, &Copter::gcs_check_input>(void*)

0.77%
(0.00%)
87657×

0.77%
87657×

ArduCopter.elf
void Functor<void>::method_wrapper<Copter, &Copter::gcs_data_stream_send>(void*)

1.46%
(0.00%)
10957×

1.46%
10957×

ArduCopter.elf
void Functor<void>::method_wrapper<Copter, &Copter::update_GPS>(void*)

0.87%
(0.01%)
10957×

0.87%
10957×

ArduCopter.elf
Copter::gcs_check_input()

0.77%
(0.10%)
87657×

0.77%
87657×

ArduCopter.elf
Copter::gcs_data_stream_send()

1.46%
(0.07%)
10957×

1.46%
10957×

0.86%
10957×

ArduCopter.elf
AP_Terrain::calculate_grid_info(Location const&, AP_Terrain::grid_info&) const

1.49%
(0.60%)
281743×

0.44%
281743×

ArduCopter.elf
location_offset(Location&, float, float)

0.53%
(0.32%)
381963×

0.44%
281743×

libm-2.19.so
cosf

0.72%
(0.72%)

1529656×

0.20%
391234×

0.17%
321459×

ArduCopter.elf
AP_Terrain::height_amsl(Location const&, float&)

2.42%
(0.56%)
274890×

1.44%
273113×

ArduCopter.elf
Compass::setHIL(unsigned char, float, float, float)

3.09%
(0.62%)
543618×

ArduCopter.elf
Matrix3<float>::from_euler(float, float, float)

2.01%
(0.83%)
543628×

2.01%
543619×

libm-2.19.so
sincosf
2.59%

(2.59%)
3077239×

1.18%
1630884×

ArduCopter.elf
Copter::auto_land_run()

0.81%
(0.03%)
56817×

ArduCopter.elf
Copter::auto_run()

1.48%
(0.02%)
77716×

0.81%
56817×

ArduCopter.elf
Copter::auto_wp_run()

0.58%
(0.02%)
18216×

0.58%
18216×

ArduCopter.elf
Copter::delay(unsigned int)

0.81%
(0.00%)

7×

0.81%
7×

ArduCopter.elf
GCS_MAVLINK::update(Functor<void, AP_HAL::UARTDriver*>)

1.12%
(0.16%)
263379×

0.67%
262971×

ArduCopter.elf
GCS_MAVLINK::send_message(ap_message)

1.37%
(0.02%)
62611×

1.33%
28602×

ArduCopter.elf
GCS_MAVLINK::try_send_message(ap_message)

1.35%
(0.02%)
29590×

1.35%
29590×

ArduCopter.elf
Copter::init_ardupilot()

1.45%
(0.00%)

1×

0.52%
1×

0.32%
1×

ArduCopter.elf
Copter::init_barometer(bool)

0.54%
(0.00%)

1×

0.54%
1×

0.54%
1×

ArduCopter.elf
Copter::loop()

98.51%
(0.11%)
87658×

1.56%
87657×

38.07%
87657×

45.83%
87658×

5.78%
87657×

ArduCopter.elf
Copter::motors_output()

1.35%
(0.03%)
87657×

1.35%
87657×

ArduCopter.elf
Copter::read_inertia()

3.28%
(0.01%)
87657×

3.28%
87657×

ArduCopter.elf
Copter::update_flight_mode()

1.60%
(0.02%)
87657×

1.60%
87657×

ArduCopter.elf
Copter::update_land_and_crash_detectors()

0.59%
(0.07%)
87657×

0.59%
87657×

1.33%
87657×

3.28%
87657×

1.48%
77716×

0.17%
87657×

ArduCopter.elf
Copter::setup()

1.45%
(0.00%)

1×

1.45%
1×

ArduCopter.elf
HALSITL::SITL_State::_fdm_input_local()

19.81%
(1.13%)
271809×

19.81%
271809×

ArduCopter.elf
HALSITL::SITL_State::_update_barometer(float)

0.59%
(0.36%)
271809×

0.59%
271808×

ArduCopter.elf
HALSITL::SITL_State::_update_compass(float, float, float)

6.53%
(1.87%)
271809×

6.53%
271808×

ArduCopter.elf
HALSITL::SITL_State::_update_ins(float, float, float, double, double, double, double, double, double, float, float)

17.90%
(2.02%)
271809×

17.90%
271808×

ArduCopter.elf
HALSITL::SITLScheduler::stop_clock(unsigned long)

0.50%
(0.23%)
271809×

ArduCopter.elf
HALSITL::SITL_State::_airspeed_sensor(float)

3.46%
(3.38%)
271809×

0.50%
271808×

ArduCopter.elf
HALSITL::SITL_State::badguy_input()

1.30%
(0.84%)
271808×

1.30%
271808×

ArduCopter.elf
SITL::Aircraft::fill_fdm(SITL::sitl_fdm&, SITL::sitl_fdm_extras&) const

2.72%
(0.52%)
271808×

2.72%
271808×

ArduCopter.elf
SITL::MultiCopter::update(SITL::Aircraft::sitl_input const&)

13.89%
(2.07%)
271808×

13.89%
271808×

1.58%
271808×

0.60%
271808×

0.66%
271808×

0.24%
1359040×

0.30%
1359040×

1.05%
1087232×

ArduCopter.elf
Matrix3<float>::normalize()

1.07%
(0.36%)
271808×

1.07%
271808×

ArduCopter.elf
Matrix3<float>::operator*(Vector3<float> const&) const

0.69%
(0.69%)

1246860×

0.30%
543616×

ArduCopter.elf
SITL::Aircraft::add_noise(float)

6.07%
(1.28%)
271808×

6.07%
271808×

ArduCopter.elf
SITL::Aircraft::update_position()

1.69%
(0.31%)
271808×

1.69%
271808×

ArduCopter.elf
HALSITL::SITL_State::_ground_sonar()

3.93%
(0.43%)
271809×

ArduCopter.elf
HALSITL::SITL_State::_rand_float()

4.88%
(1.38%)

4096005×

0.65%
543618×

ArduCopter.elf
HALSITL::SITL_State::height_agl()

2.60%
(0.20%)
271809×

2.60%
271809×

0.21%
543618×

libc-2.19.so
random
5.96%

(2.36%)
6986114×

3.49%
4096005×

2.40%
271809×

libc-2.19.so
random_r

3.60%
(3.60%)

6986114×

3.60%
6986114×

ArduCopter.elf
HALSITL::SITL_State::_rand_vec3f()

1.23%
(0.35%)
271809×

0.70%
815427×

ArduCopter.elf
Vector3<float>::length() const

0.64%
(0.64%)

2687359×

0.13%
543618×

3.09%
543618×

1.23%
271809×

0.11%
543618×

2.79%
543618×

3.46%
271809×

3.93%
271809×

4.21%
3533517×

0.22%
1087236×

98.51%
87658×

1.45%
1×

0.11%
543616×

0.19%
815424×

0.24%
1359040×

libm-2.19.so
__atan2f_finite

2.77%
(1.39%)

1460032×

2.77%
1460032×

ArduCopter.elf
NavEKF::ConstrainStates()

1.17%
(0.90%)
87255×

0.27%
2268630×

ArduCopter.elf
NavEKF::ConstrainVariances()

1.04%
(0.79%)
98165×

0.26%
2159630×

ArduCopter.elf
NavEKF::CovariancePrediction()

5.95%
(5.68%)
23997×

0.26%
23997×

ArduCopter.elf
NavEKF::FuseMagnetometer()

18.71%
(17.88%)
71985×

0.77%
71985×

5.41%
21814×

18.71%
71985×

ArduCopter.elf
NavEKF::readMagData()

0.65%
(0.06%)
87259×

0.65%
87255×

0.54%
2183×

0.19%
349020×

1.17%
87255×

0.35%
176068×

0.60%
5072469×

0.14%
1157892×

0.25%
289473×

0.19%
1087232×

0.12%
543616×

libm-2.19.so
log

2.55%
(0.08%)
815424×

2.55%
815424×

libc-2.19.so
rand

1.93%
(0.16%)

2074682×

1.93%
2074682×

libm-2.19.so
__ieee754_log_avx

2.47%
(2.47%)
815424×

2.47%
815424×

1.77%
2074682×

0.57%
271808×

ArduCopter.elf
location_update(Location&, float, float)

0.79%
(0.31%)
271849×

0.79%
271808×

0.14%
269531×

0.31%
271849×

libm-2.19.so
atanf

1.39%
(1.39%)

1462778×

1.39%
1455412×

libc-2.19.so
(below main)

99.97%
(0.00%)

1×

ArduCopter.elf
main

99.97%
(0.00%)

1×

99.97%
1×

ArduCopter.elf
HAL_SITL::run(int, char* const*, AP_HAL::HAL::Callbacks*) const

99.97%
(0.01%)

1×

99.97%
1×

ld-2.19.so
0x0000000000001260

100.00%
(0.00%)

0×

ArduCopter.elf
0x000000000040363e

99.97%
(0.00%)

1×

99.97%
1×

99.97%
1×

ArduCopter.elf
AC_AttitudeControl::rate_bf_to_motor_pitch(float)

0.51%
(0.10%)
87657×

ArduCopter.elf
AP_AHRS_NavEKF::get_gyro() const

1.27%
(0.24%)
383334×

0.29%
87657×

ArduCopter.elf
NavEKF::getFilterFaults(unsigned char&) const

3.05%
(1.54%)

1137274×

1.02%
381730×

ArduCopter.elf
AC_AttitudeControl::rate_bf_to_motor_yaw(float)

0.51%
(0.10%)
87657×

0.29%
87657×

ArduCopter.elf
AC_AttitudeControl::rate_controller_run()

1.56%
(0.13%)
87657×

0.51%
87657×

0.29%
87657×

0.51%
87657×

ArduCopter.elf
AP_AHRS::update_trig()

1.70%
(0.55%)
174913×

ArduCopter.elf
AP_AHRS_NavEKF::get_dcm_matrix() const

0.58%
(0.11%)
174913×

0.58%
174913×

libc-2.19.so
isnanf
2.79%

(2.79%)
23392463×

0.12%
1049478×

0.47%
174511×

ArduCopter.elf
AP_AHRS_DCM::drift_correction(float)

0.97%
(0.36%)
87657×

ArduCopter.elf
AP_AHRS_DCM::matrix_update(float)

0.65%
(0.19%)
87657×

ArduCopter.elf
Matrix3<float>::rotate(Vector3<float> const&)

0.88%
(0.66%)
359465×

0.21%
87657×

ArduCopter.elf
Vector3<float>::operator+(Vector3<float> const&) const

0.87%
(0.87%)

4382095×

0.21%
1078395×

ArduCopter.elf
AP_AHRS_DCM::update()

4.02%
(0.09%)
87657×

0.85%
87657×

0.97%
87657×

0.65%
87657×

ArduCopter.elf
Matrix3<float>::to_euler(float*, float*, float*) const

2.09%
(0.26%)
359466×

0.51%
87657×

libm-2.19.so
atan2f
3.01%

(0.23%)
1460032×

1.44%
718932×

0.54%
4549096×

ArduCopter.elf
Vector3<float>::is_nan() const

1.44%
(0.84%)

1690823×

0.97%
1137274×

ArduCopter.elf
AP_AHRS_NavEKF::get_position(Location&) const

1.68%
(0.11%)
91676×

0.24%
91273×

ArduCopter.elf
NavEKF::getLLH(Location&) const

0.63%
(0.27%)
95699×

0.63%
91273×

ArduCopter.elf
NavEKF::getPosNED(Vector3<float>&) const

1.28%
(0.48%)
176881×

0.63%
87220×

ArduCopter.elf
NavEKF::healthy() const

0.89%
(0.50%)
289473×

0.27%
87222×

ArduCopter.elf
location_diff(Location const&, Location const&)

0.61%
(0.37%)
391234×

0.17%
107351×

0.54%
176881×

ArduCopter.elf
AP_AHRS_NavEKF::get_relative_position_NED(Vector3<float>&) const

0.95%
(0.07%)
89291×

0.24%
88890×

0.64%
88890×

ArduCopter.elf
AP_AHRS_NavEKF::update()

38.07%
(0.09%)
87657×

4.02%
87657×

ArduCopter.elf
AP_AHRS_NavEKF::update_EKF1()

33.88%
(0.36%)
87657×

33.88%
87657×

0.85%
87256×

ArduCopter.elf
NavEKF::UpdateFilter()

31.08%
(0.16%)
87256×

31.08%
87256×

ArduCopter.elf
NavEKF::getEulerAngles(Vector3<float>&) const

0.60%
(0.03%)
88027×

0.60%
87256×

ArduCopter.elf
NavEKF::SelectMagFusion()

24.96%
(0.17%)
87255×

24.96%
87255×

ArduCopter.elf
NavEKF::SelectVelPosFusion()

1.65%
(0.92%)
87255×

1.65%
87255×

ArduCopter.elf
NavEKF::UpdateStrapdownEquationsNED()

2.63%
(0.52%)
87255×

2.63%
87255×

ArduCopter.elf
NavEKF::readIMUData()

1.17%
(0.33%)
87257×

1.17%
87256×

ArduCopter.elf
Quaternion::to_euler(float&, float&, float&) const

0.55%
(0.10%)
88034×

0.55%
88027×

ArduCopter.elf
AP_Baro::calibrate()

0.54%
(0.00%)

1×

ArduCopter.elf
HALSITL::SITLScheduler::delay(unsigned short)

1.90%
(0.00%)

350×

0.54%
25×

ArduCopter.elf
HALSITL::SITLScheduler::delay_microseconds(unsigned short)

47.12%
(0.07%)
92024×

1.45%
4367×

ArduCopter.elf
AP_GPS::update()

0.86%
(0.03%)
10957×

ArduCopter.elf
AP_GPS_UBLOX::read()

0.83%
(0.12%)
10951×

0.83%
10951×

ArduCopter.elf
HALSITL::SITLUARTDriver::read()

0.69%
(0.10%)
214126×

0.68%
210900×

ArduCopter.elf
HALSITL::SITLUARTDriver::available()

0.82%
(0.67%)
488501×

0.40%
214126×

ArduCopter.elf
AP_HAL::Scheduler::delay_microseconds_boost(unsigned short)

45.68%
(0.01%)
87657×

45.67%
87657×

ArduCopter.elf
HALSITL::SITL_State::wait_clock(unsigned long)

47.03%
(0.58%)
92023×

47.03%
92023×

ArduCopter.elf
AP_InertialNav_NavEKF::update(float)

3.28%
(0.07%)
87657×

1.61%
87657×

0.93%
87657×

ArduCopter.elf
AP_InertialSensor::_init_gyro()

0.52%
(0.00%)

1×

0.52%
305×

ArduCopter.elf
AP_InertialSensor::calc_vibration_and_clipping(unsigned char, Vector3<float> const&, float)

2.79%
(0.62%)
543618×

ArduCopter.elf
LowPassFilter<Vector3<float> >::apply(Vector3<float>, float)

2.24%
(1.40%)

1174893×

2.07%
1087236×

ArduCopter.elf
Vector3<float>::operator-(Vector3<float> const&) const

0.55%
(0.55%)

2794488×

0.11%
543618×

0.14%
1174893×

0.23%
1174893×

ArduCopter.elf
Vector3<float>::operator*(float) const

1.44%
(1.44%)

8066012×

0.21%
1174893×

ArduCopter.elf
Vector3<float>::operator+=(Vector3<float> const&)

0.94%
(0.94%)

4319709×

0.26%
1174893×

ArduCopter.elf
AP_InertialSensor::init(AP_InertialSensor::Sample_rate)

0.52%
(0.00%)

1×

0.52%
1×

ArduCopter.elf
AP_InertialSensor::wait_for_sample()

45.83%
(0.01%)
87658×

ArduCopter.elf
AP_InertialSensor::wait_for_sample() [clone .part.6]

45.83%
(0.10%)
87963×

45.82%
87658×

45.68%
87657×

ArduCopter.elf
AP_MotorsMatrix::output_armed_stabilizing()

0.94%
(0.40%)
29530×

ArduCopter.elf
AP_MotorsMulticopter::output()

1.33%
(0.12%)
87657×

0.94%
29530×

ArduCopter.elf
AP_Scheduler::run(unsigned short)

5.78%
(1.33%)
87657×

ArduCopter.elf
void Functor<void>::method_wrapper<Copter, &Copter::gcs_check_input>(void*)

0.77%
(0.00%)
87657×

0.77%
87657×

ArduCopter.elf
void Functor<void>::method_wrapper<Copter, &Copter::gcs_data_stream_send>(void*)

1.46%
(0.00%)
10957×

1.46%
10957×

ArduCopter.elf
void Functor<void>::method_wrapper<Copter, &Copter::update_GPS>(void*)

0.87%
(0.01%)
10957×

0.87%
10957×

ArduCopter.elf
Copter::gcs_check_input()

0.77%
(0.10%)
87657×

0.77%
87657×

ArduCopter.elf
Copter::gcs_data_stream_send()

1.46%
(0.07%)
10957×

1.46%
10957×

0.86%
10957×

ArduCopter.elf
AP_Terrain::calculate_grid_info(Location const&, AP_Terrain::grid_info&) const

1.49%
(0.60%)
281743×

0.44%
281743×

ArduCopter.elf
location_offset(Location&, float, float)

0.53%
(0.32%)
381963×

0.44%
281743×

libm-2.19.so
cosf

0.72%
(0.72%)

1529656×

0.20%
391234×

0.17%
321459×

ArduCopter.elf
AP_Terrain::height_amsl(Location const&, float&)

2.42%
(0.56%)
274890×

1.44%
273113×

ArduCopter.elf
Compass::setHIL(unsigned char, float, float, float)

3.09%
(0.62%)
543618×

ArduCopter.elf
Matrix3<float>::from_euler(float, float, float)

2.01%
(0.83%)
543628×

2.01%
543619×

libm-2.19.so
sincosf
2.59%

(2.59%)
3077239×

1.18%
1630884×

ArduCopter.elf
Copter::auto_land_run()

0.81%
(0.03%)
56817×

ArduCopter.elf
Copter::auto_run()

1.48%
(0.02%)
77716×

0.81%
56817×

ArduCopter.elf
Copter::auto_wp_run()

0.58%
(0.02%)
18216×

0.58%
18216×

ArduCopter.elf
Copter::delay(unsigned int)

0.81%
(0.00%)

7×

0.81%
7×

ArduCopter.elf
GCS_MAVLINK::update(Functor<void, AP_HAL::UARTDriver*>)

1.12%
(0.16%)
263379×

0.67%
262971×

ArduCopter.elf
GCS_MAVLINK::send_message(ap_message)

1.37%
(0.02%)
62611×

1.33%
28602×

ArduCopter.elf
GCS_MAVLINK::try_send_message(ap_message)

1.35%
(0.02%)
29590×

1.35%
29590×

ArduCopter.elf
Copter::init_ardupilot()

1.45%
(0.00%)

1×

0.52%
1×

0.32%
1×

ArduCopter.elf
Copter::init_barometer(bool)

0.54%
(0.00%)

1×

0.54%
1×

0.54%
1×

ArduCopter.elf
Copter::loop()

98.51%
(0.11%)
87658×

1.56%
87657×

38.07%
87657×

45.83%
87658×

5.78%
87657×

ArduCopter.elf
Copter::motors_output()

1.35%
(0.03%)
87657×

1.35%
87657×

ArduCopter.elf
Copter::read_inertia()

3.28%
(0.01%)
87657×

3.28%
87657×

ArduCopter.elf
Copter::update_flight_mode()

1.60%
(0.02%)
87657×

1.60%
87657×

ArduCopter.elf
Copter::update_land_and_crash_detectors()

0.59%
(0.07%)
87657×

0.59%
87657×

1.33%
87657×

3.28%
87657×

1.48%
77716×

0.17%
87657×

ArduCopter.elf
Copter::setup()

1.45%
(0.00%)

1×

1.45%
1×

ArduCopter.elf
HALSITL::SITL_State::_fdm_input_local()

19.81%
(1.13%)
271809×

19.81%
271809×

ArduCopter.elf
HALSITL::SITL_State::_update_barometer(float)

0.59%
(0.36%)
271809×

0.59%
271808×

ArduCopter.elf
HALSITL::SITL_State::_update_compass(float, float, float)

6.53%
(1.87%)
271809×

6.53%
271808×

ArduCopter.elf
HALSITL::SITL_State::_update_ins(float, float, float, double, double, double, double, double, double, float, float)

17.90%
(2.02%)
271809×

17.90%
271808×

ArduCopter.elf
HALSITL::SITLScheduler::stop_clock(unsigned long)

0.50%
(0.23%)
271809×

ArduCopter.elf
HALSITL::SITL_State::_airspeed_sensor(float)

3.46%
(3.38%)
271809×

0.50%
271808×

ArduCopter.elf
HALSITL::SITL_State::badguy_input()

1.30%
(0.84%)
271808×

1.30%
271808×

ArduCopter.elf
SITL::Aircraft::fill_fdm(SITL::sitl_fdm&, SITL::sitl_fdm_extras&) const

2.72%
(0.52%)
271808×

2.72%
271808×

ArduCopter.elf
SITL::MultiCopter::update(SITL::Aircraft::sitl_input const&)

13.89%
(2.07%)
271808×

13.89%
271808×

1.58%
271808×

0.60%
271808×

0.66%
271808×

0.24%
1359040×

0.30%
1359040×

1.05%
1087232×

ArduCopter.elf
Matrix3<float>::normalize()

1.07%
(0.36%)
271808×

1.07%
271808×

ArduCopter.elf
Matrix3<float>::operator*(Vector3<float> const&) const

0.69%
(0.69%)

1246860×

0.30%
543616×

ArduCopter.elf
SITL::Aircraft::add_noise(float)

6.07%
(1.28%)
271808×

6.07%
271808×

ArduCopter.elf
SITL::Aircraft::update_position()

1.69%
(0.31%)
271808×

1.69%
271808×

ArduCopter.elf
HALSITL::SITL_State::_ground_sonar()

3.93%
(0.43%)
271809×

ArduCopter.elf
HALSITL::SITL_State::_rand_float()

4.88%
(1.38%)

4096005×

0.65%
543618×

ArduCopter.elf
HALSITL::SITL_State::height_agl()

2.60%
(0.20%)
271809×

2.60%
271809×

0.21%
543618×

libc-2.19.so
random
5.96%

(2.36%)
6986114×

3.49%
4096005×

2.40%
271809×

libc-2.19.so
random_r

3.60%
(3.60%)

6986114×

3.60%
6986114×

ArduCopter.elf
HALSITL::SITL_State::_rand_vec3f()

1.23%
(0.35%)
271809×

0.70%
815427×

ArduCopter.elf
Vector3<float>::length() const

0.64%
(0.64%)

2687359×

0.13%
543618×

3.09%
543618×

1.23%
271809×

0.11%
543618×

2.79%
543618×

3.46%
271809×

3.93%
271809×

4.21%
3533517×

0.22%
1087236×

98.51%
87658×

1.45%
1×

0.11%
543616×

0.19%
815424×

0.24%
1359040×

libm-2.19.so
__atan2f_finite

2.77%
(1.39%)

1460032×

2.77%
1460032×

ArduCopter.elf
NavEKF::ConstrainStates()

1.17%
(0.90%)
87255×

0.27%
2268630×

ArduCopter.elf
NavEKF::ConstrainVariances()

1.04%
(0.79%)
98165×

0.26%
2159630×

ArduCopter.elf
NavEKF::CovariancePrediction()

5.95%
(5.68%)
23997×

0.26%
23997×

ArduCopter.elf
NavEKF::FuseMagnetometer()

18.71%
(17.88%)
71985×

0.77%
71985×

5.41%
21814×

18.71%
71985×

ArduCopter.elf
NavEKF::readMagData()

0.65%
(0.06%)
87259×

0.65%
87255×

0.54%
2183×

0.19%
349020×

1.17%
87255×

0.35%
176068×

0.60%
5072469×

0.14%
1157892×

0.25%
289473×

0.19%
1087232×

0.12%
543616×

libm-2.19.so
log

2.55%
(0.08%)
815424×

2.55%
815424×

libc-2.19.so
rand

1.93%
(0.16%)

2074682×

1.93%
2074682×

libm-2.19.so
__ieee754_log_avx

2.47%
(2.47%)
815424×

2.47%
815424×

1.77%
2074682×

0.57%
271808×

ArduCopter.elf
location_update(Location&, float, float)

0.79%
(0.31%)
271849×

0.79%
271808×

0.14%
269531×

0.31%
271849×

libm-2.19.so
atanf

1.39%
(1.39%)

1462778×

1.39%
1455412×

Figure 10: Call graph of ArduCopter with invocation counts

Control Loop Identification.Most RV control programs have a

control loop that is regularly invoked to update system states and

compute new control outputs. The loop dominates the execution

of the program, with access to all critical state variables.

To identify the control loop, we leverage the following observa-

tion: A control loop does not manifest itself as a “looping” control

flow structure such as for- or while-loop. Rather, it is a function

regularly triggered by a timer. As such, the function will exhibit

high execution frequency whereas its parent (in the call graph) will

not. We note that, in some control programs, there may be some

functions such as message callbacks which are triggered frequently.

If they are not part of the control loop, their triggering frequency

would be much lower than the control (hence invariant-checking)

frequency and not as periodic. If those functions indeed perform

control tasks with control frequency, our technique will identify

them as part of the control loop body for invariant-checking func-

tion insertion. Based on this observation, we leverage the Callgrind

tool [55] to construct the dynamic call graph annotated with func-

tion execution frequencies. Then we traverse the call graph in a

top-down fashion to find the first function that has the aforemen-

tioned properties. Figure 10 shows an example call graph of Ar-

duCopter (i.e., the control software for IRIS+ quadrotor) annotated

with call counts and costs. Note that the enlarged area includes the

control loop function Copter::loop() (the green box). The parent

function calls the loop function 87658 times while the parent itself

is executed only once.

Identifying Memory Locations for Critical State Variables.
According to the control invariant equations (1) and (2), the current

state x(t) and input u(t) (e.g., the target attitude) are needed to

compute the new state x ′ and the output y(t) (e.g., next attitude).
Therefore, our control invariant check function needs to access the

input value, compute the new state and compare it with the corre-

sponding current state variables in the original control program.

To identify the memory locations of these variables, we collect the

value traces for all variables defined in the control loop and com-

pare them with the value traces of the model variables generated

by the invariant model under the same mission.

Specifically, we use Valgrind to instrument and trace all the mem-

ory writes that occur in the control loop function. Given a mission,

a value trace is generated for all variable updates that happen inside

the control loop function. We then partition the trace into multiple

time series of values, each series containing all the updates for a

unique memory location. On the other hand, MATLAB allows us to

execute the control invariant model we have derived. Intuitively, it

simulates the vehicle operations by computing all the state values

according to the model equations. We instrument the MATLAB

program to collect traces for the model variables and then execute

it with the same input as for the real vehicle. For each model vari-

able trace, we identify the program variable trace with the smallest

Euclidean distance, which establishes the mapping between the

model variable and the corresponding program variable (and its

memory location).

0 200 400 600

time (sec)

-20

-10

0

10

20

an
gl

e
(d

eg
)

(a) A model variable

0 200 400 600

time (sec)

-20

-10

0

10

20

0x800E86E

0x800E886

0x800E8A0

(b) Multiple program vari-
ables

Figure 11: State variable value traces at model and program levels

For example, Fig 11(a) shows a model variable value trace for the

roll angle state and (b) three program variables’ value traces. We

can easily observe that the trace for memory location 0x800E86E

(blue line) in (b) matches (a).

ARMBinaryRewriting.Weapply trampoline-based binary rewrit-

ing [10, 36, 47] to insert the monitoring function and its invocation

to the ARM binary of the control program. Specifically, the moni-

toring function (source) code is first compiled and made position-

independent. The resulting code snippet is added to the end of

the control program binary. Given a code location inside the main

control loop, we add a jump – usually at the end of the control

loop – to a small code snippet called a trampoline to invoke the

monitoring function.

0x08004B2A PUSH {R4, LR}
⋯

0x08004B50 ADD R4, R0, R1
0x08004B54 MOV R0, R2
0x08004B56 BL _ZN6Copter12..
0x08004B5A ADD R0, R4, R0
0x08004B5E POP {R4, PC}

...

0x080E1604 LDR R0, [R4, #0x5F00]
0x080E1606 LDR R1, [R4, #0x5510]
0x080E1608 BL loc_800E17A2
0x080E160C POP {R4, PC}

...

Trampoline

Monitoring
Function

Original Control Code

pc

pce

B loc_80E1604 ...

Figure 12: Example of trampoline-based rewriting

Figure 12 shows an example. Suppose a long jump takes n bytes

and we want to add an invocation to the monitoring function at

position pc . We compose a trampoline code snippet that contains

the monitoring function’s invocation, followed by the n bytes of

instructions starting at pc of the original binary and then a jump

to location (pc + n). The trampoline is attached at the end of the

control program binary, say at location pce . Then the original n
bytes at pc are replaced by a longjump to pce . At runtime, when

the execution reaches pc , it jumps to pce to execute the trampoline,

which will first invoke the monitoring function and then execute

the original n bytes of instructions, before jumping back to location

(pc + n).

4.4 Runtime Control Invariant Monitoring

Algorithm 1 Runtime Control Invariant Monitoring

1: x control states of the real vehicle

2: u control input of the real vehicle

3: y control output of the real vehicle

4:

5: procedure InvMonitor(x , u , y)
6: xp ← A · xp + B · u
7: yp ← C · xp + D · u ▷ calculates expected output

8: s_err ← |y − yp |2
9: err_sum ← err_sum + s_err
10: error ← err_sum/t
11: t + +
12: if error > threshold then ▷ runtime attack detected

13: aler t ()
14: end if
15: if t > monitor_window then ▷ window expires

16: t ← 0

17: err_sum ← 0

18: xp ← x
19: end if
20: end procedure

Algorithm 1 describes the logic of the runtime control invariant

monitoring code. It takes the current states, the control input and

output of the real vehicle (identified by control program reverse en-

gineering) as arguments. It then computes the predicted new state

xp and the predicted new output yp , using the control invariant

equations (lines 6 and 7). The squared error s_err is computed and

aggregated. Note that squared error is sensitive to outliers (caused

by attacks). At line 12, the algorithm compares the error with the

pre-determined threshold. If the (accumulated) error exceeds the

threshold, function alert() will be invoked. Invocation of alert()
will further lead to attack response, which may be vehicle/mission-

specific. For example, in response to an alert, a quadrotor may

Table 1: Subject Vehicles in Evaluation

Type HW Vendor Model Controller Software

Quadrotor 3D Robotics IRIS+ ArduCopter 3.4

Quadrotor 3D Robotics IRIS+ PX4 Pro 1.6

Rover Erle Robotics Erle-Rover APMrover2 3.2

Hexacopter Ardupilot APM SITL ArduCopter 3.6

Quadrotor Parrot Bebop2 (JSBSim) Paparazzi 5.12

Quadrotor Erle Robotics Erle-Copter (Gazebo) ArduCopter 3.4

Quadrotor 3D Robotics 3DR Solo (Gazebo) PX4 Pro 1.6

Quadrotor Parrot ARDrone2 (JSBSim) Paparazzi 5.12

Rover Ardupilot APM SITL APMrover2 2.5

Quadrotor 3D Robotics 3DR Solo Ardupilot-solo 1.3.1

Quadrotor Pixhawk-based Self-built ArduCopter 3.4

switch the flight mode to a fail-safe mode which involves aborting

the mission and landing. Attack response/recovery is beyond the

scope of this paper but we will briefly discuss it in Section 6. At

line 15, the algorithm checks if the monitoring duration has ex-

ceeded the pre-determined monitor window size. If so, it resets the

window counter t and accumulated error err_sum to zero; and the

model (invariant) states to the real vehicle’s states. Note that the

monitoring algorithm/code does not use the real vehicle state for its

own state prediction (lines 6 and 7), which means that the control

invariant model basically executes independently of the real vehicle

controller within a window. When the window expires and no alert

is raised, the accumulated error is reset to zero to prevent further

accumulation of transient errors (Section 4.2) and a newmonitoring

window starts with the real vehicle states x as the initial states (line

16-18).

5 EVALUATION
5.1 Implementation
The implementation of the CI framework consists of the following:

(1) a Valgrind-based dynamic analysis component for identifying

control loop and important state variables; (2) a mission generator

(for SI) in Python that takes state machine specification and param-

eter ranges as input, and generates random but realistic missions;

(3) a profiler implemented based on MAVlink to collect measure-

ment data for SI; (4) a control invariant extraction and parameter

selection component implemented on MATLAB; (5) a monitoring

function template implemented in C++ that takes the derived con-

trol invariant equation matrices and performs matrix computation;

and (6) an ARM binary rewriter written in Python.

5.2 Subject Vehicles and Attacks
We use 11 different RVs of three types: quadrotors, hexarotors, and

(ground) rovers.

Figure 13:Real RVs in evaluation: 3DR IRIS+, Erle-Rover, 3DR Solo,
Self-built (left to right)

In particular, we have ten different vehicles among which four

are real vehicles (shown in Figure 13). The others are virtual vehicles

provided by various simulator packages. For example, Gazebo has

a full-fledged simulator of the 3DR Solo quadrotor by 3D Robotics.

Details of the vehicles are shown in columns 1-3 of Table 1. We use

5 different control programs (column 4). For vehicle simulation, we

use Gazebo, JSBSim [39], and APM SITL [5] (column 3). We run the

simulators on Ubuntu 64-bit with Intel(R) Xeon(R) CPU E5620 @

2.40GHz x8 processor and 3.8 GB RAM.

Attacks.Most reported attacks against RVs that exploit physical

channels/components can be classified into (1) sensor spoofing

attacks [21, 35, 46, 58, 69, 72, 75–78], (2) control signal spoofing

attacks [11, 45], and (3) parameter corruption attacks [19]. While it

is difficult to implement all these attacks in real world due to lack of

special attack devices (e.g., the equipment to emit acoustic noises),

we are able to simulate these attacks without losing realism.

To simulate sensor spoofing, we choose to compromise inertial

sensors and GPS sensors. These sensors are necessary for all the

vehicles in our experiments. Specifically, we insert the attack simu-

lation code at the interface between the (real) control program and

sensor modules and manipulate sensor measurements by injecting

malicious signals. To simulate control signal spoofing, we target

the motor pulse width modulation (PWM) signals that are used to

adjust the rotation of motors/rotors. Such signals are generated by

the control program and emitted to the physical vehicle peripherals

through a communication channel (e.g., bus). We insert a piece of

signal-manipulation code into the PWM signal emission module of

the control program. To simulate parameter corruption attacks, we

add a piece of attack code to the control program that modifies the

control parameters (e.g., the PID control coefficients) at runtime.

While we modify the real-world control programs to simulate

the external physical attacks for experimentation convenience, we

do assume that the attackers do not have access to the vehicle’s in-

ternals including the control program and they do not have accurate

knowledge about the vehicle’s missions.

5.3 Experiments and Results
Our evaluation focuses on two aspects: efficiency and effectiveness.

To evaluate efficiency, we measure the execution time of key steps

of the CI framework, including the dynamic analysis that identifies

the control loop and state variables, the SI procedure, and monitor-

ing parameter determination. More importantly, we measure the

overhead of control invariant checking at runtime.

To evaluate effectiveness, we conduct a variety of experiments:

(1) We validate that the extracted control invariants can properly

predict normal vehicle behaviors and do not raise false alarms dur-

ing normal operation. (2) We measure the false negative rate of

attack detection. (3) We show that control invariants are vehicle-

specific hence the invariants extracted for vehicle A cannot be used

for vehicle B. (4) We evaluate the effectiveness of our monitoring pa-

rameter setting techniques (Section 4.2) by showing that improperly

set parameter values may lead to false positives and false negatives.

(5) We measure error changes under various environmental con-

ditions (i.e. wind) to show that our framework is effective even

in unfavorable environments. We also vary the scale of attacks to

show that our framework remains effective under different scale.

Efficiency. Table 2 summarizes the results of efficiency evaluation.

We let each vehicle execute 20 missions and apply the SI method to

extract its control invariants (Section 4.1). In particular, column RO

shows the runtime overhead of the instrumented control program.

Since the control invariant monitoring function mainly involves

a small number of matrix multiplication and error calculation op-

erations, it incurs very low runtime overhead (below 2.3%). The

profiling overhead (PO) is large but it is offline. The system identifi-

cation time (ST) is less than 1 minute.

0 5 10 15 20

The number of missions

90

95

100

105

110

115

E
rr

o
r

Figure 14: Convergence of system identification

Figure 14 shows the convergence of the SI procedure for IRIS+

/ArduCopter relative to the number of missions (flights) conducted.

The y-axis shows the average distance between themeasured output

and expected output from our model. Observe that the SI-generated

model reaches a fix-point at about 5 missions, indicating that it only

takes a few missions to achieve reasonable accuracy. The results

for other vehicles are similar and hence elided.

Figure 15: Match between real behavior and model prediction

Effectiveness. In the first experiment, we use our mission gen-

erator (details in Appendix) to generate a new set of 20 normal

missions (not the ones used in SI) for each vehicle. We then let the

instrumented vehicles execute these missions, during which the

control invariant monitor does not raise any attack alarm. Figure 15

shows how closely the control invariants’ prediction matches the

real (normal) behavior of the IRIS+/ArduCopter vehicle – in a real

flight. In the figure, the red curve denotes the measured roll angle

and the blue curve denotes the predicted values. Only small errors

exist between the two curves (i.e., the orange area at the bottom).

The larger errors at the peaks/dips are due to the approximation

nature of our framework.

Table 2: Summary of Efficiency/Overhead Results

System CS (KB) PS (KB) PO (%) ST (sec) Target ID WS (s) TH SO (%) RO (%)

IRIS+/ArduCopter 772 1,212 285 29.7 Roll angle 3 x 3 2.6 91.0 0.04 1.87

IRIS+/PX4 Pro 857 719 1,096 28.2 Roll rate 3 x 3 4.4 6.0 0.04 1.01

Erle-Rover/APM:Rover2 1,164 552 115 13.0 Steering rate 3 x 3 4.2 2.5 0.08 0.53

APM SITL/ArduCopter 14,125 1,174 280 33.6 Roll angle 3 x 3 2.0 43 0.08 0.66

Bebop2/Paparazzi 2,337 2,848 603 18.3 Roll rate 3 x 3 1.8 5.6 0.48 1.23

Erle-Copter/ArduCopter 14,640 606 1,400 16.1 Roll angle 3 x 3 2.5 45.6 0.09 0.55

Solo/PX4 Pro 14,599 750 1,480 39.3 Roll rate 3 x 3 3.6 8.2 0.08 2.23

ARDrone2/Paparazzi 2,539 2,449 598 18.1 Roll rate 3 x 3 2.0 6.3 0.45 1.12

APM SITL/Rover 11,128 1,155 124 12.8 Steering rate 3 x 3 1.7 1.54 0.11 0.94

3DR Solo/ArduCopter 660 1,097 1909 21.5 Roll angle 3 x 3 0.5 13.5 0.06 1.31

Custom/ArduCopter 738 1,146 1399 14.8 Roll angle 3 x 3 4.7 20.7 0.06 1.40

*
CS: Code Size, PS: Profile Size, PO: Profiling Overhead, ST: SI Time, ID: Invariant Dimension (A matrix), WS: Window Size, TH: Threshold, SO: Code Size

Overhead, RO: Runtime Performance Overhead

In the second experiment, we launch attacks during 20 missions

(of each vehicle) and record the number of attacks that are detected.

Our framework detects all the attacks within an average of 0.2

second after they are launched (i.e., zero false negative rate with

detection timeliness).

0 10 20 30 40 50 60 70

time(s)

-20

-15

-10

-5

0

5

10

15

20

ro
ll

a
n

g
le

 (
d

e
g

)

measured

invariant

(a) IRIS+/ArduCopter using IRIS+/PX4 Model

0 5 10 15 20 25

time(s)

-20

-15

-10

-5

0

5

10

15

20

ro
ll

a
n

g
le

 (
d

e
g

)

measured

invariant

(b) SITL/HexaCopter using IRIS+/ArduCopter Model

Figure 16: Applying different models on different vehicles

In the third experiment, we use the model extracted from IRIS+

/PX4 to predict behaviors of IRIS+/ArduCopter and use the model

extracted from IRIS+/ArduCopter (a quadrotor) to predict the be-

haviors of SITL/ArduCopter (a hexarotor). The first pair involves

the same vehicle with two different control programs and the sec-

ond pair involves two different vehicles using the same control

program. The results are shown in Figures 16a and 16b, respec-

tively. Observe that the errors are non-trivial. This observation

confirms that control invariant models are vehicle (including con-

trol algorithm)-specific.

In the fourth experiment, we measure the FP and FN detection

rates under different monitoring parameter (window and threshold)

values. To measure FPs, we run 20 normal missions. To measure

FNs, we launch attacks during 20 missions and observe how many

attacks are missed, under different parameter values. Figures 17a

and 17b show the results. We observe that: (1) under the same

threshold, a larger window generally leads to fewer FPs and more

0 50 100 150 200

Threshold

0

10

20

30

40

50

60

70

80

F
a

ls
e

 P
o

s
it
iv

e
 (

%
)

W = 10

W = 20

W = 30

W = 40

W = 50

W = 60

W = 70

W = 80

W = 90

W = 100
Selected Value

(a) False positive rates

0 5,000 10,000 15,000 20,000

Threshold

0

5

10

15

20

25

30

F
a

ls
e

 N
e

g
a

ti
v
e

 (
%

)

W = 10

W = 20

W = 30

W = 40

W = 50

W = 60

W = 70

W = 80

W = 90

W = 100

Selected Value

(b) False negative rates

Figure 17: FP and FN under different parameters

FNs and (2) for the same window size, a larger threshold leads to

fewer FPs and more FNs. (1) is because the accumulated error is

normalized (i.e., divided by the time lapse within the window) be-

fore comparison with the threshold such that a larger window leads

to smaller normalized errors. We also observe that FNs only occur

when the threshold is set to a very large value. This experiment

highlights the importance of our monitoring parameter determi-

nation technique (Section 4.2), which achieves zero FP and zero

FN.

Figure 18: Error under different wind speed and attack scale

In the fifth experiment, we measure the error (i.e., the result

of control invariant check) under different wind speed and attack

scale. We set up a mission in which a quadrotor makes a sharp turn,

which is highly sensitive to environmental conditions and injected

noises. Figure 18 shows the results. First, in the left sub-figure, the

error significantly increases at 30m/s wind speed, while the other

cases (i.e., below 25m/s) result in small errors. The quadrotor is not

able to take off when the wind speed is higher than 35m/s. Note

that the 25m/s wind speed corresponds to the “storm force” (i.e.,

Beaufort Scale 10 [73]) and manufacturers would not recommend

flying a drone under such an extreme condition.

We also measure the error under various attack scale on the roll

angle. Specifically, 0% attack means that we set the roll angle to

0, 10% attack means that we set it to a random value in [-10%×
360, 10%×360] and 100% attack means that we set it to [-360,360].

The quadrotor performs the same mission. The right sub-figure in

Figure 18 shows the maximum error during three different attacks

under different scales. Note that the errors are substantially larger

compared with the error threshold (=91) for this vehicle and our

control invariant check detects all the attacks. The errors under

the parameter corruption attacks are relatively smaller because

the vehicle has its own internal protection that caps control gains,

making a larger noise impossible.

5.4 Case Studies
In this section, we present case study with two real RVs under
six attacks. The subject vehicles include the IRIS+ quadrotor and

Erle (ground) rover running ArduCopter and APMrover2 control

programs, respectively. We launch three attacks on the IRIS+ and

three attacks on the Erle-rover.

In the first case, we let the IRIS+ fly a mission in which it first

takes off from the home position to an altitude of 2 meters and then

turns left and right. We launch the sensor spoofing attack during

the flight. The attack is launched at time instance 5.7s (Figure 19a),

when the inertial sensor reading is disrupted and then the roll

measurement is compromised, leading to the quadrotor’s crash.

Our framework detects the attack only 100ms after it is launched.

Figure 19g shows the invariant check error between the measured

and predicted roll values under the attack. A video of the attack

and its detection can be viewed at [23].

In the second case, the IRIS+ performs the same mission as the

first case. During the flight, we launch a control signal spoofing

attack. The IRIS+ is equipped with four MN2213 950kV DC motors,

actuated by motor pulse width modulation (PWM) signals to adjust

the motors’ rotation and hence control the speed and attitude of

the vehicle. We launch the attack at time instance 2.4s (Fig 19b),

when one of the signals is maliciously replaced by a constant value.

The quadrotor loses the roll control and then crashes. Figure 19h

shows the error between the invariant-predicted and measured roll

values. Our framework detects the attack 100ms after it is launched.

A demo video is at [24].

In the third case, we corrupt a control parameter in the same

mission. This leads to a control gain change (by a factor of 6).

We launch the attack at 10.5s (Figure 19c). Upon the attack, the

quadrotor flies in a circle and gradually loses balance. Figure 19i

shows the invariant check error. Our framework detects the attack

1.1s after it is launched. A demo video is at [25]. Note that this

attack does not substantially violate the invariants at once as it

takes some time for the effect of the compromised parameter to

manifest itself physically. Therefore, it takes longer time to detect

the attack. However, the detection time is still short enough for

possible recovery as the impact of this attack is milder than the

earlier ones.

In the fourth case, the Erle-rover performs a mission in which it

departs from the home position, follows a rectangular track, and

then comes back to the home location. We launch the motor input

spoofing attack during the mission. The attack module modifies the

value of a steering servo which is generated by the controller and

controls the steering rate. We launch the attack at 7.7s (Figure 19d).

The rover then fails to follow the track and gets stuck in a circle

pattern. Figure 19j shows the error between the invariant-predicted

and measured steering rates. Our framework detects this attack

100ms after it is launched. A video is at [26].

In the fifth case, the Erle-rover performs the same mission under

GPS spoofing. We launch the attack at 14.1s (Figure 19e). The rover

then deviates from the track and moves to a non-home location at

the end of the mission. Our framework detects the attack 600ms

after it is launched. Figure 19k shows the error and a video is at [27].

In the sixth case, we aim to reproduce an attack similar to that

in [76], in which the attacker can manipulate the sensor signal in a

non-random fashion. The Erle-rover performs a mission where it

follows the straight line. During the mission, an attacker controls

the yaw sensor in a sophisticated fashion and manages to change

the measurements to +30, 0 and -30 deg at the 4
th
, 17

th
and 28

th

second, respectively (Figure 19f). The rover then deviates from the

original straight line. As shown in Figure 19l, the errors during

the attack are significant. This case demonstrates that, even if the

attacker can manipulate signals in a delicate way, without knowing

the accurate motion plan of the vehicle, the invariant check errors

are still sufficient for detection. A demo video can be found at [28].

6 DISCUSSION
Mimicry Attacks. The CI framework can effectively detect exter-

nal attacks against RVs that exploit physical channels/vulnerabili-

ties. In theory, we cannot rule out the possibility that an attacker

closely mimics the behaviors of the target vehicle (e.g., by follow-

ing the model of a similar vehicle). For example, a sophisticated

attack can be launched such that the compromised sensor read-

ings largely respect the vehicle’s dynamics and laws of physics

while generating small errors. We expect that such attacks are diffi-

cult to implement, when the attacker cannot directly manipulate

the target states/values and instead has to rely on indirect physi-

cal channels (e.g., affecting gyroscope sensors by acoustic noises).

Moreover, as shown in our experiments (Section 5), control invari-

ants are vehicle-specific hence setting a high bar for high accuracy

approximation. More importantly, the behaviors of a vehicle are

determined by three factors: physics, control algorithm and pa-

rameters, and mission plan and user commands (runtime inputs).

Even if the attacker manages to grasp the first two, missing the

third factor would still expose the attack as shown in the last attack

case in Section 5.4. Note that we can even equip the vehicle with

a proactive self-validation procedure that is executed regularly to

detect attacks. Specifically, the control software can switch to a

different set of pre-defined control parameters and then make a

few maneuvers. Since these new parameters are unknown to the

attacker, substantial errors between the perceived motions (under

attacker’s control) and predicted motions (from control invariants)

are expected.

More Adaptive Detection.We rely on proper monitoring param-

eters (monitoring window and accumulated error threshold) to

distinguish attacks from transient errors. However, under highly

ro
ll

an
gl

e
(d

eg
)

time(s)

measured
Invariant

(a) Attack1

ro
ll

an
gl

e
(d

eg
)

time(s)

measured
Invariant

(b) Attack2

ro
ll

an
gl

e
(d

eg
)

time(s)

measured
Invariant

(c) Attack3

la
te

ra
l a

cc
el

 (m
/s

2)

time(s)

measured
Invariant

(d) Attack4

la
te

ra
l a

cc
el

 (m
/s

2)

time(s)

measured
Invariant

(e) Attack5

la
te

ra
l a

cc
el

 (m
/s

2)

time(s)

measured
Invariant

(f) Attack6

er
ro
r

time(s)

error

(g) Attack1 error

er
ro
r

time(s)

error

(h) Attack2 error

er
ro
r

time(s)

error

(i) Attack3 error

er
ro
r

time(s)

error

(j) Attack4 error

er
ro
r

time(s)

error

(k) Attack5 error

er
ro
r

time(s)

error

(l) Attack6 error

Figure 19: Case study: attacks on IRIS+/ArduCopter and Erle-rover

unfavorable environmental conditions not experienced during train-

ing, false positive detection may happen. One possible solution is to

make those parameters adaptive to the environment during a real

mission. The physical properties of a vehicle (i.e., its mass under

different payloads) may also change, so should its model. A possible

solution is to pre-define a number of vehicle configurations and

construct a model for each of them.

Attack Response. After an attack is detected, a proper response

to it is essential. While attack response is outside the scope of this

paper, we note that many response/recovery mechanisms exist,

such as deploying a parachute (for aerial vehicles) and stopping

the vehicle (for ground vehicles). More advanced attack recovery

techniques also exist that maintain the vehicle’s non-stop operation

via controller redundancy [30, 81] or checkpointing [44].

7 RELATEDWORK
System Identification. System Identification (SI) [61] is a mature

and widely practiced method in control engineering to infer the

control model of a subject system. The model describes the relation

between the system’s input and output. Besides typical model con-

struction [8, 48], SI is also applied to disturbance handling [50, 80],

worst case analysis [33], and so on. Different from those application

scenarios, we in this paper customize SI for RV attack detection.

Attacks against RVs. Many external attacks against RVs have

been reported. In [11, 45], the authors demonstrate the feasibility

of infiltrating internal vehicle networks. In [38], the authors exploit

a car tire pressure sensing system, which utilizes Radio Frequency

(RF)-based wireless motes. GPS spoofing [35, 75, 78] by sending

interfering signals is a typical active physical sensor attack. Optical

sensor input spoofing [21] involves obtaining an implicit control

channel by tricking optical flow sensors with a physically altered

ground plane. In [72], the authors propose a gyroscopic sensor

attack with intentional acoustic noise to crash drones. Later the

authors of [76] compromise accelerometers by injecting acoustic

noise in a controlled manner, as a more advanced form of the at-

tack. Anti-lock Braking System (ABS) attack [69] involves injecting

magnetic fields to spoof wheel speed sensor. In [34], it is shown

that an attacker with an antenna and a malicious ground station

can compromise a benign UAV by sending malicious packets. In

[59], the authors propose attacks on a camera-based ground vehicle

by relaying and spoofing signals. In [54], the authors analyze the

effects of false data injection attacks on control systems.

Attack Detection. Attack detection for RVs [2, 6, 31, 32, 40, 41,

52, 53, 68, 81, 82, 84] can be based on the following methodologies:

signature, learning, system redundancy and specification. Signature-

based detection [32, 41] monitors the target system and compares it

with pre-determined attack patterns known as attack signatures. It

generally achieves low false positive rate, but it needs to maintain

an up-to-date attack dictionary and cannot handle zero-day attacks

effectively. Redundancy-based techniques [30, 31, 82] duplicate im-

portant system components (e.g., controller) and cross-check their

states/outputs at runtime [81] to detect attacks/anomalies. The

redundancy can be in the form of software and/or hardware. How-

ever, this approach, by definition, incurs additional cost and system

complexity (e.g., for implementing multiple versions of the same

controller). The learning-based approach [2, 13, 40, 68] monitors

abnormal behaviors using a machine learning-based model. The

normality can be defined by unsupervised and supervised training.

However, in the physical domain, it is hard to obtain large sets

of normal and attack training data. Although unsupervised learn-

ing eliminates the need for attack data, it may be susceptible to

a high false positive rate. Our CI framework is not dependent on

learning from a large amount of data. We only need to instanti-

ate control invariant parameters with standard model templates,

based on profiling data from just a few test missions. Behavioral

rule-based techniques [6, 52, 53, 84] use a specification to describe

normal system operations. These techniques model program state

transitions or execution time constraints, whereas our CI frame-

work models control invariants based on a standard controller (e.g.,

PID) and physics, without having to reverse engineer the specific

control algorithm of a vehicle. Moreover, external physical attacks

may not cause any program-level anomaly.

8 CONCLUSION
We have presented a new comprehensive framework CI for detect-

ing external physical attacks against RVs, based on the definition,

derivation, and monitoring of control invariants for the vehicles.

The control invariants are derived from the physical dynamics and

control model of a subject vehicle. The corresponding invariant-

checking logic is implanted in the vehicle’s binary control program.

Our framework does not require control program source code or

per-vehicle control algorithm reverse engineering. Our evaluation

of the CI framework with 11 physical or simulated RVs – all running

real-world control programs – demonstrates high attack detection

accuracy and low runtime overhead.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable comments

and suggestions. This work was supported, in part, by ONR under

Grant N00014-17-1-2045. Any opinions and conclusions in this

paper are those of the authors and do not necessarily reflect the

views of the ONR.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

integrity. In the 12th ACM conference. ACM Press, New York, New York, USA,

340–353.

[2] Alireza Abbaspour, Kang K Yen, Shirin Noei, and Arman Sargolzaei. 2016. Detec-

tion of fault data injection attack on uav using adaptive neural network. Procedia
computer science 95 (2016), 193–200.

[3] Amazon Prime Air Delivery 2016. Amazon Prime Air. https://www.amazon.

com/Amazon-Prime-Air/b?node=8037720011.

[4] ArduPilot 2017. ArduPilot :: Home. http://ardupilot.org/.

[5] ArduPilot Dev Team 2016. SITL Simulator (Software in the Loop). http://ardupilot.

org/dev/docs/sitl-simulator-software-in-the-loop.html.

[6] Stanley Bak, Karthik Manamcheri, Sayan Mitra, and Marco Caccamo. 2011.

Sandboxing controllers for cyber-physical systems. In Proceedings of the 2011
IEEE/ACM Second International Conference on Cyber-Physical Systems. IEEE Com-

puter Society, 3–12.

[7] Jason Bau and John C Mitchell. 2011. Security modeling and analysis. IEEE
Security & Privacy 9, 3 (2011), 18–25.

[8] George A Bekey. 1970. System identification-an introduction and a survey.

[9] Samir Bouabdallah, Pierpaolo Murrieri, and Roland Siegwart. 2004. Design

and control of an indoor micro quadrotor. In Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, Vol. 5. IEEE, 4393–
4398.

[10] Bryan Buck and Jeffrey K Hollingsworth. 2000. An API for runtime code patching.

The International Journal of High Performance Computing Applications 14, 4 (2000),
317–329.

[11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-

dayoshi Kohno, et al. 2011. Comprehensive Experimental Analyses of Automotive

Attack Surfaces.. In USENIX Security Symposium. San Francisco.

[12] Feng Chen and Grigore Roşu. 2007. Mop: an efficient and generic runtime

verification framework. In Acm Sigplan Notices, Vol. 42. ACM, 569–588.

[13] Yuqi Chen, Christopher M Poskitt, and Jun Sun. 2018. Learning from Mutants:

Using CodeMutation to Learn andMonitor Invariants of a Cyber-Physical System.

arXiv preprint arXiv:1801.00903 (2018).
[14] Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast Srivas-

tava, Jinkyu Koo, Saurabh Bagchi, andMathias Payer. 2017. Protecting Bare-metal

Embedded Systems With Privilege Overlays. In Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, 289–303.

[15] CNN 2012. Self-driving cars now legal in California. http://www.cnn.com/2012/

09/25/tech/innovation/self-driving-car-california/index.html.

[16] Frederick B Cohen. 1993. Operating system protection through program evolu-

tion. Computers & Security 12, 6 (1993), 565–584.

[17] comma.ai 2018. commaai/openpilot: open source driving agent. https://github.

com/commaai/openpilot.

[18] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve

Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-

guard: Automatic adaptive detection and prevention of buffer-overflow attacks..

In USENIX Security Symposium, Vol. 98. San Antonio, TX, 63–78.

[19] Ang Cui, Michael Costello, and Salvatore J Stolfo. 2013. When Firmware Modifi-

cations Attack: A Case Study of Embedded Exploitation. (2013).

[20] Ang Cui and Salvatore J Stolfo. 2011. Defending embedded systems with software

symbiotes. In International Workshop on Recent Advances in Intrusion Detection.
Springer, 358–377.

[21] Drew Davidson, Hao Wu, Robert Jellinek, Vikas Singh, and Thomas Ristenpart.

2016. Controlling UAVs with Sensor Input Spoofing Attacks.. In WOOT.
[22] Onur Demir, Wenjie Xiong, Faisal Zaghloul, and Jakub Szefer. 2016. Survey

of Approaches for Security Verification of Hardware/Software Systems. IACR
Cryptology ePrint Archive 2016 (2016), 846.

[23] Demo Video 2018. Attack Case 1: Sensor Spoofing Attack on IRIS+. https:

//bit.ly/2Kb6TcK.

[24] Demo Video 2018. Attack Case 2: Control Signal Attack on IRIS+. https:

//bit.ly/2Ka5PpG.

[25] Demo Video 2018. Attack Case 3: Control Parameter Corruption Attack on IRIS+.

https://bit.ly/2LQTTOo.

[26] Demo Video 2018. Attack Case 4: Control Parameter Corruption Attack on

Erle-Rover. https://bit.ly/2LBpK6l.

[27] Demo Video 2018. Attack Case 5: Motor Input Spoofing Attack on Erle-Rover.

https://bit.ly/2LFPKOk.

[28] Demo Video 2018. Attack Case 6: Sensor Manipulation Attack on Erle-Rover.

https://bit.ly/2NXJDRQ.

[29] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001.

Dynamically discovering likely program invariants to support program evolution.

IEEE Transactions on Software Engineering 27, 2 (2001), 99–123.

[30] Fan Fei, Zhan Tu, Ruikun Yu, Taegyu Kim, Xiangyu Zhang, Dongyan Xu, and

Xinyan Deng. 2018. Cross-Layer Retrofitting of UAVs Against Cyber-Physical

Attacks. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA 2018).

[31] Paul M Frank. 1990. Fault diagnosis in dynamic systems using analytical and

knowledge-based redundancy: A survey and some new results. automatica 26, 3
(1990), 459–474.

[32] Wei Gao and Thomas H Morris. 2014. On cyber attacks and signature based

intrusion detection for modbus based industrial control systems. The Journal of
Digital Forensics, Security and Law: JDFSL 9, 1 (2014), 37.

[33] Guoxiang Gu and Pramod P Khargonekar. 1992. A class of algorithms for identi-

fication in H∞. Automatica 28, 2 (1992), 299–312.
[34] Kate Highnam, Kevin Angstadt, Kevin Leach, Westley Weimer, Aaron Paulos, and

Patrick Hurley. 2016. An uncrewed aerial vehicle attack scenario and trustworthy

repair architecture. In Dependable Systems and Networks Workshop, 2016 46th
Annual IEEE/IFIP International Conference on. IEEE, 222–225.

[35] Todd E Humphreys, Brent M Ledvina, Mark L Psiaki, Brady W O’Hanlon, and

Paul M Kintner Jr. 2008. Assessing the spoofing threat: Development of a portable

GPS civilian spoofer. In Proceedings of the ION GNSS international technical
meeting of the satellite division, Vol. 55. 56.

[36] Galen Hunt and Doug Brubacher. 1999. Detours: Binary Interception of Win32

Functions. In 3rd usenix windows nt symposium.

[37] IEEE 2014. Cyber-attack detection based on controlled invariant sets. IEEE.
[38] Rob Millerb Ishtiaq Roufa, Hossen Mustafaa, Sangho Ohb Travis Taylora,

Wenyuan Xua, Marco Gruteserb, Wade Trappeb, and Ivan Seskarb. 2010. Security

and privacy vulnerabilities of in-car wireless networks: A tire pressure moni-

toring system case study. In 19th USENIX Security Symposium, Washington DC.
11–13.

[39] JSBSim 2009. JSBSim Open Source Flight Dynamics Model. http://jsbsim.

sourceforge.net/.

[40] Khurum Nazir Junejo and Jonathan Goh. 2016. Behaviour-based attack detection

and classification in cyber physical systems using machine learning. In Proceed-
ings of the 2nd ACM International Workshop on Cyber-Physical System Security.
ACM, 34–43.

[41] Sanmeet Kaur and Maninder Singh. 2013. Automatic attack signature generation

systems: A review. IEEE Security & Privacy 11, 6 (2013), 54–61.

[42] Ahmed Khurshid,Wenxuan Zhou,MatthewCaesar, and P Godfrey. 2012. Veriflow:

Verifying network-wide invariants in real time. In Proceedings of the first workshop
on Hot topics in software defined networks. ACM, 49–54.

[43] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung

Lee, Xiangyu Zhang, and Dongyan Xu. 2018. Securing Real-Time Microcontroller

Systems through Customized Memory View Switching. In Proceedings of the
25th Annual Network and Distributed System Security Symposium (NDSS ’18). The
Internet Society.

[44] Fanxin Kong, Meng Xu, James Weimer, Oleg Sokolsky, and Insup Lee. 2018.

Cyber-physical system checkpointing and recovery. In Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical Systems. IEEE Press, 22–31.

[45] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, et al. 2010. Experimental security analysis of a modern automobile. In

Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 447–462.
[46] Denis Foo Kune, John Backes, Shane S Clark, Daniel Kramer, Matthew Reynolds,

Kevin Fu, Yongdae Kim, and Wenyuan Xu. 2013. Ghost talk: Mitigating EMI

https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
http://ardupilot.org/
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://www.cnn.com/2012/09/25/tech/innovation/self-driving-car-california/index.html
http://www.cnn.com/2012/09/25/tech/innovation/self-driving-car-california/index.html
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://bit.ly/2Kb6TcK
https://bit.ly/2Kb6TcK
https://bit.ly/2Ka5PpG
https://bit.ly/2Ka5PpG
https://bit.ly/2LQTTOo
https://bit.ly/2LBpK6l
https://bit.ly/2LFPKOk
https://bit.ly/2NXJDRQ
http://jsbsim.sourceforge.net/
http://jsbsim.sourceforge.net/

signal injection attacks against analog sensors. (2013), 145–159.

[47] Michael A Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan Snavely.

2010. Pebil: Efficient static binary instrumentation for linux. In Performance
Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium on.
IEEE, 175–183.

[48] Lennart Ljung. 1991. Issues in system identification. IEEE Control systems 11, 1
(1991), 25–29.

[49] MATLAB 2017. System Identification Toolbox - MATLAB. https://www.

mathworks.com/products/sysid.html.

[50] Mario Milanese and Gustavo Belforte. 1982. Estimation theory and uncertainty

intervals evaluation in presence of unknown but bounded errors: Linear families

of models and estimators. IEEE Transactions on automatic control 27, 2 (1982),
408–414.

[51] Military.com 2018. Drones | Military.com. http://www.military.com/equipment/

drones.

[52] Robert Mitchell and Ray Chen. 2014. Adaptive intrusion detection of malicious

unmanned air vehicles using behavior rule specifications. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 44, 5 (2014), 593–604.

[53] Robert Mitchell and Ray Chen. 2015. Behavior rule specification-based intrusion

detection for safety critical medical cyber physical systems. IEEE Transactions on
Dependable and Secure Computing 12, 1 (2015), 16–30.

[54] Yilin Mo and Bruno Sinopoli. 2010. False data injection attacks in control systems.

(01 2010).

[55] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89.
[56] Katsuhiko Ogata and Yanjuan Yang. 2002. Modern control engineering. Vol. 4.

Prentice hall India.

[57] Open Source Robotics Foundation 2014. Gazebo. http://gazebosim.org/.

[58] Young-Seok Park, Yunmok Son, Hocheol Shin, Dohyun Kim, and Yongdae Kim.

2016. This Ain’t Your Dose: Sensor Spoofing Attack on Medical Infusion Pump..

In WOOT.
[59] Jonathan Petit, Bas Stottelaar, Michael Feiri, and Frank Kargl. 2015. Remote

attacks on automated vehicles sensors: Experiments on camera and lidar. Black
Hat Europe 11 (2015), 2015.

[60] Lee Pike, Pat Hickey, Trevor Elliott, Eric Mertens, and Aaron Tomb. 2016. Trackos:

A security-aware real-time operating system. In International Conference on
Runtime Verification. Springer, 302–317.

[61] Ales Prochazka, NG Kingsbury, PJW Payner, and J Uhlir. 2013. Signal analysis
and prediction. Springer Science & Business Media.

[62] PX4 Dev Team 2017. Open Source for Drones - PX4 Pro Open Source Autopilot.

http://px4.io/.

[63] Lawrence R Rabiner and Biing-Hwang Juang. 1993. Fundamentals of speech
recognition. Vol. 14. PTR Prentice Hall Englewood Cliffs.

[64] ROS 2017. ROS.org | Powering the world’s robots. http://www.ros.org/.

[65] Grigore Roşu, Wolfram Schulte, and Traian Florin Şerbănuţă. 2009. Runtime

verification of Cmemory safety. In InternationalWorkshop on Runtime Verification.
Springer, 132–151.

[66] Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algorithm opti-

mization for spoken word recognition. IEEE transactions on acoustics, speech, and
signal processing 26, 1 (1978), 43–49.

[67] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,

and Dan Boneh. 2004. On the effectiveness of address-space randomization. In

Proceedings of the 11th ACM conference on Computer and communications security.
ACM, 298–307.

[68] Qikun Shen, Bin Jiang, Peng Shi, and Cheng-Chew Lim. 2014. Novel neural

networks-based fault tolerant control scheme with fault alarm. IEEE transactions
on cybernetics 44, 11 (2014), 2190–2201.

[69] Yasser Shoukry, Paul Martin, Paulo Tabuada, and Mani Srivastava. 2013. Non-

invasive spoofing attacks for anti-lock braking systems. In International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 55–72.

[70] Sergei Skorobogatov. 2009. Local heating attacks on Flash memory devices. In

Hardware-Oriented Security and Trust, 2009. HOST’09. IEEE International Workshop
on. IEEE, 1–6.

[71] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.

2013. Model checking invariant security properties in OpenFlow. In Communica-
tions (ICC), 2013 IEEE International Conference on. IEEE, 1974–1979.

[72] Yunmok Son, Hocheol Shin, Dongkwan Kim, Young-Seok Park, Juhwan Noh,

Kibum Choi, Jungwoo Choi, Yongdae Kim, et al. 2015. Rocking Drones with

Intentional Sound Noise on Gyroscopic Sensors.. In USENIX Security Symposium.

881–896.

[73] Storm Prediction Center, NOAA / National Weather Service 2017. Beaufort Wind

Scale. http://www.spc.noaa.gov/faq/tornado/beaufort.html.

[74] The Guardian 2016. First passenger drone makes its debut at

CES. https://www.theguardian.com/technology/2016/jan/07/

first-passenger-drone-makes-world-debut.

[75] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and Srdjan

Capkun. 2011. On the requirements for successful GPS spoofing attacks. In

Proceedings of the 18th ACM conference on Computer and communications security.

ACM, 75–86.

[76] Timothy Trippel, Ofir Weisse, Wenyuan Xu, Peter Honeyman, and Kevin Fu.

2017. WALNUT: Waging doubt on the integrity of mems accelerometers with

acoustic injection attacks. In Security and Privacy (EuroS&P), 2017 IEEE European
Symposium on. IEEE, 3–18.

[77] ZhengboWang, KangWang, Bo Yang, Shangyuan Li, and Aimin Pan. 2017. SONIC

GUN TO SMART DEVICES. Black Hat USA.
[78] Jon S Warner and Roger G Johnston. 2002. A simple demonstration that the

global positioning system (GPS) is vulnerable to spoofing. Journal of Security
Administration 25, 2 (2002), 19–27.

[79] Waymo 2017. Waymo (formerly the Google self-driving car project). https:

//waymo.com.

[80] Chen-Wei Xu and Yong-Zai Lu. 1987. Fuzzy model identification and self-learning

for dynamic systems. IEEE Transactions on Systems, Man, and Cybernetics 17, 4
(1987), 683–689.

[81] Man-Ki Yoon, Bo Liu, Naira Hovakimyan, and Lui Sha. 2017. VirtualDrone:

virtual sensing, actuation, and communication for attack-resilient unmanned

aerial systems. In Proceedings of the 8th International Conference on Cyber-Physical
Systems. ACM, 143–154.

[82] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. 2013. Se-

cureCore: Amulticore-based intrusion detection architecture for real-time embed-

ded systems. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th. IEEE, 21–32.

[83] Feng Zhu and Jinpeng Wei. 2014. Static analysis based invariant detection for

commodity operating systems. Computers & Security 43 (2014), 49–63.

[84] Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin Mohan.

2010. Time-based intrusion detection in cyber-physical systems. In Proceedings
of the 1st ACM/IEEE International Conference on Cyber-Physical Systems. ACM,

109–118.

APPENDIX
A Data collection
Our test generation tool produces random missions with environ-

mental effects. The mission consists of a sequence of operation

commands which respect certain happen-before relations (e.g., a

quadrotor cannot go to a waypoint before it takes off). Mission

generation involves two steps: generating a sequence of operation

commands and populating command parameters. We denote a test

input as a pair I = {t ,w} where t is a sequence of operation com-

mands with parameter values andw is the environmental effects

(e.g., wind). Algorithm 2 describes the procedure of the profile data

collection.

Algorithm 2 Data Collection

1: Ex ← Executable of target system

2: T ← The number of total experiments

3: N ← The maximum number of actions in a mission

4: M ←Mission state machine

5: Vp ← Input range vector of mission parameters

6: Ve ← Input range vector of environmental parameters

7: D ← null ▷ collected data

8:

9: while T >= 0 do
10: (A, Env) ← GenerateActions(M, N , Vp, Ve) ▷ generate a mission

11: trace ← Execute(Ex, A, Env) ▷ run simulation

12: D ← D ∪ trace
13: T ← T − 1
14: end while
15: return D
16:

17: procedure GenerateActions(M, N , ranдep, ranдee)
18: cmdlist ← T raverse(M, N) ▷ command sequence

19: alist ← GenMission(cmdlist, ranдep) ▷ a mission

20: env ← GenEnvEf f ect (ranдee) ▷ environment

21: return alist, env
22: end procedure

Mission Sequence Generation. A mission is a series of prepro-

grammed high-level operations. For example, a quadrotor starts a

https://www.mathworks.com/products/sysid.html
https://www.mathworks.com/products/sysid.html
http://www.military.com/equipment/drones
http://www.military.com/equipment/drones
http://gazebosim.org/
http://px4.io/
http://www.ros.org/
http://www.spc.noaa.gov/faq/tornado/beaufort.html
https://www.theguardian.com/technology/2016/jan/07/first-passenger-drone-makes-world-debut
https://www.theguardian.com/technology/2016/jan/07/first-passenger-drone-makes-world-debut
https://waymo.com
https://waymo.com

mission with vertical takeoff (T) from the home position, and then

performs a sequence of operations, such as waypoint (WP), loitering
(LO), and hovering (HO). The mission completes when the quadro-

tor safely lands at the target position with the land (L) operation.
For each type of vehicle, we construct an operation state machine

from our domain knowledge. This is a one-time effort for each type

of vehicles. Furthermore, it does not have to be comprehensive

as our goal is to derive control invariants that are determined by

vehicle weights, shapes, rotor gains, etc. These factors hardly vary

and thus we do not need to cover all the possible sequences of

operations in order to extract the invariants.

ArmedStart

arm
throttle

mission
start

DisarmedTakeoff Land

Waypoint

Loitering

Hovering

...

Mission	Commands

mission
completed

...

Figure 20: Operation state transition diagram of quadrotor

Table 3: Randomly generated missions.

Test No. Sequence of operation commands

T1 T →WP → LO →WP → L → T → LO → L
T2 T → HO →WP →WP → L
T3 T → LO → L → T → L → T →WP → L

Figure 20 shows the state transition diagram for a quadrotor,

from which we generate sequences of operation commands in a

random manner. In particular, our test generator performs random

walk of the state machine, starting from the initial state and ending

at the final state. Each traversed path represents a mission as in

Table 3.

Mission Parameter Value Generation. Every operation com-

mand has its own set of parameters. For example, Micro Air Vehicle

Communication (MAVLink), the communication protocol between

a quadrotor and a ground control station, supports at most 7 param-

eters for each command (e.g., theWP command requires latitude,

longitude and altitude as the parameters). Since we test vehicle

behaviors within a virtual fence, each parameter has a value range.

We sample a parameter value from its range following the uniform

distribution.

While we run a number of real missions to collect profile data

for system identification, we cannot afford running all missions in

the real world as it entails a large amount of human efforts. We

hence run a lot of missions in simulators as well. We run the simu-

lation in Gazebo [57], a widely-used universal robotics simulation

platform. In order to mimic a realistic environment, we further sim-

ulate various environmental factors. For example, for drones, we

simulate both wind and wind gust effects through Gazebo plugins.

Specifically, the wind plugin allows to simulate the direction and

force of the wind, while the Windgust plugin allows simulating

other factors, such as direction, duration, force, and start time.

Profile Data Acquisition.Most RVs have their own log module

that records runtime operation data. For the missions executed in

the real world, real time operation information can be transmitted

to the ground station (e.g., via the MAVlink protocol) or stored on

its storage (e.g., flash memory). We hence piggy-back the profile

data collection on the existing logging components. Details are

elided.

For missions executed in simulators, we collect profile data as

follows. We set up Gazebo with Robot Operating System (ROS) [64].

ROS is a middleware for robot software development, which pro-

vides libraries and tools designed to create robotic applications

in modular architecture. Gazebo provides comprehensive simula-

tion environments for a wide spectrum of physical vehicles and

third-party control software. Users can also create new vehicles

(for simulation) in Gazebo using the Universal Robotics Descrip-

tion Format (URDF) language. The third-party control software

(e.g., Ardupilot) communicates with a ground control system via

MAVLink. Users can send control messages and missions to the

subject vehicle through the ground station during simulation. We

implemented a test driver in Gazebo to systematically load and exe-

cute the generated missions and collect runtime profile for system

identification.

	Abstract
	1 Introduction
	2 Motivation
	3 Framework Overview
	4 Design
	4.1 Control Invariant Extraction
	4.2 Monitoring Parameters Selection
	4.3 Control Program Reverse Engineering and Instrumentation
	4.4 Runtime Control Invariant Monitoring

	5 Evaluation
	5.1 Implementation
	5.2 Subject Vehicles and Attacks
	5.3 Experiments and Results
	5.4 Case Studies

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Data collection

