
Obfuscation Resilient Binary Code Reuse through
Trace-oriented Programming

Junyuan Zeng1, Yangchun Fu1, Kenneth A. Miller1, Zhiqiang Lin1, Xiangyu Zhang2, Dongyan Xu2

1Dept. of Computer Science, The University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX 75080
2Dept. of Computer Science and CERIAS, Purdue University, 305 N. University St, West Lafayette, IN 47907

1{jxz101120, yxf104020, kam103020, zxl111930}@utdallas.edu
2{xyzhang, dxu}@cs.purdue.edu

ABSTRACT
With the wide existence of binary code, it is desirable to reuse
it in many security applications, such as malware analysis and
software patching. While prior approaches have shown that binary
code can be extracted and reused, they are often based on static
analysis and face challenges when coping with obfuscated binaries.
This paper introduces trace-oriented programming (TOP), a general
framework for generating new software from existing binary code
by elevating the low-level binary code to C code with templates and
inlined assembly. Different from existing work, TOP gains benefits
from dynamic analysis such as resilience against obfuscation and
avoidance of points-to analysis. Thus, TOP can be used for malware
analysis, especially for malware function analysis and identification.
We have implemented a proof-of-concept of TOP and our evaluation
results with a range of benign and malicious software indicate
that TOP is able to reconstruct source code from binary execution
traces in malware analysis and identification, and binary function
transplanting.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and En-
hancement—Restructuring, reverse engineering, and re-engineering;
D.2.m [Software Engineering]: Miscellaneous—Reusable Soft-
ware; D.4.6 [Operating Systems]: Security and Protection—In-
vasive software

General Terms
Security

Keywords
Binary code reuse, trace-oriented programming, taint analysis, dy-
namic decompilation

1. INTRODUCTION
Binary code reuse involves extracting selected pieces of code

from an application binary, recompiling and linking them with other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516664.

components, and producing a new software program. Binary code
reuse is desirable in many security applications such as malware
code inspection and classification, legacy binary program retrofitting,
security function transplanting, and source code recovery.

While decompilation [16, 17] has long been adopted for source
code recovery and hence binary code reuse, it is based on static
analysis and has limitations. For example, a state-of-the-art de-
compilation tool, Hex-Rays [2] is able to generate C code that
is semantically equivalent to the original binary code in terms of
execution effects. It was used to recover the Stuxnet source code in
2011 [19]. However, the source code generated by Hex-Rays may be
unsafe. More specifically, it does not fully recover non-trivial indirect
jump targets or function pointers, due to its static analysis nature;
nor does it deal with binaries with obfuscation, such as instruction
aliasing [3] or encrypted binary code case (e.g., those obfuscated
by packers). While there are recent advances for improving static
decompilation, such as semantic-preserving structural analysis [51],
some challenges still remain. Moreover, the recovered source code
very often may not be directly compilable.

Recent efforts – notably BCR [9] and Inspector Gadget [38] – can
extract part of a malware binary for reuse or inspection. However,
they are also not safe as they rely on incomplete dynamic analysis
without a reliable mechanism to remedy the partial information
acquired from the dynamic execution. Virtuoso [24] is a technique
that extracts execution traces and translates them to executable
python programs that could run outside the platform. In addition to
similar limitations, it requires special runtime support – a python
interpreter – to execute and often incurs high performance overhead
(up to hundreds of times of slowdown). VMST [29] addresses
Virtuoso’s limitations but it only supports kernel functions and
requires a heavy-weight dual-VM architecture [30].

This paper presents a new binary code reuse framework called
trace-oriented programming (TOP) which is built on dynamic binary
analysis. The basic idea of TOP is that, given a binary (possibly
obfuscated), through dynamic analysis of its execution, we collect
instruction traces and translate the executed instructions into a high
level program representation using C with templates and inlined
assembly (for better performance). Such a program representation
can be directly compiled and linked with other code to produce
new software. Unlike static analysis-based decompilation, TOP is
based on dynamic analysis. Therefore, it has better resilience against
obfuscation [18] and it does not require any binary points-to [8, 39,
48] or alias analysis [22, 7].

A by-product of TOP is the ability to instrument the newly gen-
erated code with additional guards, thereby gaining the ability to
mitigate the incompleteness caused by dynamic analysis. In par-
ticular, since TOP targets binary code reuse, where the recovered
code needs to run independently or be linked with other programs, it

487

must ensure that the newly generated reusing code (i.e., the reusable
software component) reproduces the same behavior with the traces
and flag exceptions if the behavior is not consistent with the traces.
In other words, there is no gray area in the newly generated code,
with its behavior well-defined by the traces. By instrumenting the
code while reconstructing its source code, TOP is able to achieve
such behavior consistencies.

We have implemented a TOP prototype and evaluated it with a
range of benign and obfuscated binary programs. Our evaluation
results show that we can directly compile the reconstructed source
code into new binaries, and run them correctly with the function-
ality we have traced. Using TOP, we demonstrate two compelling
applications: (1) malicious code inspection and identification, and
(2) security function transplanting.

In summary, this paper makes the following contributions:

• We present trace-oriented programming (TOP), a new frame-
work to reconstruct program source code from execution
traces. Unlike decompilation that statically transforms a piece
of binary code, TOP dynamically translates it with more run-
time information and directly generates reusable software
components.

• We devise a number of enabling techniques for TOP such as
program control structure recovery, address symbolization,
safety instrumentation, and instruction-to-C translation. These
techniques work together to recover the source code from
dynamic execution of a binary, and ensure that the recovered
code has well-defined behavior consistent with the execution
traces.

• We propose a systematic technique to symbolize the function
pointers that are initialized and in global memory regions. To
the best of our knowledge, this has not been proposed in any
existing static decompilation technique including Hex-Rays.

• We have built our prototype systems for Windows and Linux
platforms, and tested them with over one hundred pieces of be-
nign and obfuscated binary code. In addition, we apply TOP to
two security applications: malware analysis (e.g., unpacking)
and identification, and security function transplanting.

The rest of the paper is structured as follows. In §2, we motivate
TOP, and give an overview of our key techniques. The detailed
design of TOP is presented in §3, followed by the evaluation in §4.
Then in §5, we demonstrate the application of TOP in four usage
scenarios. We discuss limitations and future work in §6, and review
and compare with related work in §7. Finally, §8 concludes this
paper.

2. BACKGROUND AND OVERVIEW

2.1 Goals and Properties
Targeting binary code reuse, TOP differs from the traditional static

analysis-based decompilation techniques in that it performs dynamic
decompilation of program traces. The salient properties of TOP are
as follows:

• Resilient against Obfuscation. For intellectual property pro-
tection or anti-malware analysis purpose, many binary pro-
grams are obfuscated. Obfuscation techniques [18] range from
instruction aliasing, garbage code insertion, register reassign-
ment, instruction substitution, to binary code encryption and
packing [35], and even virtualization-based obfuscation [53].

However, no matter how complicated the obfuscation tech-
nique is, the obfuscated program has to be executable. From
its execution traces, we can recover the program’s source code,
although it may not be exactly the same as the original code
(e.g., those obfuscated with virtualization), and reuse it in new
programs.

• Free from Point-to and Alias Analysis. It is challenging to
perform point-to or alias analysis [8, 39, 48, 22, 7] statically.
However, since TOP is based on dynamic execution, the point-
to relations are exercised directly, hence there is no need to
perform complicated point-to analysis to figure out pointers’
targets.

• Concrete Instead of Abstract Values. Similar to concolic
testing [33, 52] (a mix of symbolic and concrete execution),
concrete values are sometimes preferred in some reuse sce-
narios. By using TOP, values of the variables accessed during
the program’s execution can be observed. When generating
the new source code, some arguments can be replaced with
concrete values to avoid certain complicated tasks, such as
environment setup and pre-condition computation; and a func-
tion pointer can be replaced with a concrete function call if
the pointer always points to a specific function in the trace.

2.2 Challenges
It is a well-established approach to translate machine code back

to human readable disassembled code (which is called disassem-
ble). However, from disassembled code to high-level code (i.e.,
decompilation [16, 17, 46]), there is no standard approach and
no significant breakthrough in the past few years for native code
(although decompilation is more successful for other low-level code
such as Java-bytecode [43]).

TOP is built atop dynamic binary instrumentation (DBI) which
can be used to generate execution traces. However, the traces from
DBI-tools (e.g., PIN [41] and QEMU [4]) cannot be reused directly,
and we must solve the following challenges:

• Control Structure Identification. Normally a trace is a se-
quence of instructions executed by the CPU, and there is
no explicit control structure inside. For example, the loop
is unrolled, and callers and callees become sequential in the
trace. Therefore, we have to identify the program control
structures such as loops and function calls for the C code
being generated.

• Type Classification of Literal Values. The literal value (i.e.,
the immediate value) in an instruction can be associated with
different types, such as a global or read-only data address, a
function pointer or a constant. If the literal value refers to a
memory access or a function pointer, it has to be converted
to the address which is associated with the generated C code
instead of the original binary code. Therefore, we have to
develop techniques to precisely differentiate the types of the
literal values and symbolize them.

• Safe Reuse. Based on dynamic analysis, TOP faces the code
coverage challenge. However, our goal is to make the non-
exhaustively executed code reusable and ensure that the recov-
ered code is safe and consistent with the traces. For example,
as shown in Fig. 2, if we do not have any safety check in the
partially executed code, the original semantics of the program
may get violated. Thus, we have to develop techniques to
ensure the safety of the recovered source code.

488

Test
Suites

Instruction-to-C
Translation

Memory Address
Symbolization

C
o

n
tr

o
l

 S
tr

u
c

tu
re

Id

e
n

ti
fi

c
a

ti
o

n

C Source
Code

Binary
Code

Safety-Instrumentation

Meta-
Data

Offline-
Combination

Online Dynamic Binary Instrumentation

Label C-Stmt-ListPC

PC

Basic-block Hash-table (CFG, Call-graph can be derived)

Next-block-List

Label C-Stmt-List Next-block-List

Argument-listPC First-basic-block

Function Hash-table

Stack Variables

Global Variables

Callee-List

Callee-List

Figure 1: Overview of TOP Framework.

1 if (year_of_service > 10) {
2 if (salary < 100000.0)
3 salary = 100000.0;
4 else
5 salary = salary*1.02;
6 }

1 if (year_of_service > 10) {
2 if (salary < 100000.0)
3 salary = 100000.0;
6 }

(a) Original Source Code
(b) Naively Recovered Source Code

 from Trace

Figure 2: Partial code recovery issue faced by TOP. Assume the
provided input is year_of_service = 15 and salary =
80,000. An unsafe code recovered includes lines 1, 2, 3, and 6
of the original program.

2.3 Overview
An overview of TOP is presented in Fig. 1. The input to TOP is

the application binary code and a test suite; and the output is the
executed, modularized, and reusable components with C source code
representation, which can then be directly compiled and linked to
generate new programs.

There are five key components in TOP, four of which are designed
using online DBI. More specifically, through dynamically monitor-
ing executed instructions, we will identify the control structure of
the code (§3.1) such as function calls, loops, and branches; discover
the literal value types and relocate them with symbols (if neces-
sary) such that they can be recompiled (§3.2); collect the control
flow graph (CFG) for safety instrumentation (§3.3); and translate
instructions using inline assembly for C code (§3.4). Finally, we
will have all the meta-data necessary to reconstruct the C code. The
offline-combination component (§3.5) will combine multiple runs if
necessary and emit the final C code.

3. DETAILED DESIGN

3.1 Control Structure Identification
The typical control structures in binary code include sequence,

selection or conditional branch (jcc, namely jump if condition is

met; there are 77 such instructions in x86 [1]), and repetition (i.e.,
loop). However, loop is essentially a special case of conditional
branch which has a backward edge in the control flow graph (CFG).
In other words, at the binary level, we only see instructions being
executed either sequentially, or with a control flow transfer (includ-
ing explicit ones such as jcc/jmp/ret/call and implicit ones
such as push/ret).

Our goal is to translate binary code (more precisely the dynami-
cally disassembled code) into C code that can be recompiled. In fact,
control structures are already encoded in the binary, especially in
the program’s CFG, where each node represents a basic block (BB)
in which instructions are executed sequentially; and a directed edge
represents the control flow transfer (such as jcc/jmp).

CFG is not only crucial to control structure identification, but
also important for our safety instrumentation technique (§3.3) with
the goal of tolerating incomplete execution (i.e., only one of the
two branches of a conditional gets executed and dynamically de-
compiled). Therefore, the first step of TOP is to dynamically build a
program’s CFG based on executed instructions.

Dynamic CFG Construction. Since we target programs that may
be obfuscated or metamorphic, we cannot rely on static analysis (e.g.,
static disassembler). Hence, our key idea for CFG construction is
to leverage the exercised instruction addresses to safely connect the
BBs (with their successors and predecessors) during the program’s
execution. In particular, we focus on handling metamorphism that
may cause instructions being dynamically modified or replaced
(e.g., those obfuscated by packers). The procedure for dynamic CFG
construction is presented in Algorithm 1.

For a given executing instruction with address PC, if the instruc-
tion is jcc/jmp/call (line 4 -11), we will first get the PC of the
next instruction (line 5) and retrieve its current layer. The reason to
introduce a layer (an unsigned integer) for each PC is to track the
version of the newly generated code, and use 〈PC, layer〉 as the
unique index to access a basic block hash table (BBHT). Without
layers, we cannot have a one-to-one mapping because the same
address can be overwritten and one PC can be mapped to different

489

1: Input: PC, the current executing instruction address; Shadow: the shadow
memory of the accessed program address space, which stores the current memory
overwriting layers.

2: Output: Partial CFG stored in the basic block hash table (BBHT)
3: DynamicBinaryInstrumentation (PC, BB) {
4: if (Inst(PC) ∈ {jcc, jmp, call})
5: next_pc← Next({jcc, jmp, call})
6: layer← GetShadowLayer(Shadow, next_pc)
7: N ← GetBB(next_pc, layer);
8: T ← Set of exercised successor of PC;
9: if (N /∈ T)
10: Insert N to BB’s successor in BBHT;
11: Insert BB as N’s predecessor in BBHT;
12: else if (Inst(PC) ∈ {ret})
13: next_pc← Stack(ESP),
14: layer← GetShadowLayer(Shadow, next_pc)
15: N ← GetBB(next_pc, layer);
16: T ← Set of exercised successor of PC;
17: if (N /∈ T)
18: Insert N to BB’s successor in BBHT;
19: Insert BB as N’s predecessor in BBHT;
20: else if (Inst(PC) ∈ {Memory Write})
21: Increase the layer by one in the shadow memory.
22: Append PC to BB if this PC has not been visited;
23: }

Algorithm 1: Dynamic CFG Construction

instructions at different times (e.g., in different unpacking phases if
the program is packed by multiple packers). Next, we will retrieve
the next BB (i.e., N) of 〈next_pc, layer〉 (line 7); if N does not
exist,GetBBwill create one. After that, it retrieves all the successors
of current PC, and updates the successor and predecessor of the
current BB (line 10-11). Handling of ret is similar, except that we
have to fetch its next PC from the stack (line 13). Also, for memory
write instructions, since we need to track the layer of a memory
address, we retrieve the current layer for the overwritten address and
increase it by one. Then whenever an instruction is fetched from the
memory, we can retrieve its layer from the shadow memory. At the
end of the execution of the current instruction, we will append the
PC to the current BB if it is visited for the first time (line 22). Note
that our BBHT contains all the control flow transfer information
of the executed instructions, all of our following components will
leverage the information collected in BBHT as illustrated in Fig. 1.

3.2 Memory Address Symbolization
During program execution, many instruction and memory data

addresses become concrete. For instance, the target of a control flow
transfer instruction is a concrete instruction address, and the target
of a memory access operation is also a concrete address. However,
in the recovered code, we often cannot directly use these concrete
addresses. Instead, we have to symbolize and relocate them. We call
this procedure Memory Address Symbolization.

In general, we have to perform (1) instruction operand sym-
bolization and (2) global data symbolization. We do not need to
symbolize heap or stack memory addresses because they are dynam-
ically allocated and intrinsically relocatable. For instruction operand
symbolization, we need to rewrite a concrete address or literal value
with a symbolized address (such as a label). For instance, as shown
in the first example in Table 1, we need to rewrite the target address
of direct call with the address of func_dest_addr; and the
destination address of je with label L_dest_addr. For global
data symbolization (the third and fourth examples in Table 1), we
need to rewrite the instructions that use concrete addresses of the
global variables. Also, we need to rewrite the initial value stored in
a global variable if the value itself is an address of a global variable
or a function pointer.

Unfortunately, memory address symbolization is challenging.
This is because literal values are widely used in many instructions.

Many of them are not addresses even though some of them look
like so. Only from the later data use of a value, we can infer if it
is a memory address, a pointer (with its content being a memory
address), or a double pointer (from a two-layer pointer dereference).
Also, there could be indirect call/jmp or even ret (as shown in
the second example in Table 1). We have to back track to decide
whether their target operand is directly or indirectly derived from any
literal value representing a global address. To this end, we adopt a
data dependence tracking (i.e., taint analysis [15, 47, 20]) algorithm
to resolve the instructions whose operands need rewriting, and the
global memory addresses that need to be updated with new symbols.
In the following, we present the detailed design of our algorithm.

3.2.1 Taint Sources
The goal of our algorithm is to (1) pinpoint the instructions that

have a memory operand that needs to be symbolized and (2) pinpoint
every global data location that stores an initial function pointer or
a global data pointer which need to be symbolized. Therefore, our
taint source contains the instruction address (PC) whenever an
instruction involves a literal value operand, or a data value that
appears to be a global pointer or a function pointer. For either case,
we are able to determine the operand or the data value is indeed a
global/function pointer by observing that it gets dereferenced at a
later point. We replace the origin of the operand, which is indexed
by the taint source using its PC, with a symbol; or the origin of
the memory data indexed by the taint source using its value with a
symbol. We will use the examples in Table 1 to illustrate how our
analysis works.

Consider the third example in Table 1 (line 8-11 in the third col-
umn). When line 8 gets executed, we will assign the shadow record
for eax as S[eax]=8 (PC) because “mov eax, 0x424a38” has
a literal value. Instruction address 8 will be used later to update
the source operand 0x424a38 at location 8 if the taint sink point
(discussed below) indicates that eax stores a memory address.
When line 9 “mov ecx, DWORD PTR [eax]” is executed, it is
a taint sink point as it dereferences the value stored in eax. We hence
know that eax stores a global memory address. We then update the
operand at address 8, and generate an address-symbolized instruction
“mov eax, OFFSET global_data+0x8” as shown in line 8
in the last column in Table 1. Also, this instruction denotes a new
taint source as the value stored in eax=0x424a38 is 0x424a34
that appears to be a pointer pointing to the global area. Hence, the
memory address of the source operand is assigned to the shadow
record of eax, S[ecx]=0x424a38.

3.2.2 Taint Propagations
Much like all other taint analysis, the taint record gets prop-

agated along with data movement instructions, and data arith-
metic (because of pointer value computation) instructions. For
instance, along with data movement instruction at line 10 “mov
edi, ecx”, S[ecx]=0x424a38 will be propagated to edi (i.e.,
S[edi]=0x424a38).

3.2.3 Taint Sinks
A taint sink is an instruction point that can reveal the type of

the operand: whether a literal value is a global memory address
or relative address for call/jmp target; or whether the involved
memory operand is a pointer. Therefore, nearly all instructions are
possible taint sinks. When a taint sink instruction is executed, we
will update the assembly code depending on whether it involves
instruction operand symbolization or global data symbolization.

Case I: Instruction Operand Symbolization. There are many
instructions that take literal values. For some instructions we can

490

Examples Original Assembly Code Address Symbolized Code

Instruction

Operand

Symbolization

Direct

Symbolization

1: je 0x401175

2: call 0x401028

3: mov DWORD PTR 0x424a30, 0x1

1: je L_0x401175

2: call func_0x401028

3: mov DWORD PTR [global_data+0x0], 0x1

Indirect

Symbolization

4: push 0x401058

5: ret

6: mov eax, 0x409200

7: call eax

4: push OFFSET L_0x401058

5: ret

6: mov eax, OFFSET func_0x409200

7: call eax

Global Data

Symbolization

Implicitly

Initialized

Global Data

8: mov eax, 0x424a38

9: mov ecx, DWORD PTR [eax]

10: mov edi, ecx

11: mov ebx, DWORD PTR [edi]

12: call DWORD PTR 0x424a3c

8: mov eax, OFFSET global_data+0x8

9: *(int*)(global_data+0x8) = global_data+0x4

10: mov ecx, DWORD PTR [eax]

11: mov edi, ecx

12: mov ebx, DWORD PTR[edi]

13: *(int*)(global_data+0xc) = func_0x40102d

14: call DWORD PTR [global_data+0xc]

Explicitly

Initialized

Global Data

13: mov DWORD PTR 0x424a38, 0x424a30

14: mov ecx, DWORD PTR 0x424a38

15: mov DWORD PTR [ecx],0x4

16: mov DWORD PTR 0x424a3c, 0x401032

17: call DWORD PTR 0x424a3c

15: mov DWORD PTR [global_data+0x8],OFFSET global_data+0x0

16: mov ecx, DWORD PTR [global_data+0x8]

17: mov DWORD PTR [ecx],0x4

18: mov DWORD PTR [global_data+0xc],func_0x401032

19: call DWORD PTR [global_data+0xc]

Table 1: Examples of Memory Address Symbolization.

immediately infer that the operand is a memory address (we call it
direct symbolization). For the others we must infer based on later
data use (we call it indirect symbolization). Therefore, we have the
following two strategies:

• Direct Symbolization. Direct symbolization applies to the
direct control flow-related instructions (i.e., call/jmp/jcc).
In particular, if the operand of such an instruction is a literal
value, we will directly symbolize it. For instance, as shown
in line 1-2 of the first example in Table 1, we will directly
symbolize 0x401175 with a label L_0x401175 for the je
instruction; and 0x401028 with fun_0x401028 for the
call instruction. Direct symbolization is critical for unpack-
ing. Usually the last step when finishing unpacking is through
a control flow transfer instruction (jmp/call/ret). If we
do not symbolize the target address of the last instruction,
TOP would only capture the code for unpacking and the new
code’s semantics will not be consistent with our traces.

• Indirect Symbolization. At the data use point, after we de-
termine the literal value to be a symbol address, we will
look for the target instruction based on the PC in the taint
record and rewrite the symbol. For instance, as shown in the
second example in Table 1, at line 7 when “call eax” gets
executed, we can infer that the value stored in eax is actually
a function entry address. Since the taint record of eax is
S[eax]=6, we will then rewrite the operand of the instruction
at PC=6 and symbolize the literal value as fun_0x409200.
For the return instruction, we will also check the taint record
of the operand that is from the top of the stack. If it is tainted,
we will update the target instruction as well. For instance,
because line 4 “push 0x401058” and line 5 directly return,
fetching value 0x401058 from the stack (this instruction is
actually a case of control flow obfuscation), we will rewrite
the operand of the push instruction as L_0x401058. Note
that for a normal call instruction, unlike in this case, we
will not taint its return address on the stack.

Case II: Global Data Symbolization. Compared with instruction
operand symbolization, global data symbolization is more compli-
cated and it requires not only translating the concrete global address

into symbolic address, but also translating the pointed data stored in
the global variable as symbolic. There are also two cases for global
data symbolization depending on whether the global data accessed
is implicitly initialized or explicitly initialized (or redefined).

• Implicitly Initialized Global Data. A global pointer (either
data pointer or function pointer) could be initialized by a com-
piler, often with no more update during program execution.
In this case, we need to symbolize the stored pointer value
explicitly (with an assignment statement to be inserted at the
beginning of the recovered code); otherwise the translated
program will crash.

Take the instruction at line 11: “mov ebx, DWORD PTR
[edi]” as an example (the third row in Table 1). When
this instruction is executed, we can infer that edi stores a
pointer. At this moment, S[edi]=0x424a38, which indicates
that we are dereferencing a memory address pointed to by
the value stored in 0x424a38. In other words, we know that
0x424a38 actually stores a pointer and this pointer is implicitly
initialized (because there is no other instruction to define this
memory address). Therefore, we have to explicitly translate
the content stored in 0x424a38. In this case, it happens to
be 0x424a34. That is why we add an explicit assignment
statement at line A in the last column (the address of this
instruction depends on the final recovered code but it needs
to inserted at the beginning of the recovered code).

This example also indicates that we need to track data-def
and data-use of the memory cell (details are elided since it is
a standard algorithm). If there is no data-def for a particular
memory cell, it will be a case of implicit data initialization.
Similarly, for line 12 “call DWORD PTR 0x424a3c”,
we will add a function pointer initialization statement at line B
in the last column, and that function pointer happens to point
to a function at address 0x40102d. Similar to the statement
in line A, this assignment statement should be placed at the
beginning of the recovered code.

• Explicitly Initialized Global Data. If a global function pointer
is explicitly redefined (e.g., memory 0x424a38 in line 13),

491

its handling will be simpler. We only need to symbolize the
address of the global variable, without adding any explicit
assignment statement (e.g., lines A and B in Table 1) for
the global pointer variable. Instead, we will use the original
program’s code to dereference the memory. For instance,
in the fourth example in Table 1, we only need to symbol-
ize the operand at line 13 for memory addresses 0x424a38
and 0x424a30, and similarly at line 14 for memory address
0x424a38.

Again, we do not need to symbolize program heap and stack ad-
dresses. The main reason is that those addresses are dynamic hence
the program code itself will initialize them and dereference them
correspondingly. It is also important to note that Memory Address
Symbolization is new in TOP; and none of the existing decompilation
techniques, including Hex-Rays, has solved this problem, especially
for global initialized pointer data.

3.3 Safety Instrumentation
TOP features the assurance of safety while leveraging the precise

but incomplete dynamic analysis. To achieve this goal, we need to
ensure that the recovered code either behaves the same way as the
original binary, or must throw predefined runtime safety exceptions.
We call this property reuse safety.

There are two root causes for safety violation: (1) A conditional
jump (i.e., jcc) may not have both branches covered (as shown in
Fig. 2) and (2) an indirect jmp/call may not have all its targets
covered.

• Handling Missing Conditional Branches. If only one of the
branches is executed in a jcc instruction, TOP will generate
a piece of exception handling code that will print a warning
message and exit the program if the control flow of the re-
covered code falls through the missing branch. This warning
message will be used to debug and refine the extracted code. In
particular, we can leverage the input that induces the warning
as an additional input to increase code coverage.

• Handling Indirect Jumps. Similar to conditional branches,
indirect jumps/calls can lead to safety issues due to incomplete
path coverage. Two types of indirect jump/call – jmp/call
register and jmp/call memory – are considered. TOP trans-
lates an indirect jump/call into a list of conditional jumps
with the possible values of the symbolized indirect jump/call
operands as conditions. To guarantee safety, an assertion is
added to the beginning of the conditional jump list to check
if the target is among the symbolized addresses. In other
words, our code creates a white list of the symbolized target
addresses; any unknown (new) target will be captured and
thrown out.

With the safety instrumentations above, we ensure that, when
the recovered code is executed again, it will follow the original
program’s semantics or throw exceptions. Any attempt to execute a
control flow path not executed before will be warned.

3.4 Instruction-to-C Translation
After we collect the program’s CFG (§3.1), relocate concrete

memory addresses to symbols (§3.2), and instrument the extracted
program to ensure safety (§3.3), the next step is to translate the low-
level instructions into C code. Since our targeted usage scenario is
binary code reuse, users may not be interested in the implementation
details of the extracted components but only their functionality – for
example, a user may not care how a cipher function is implemented.

Therefore, in the generated C code, we largely use the inlined assem-
bly and their operands will be updated with symbolized addresses if
any.

Also, since our goal is to recover the extracted code in the form
of source code, we could generate the source code for instructions
at various levels, including user level, library level, and even kernel
level (if we use virtual machine-based dynamic instrumentation).
However, we are most interested in the user-level code (because
library code already exists). As such, the recovery process needs to
stop when encountering a well-defined API. We also need to dump
the code from the beginning of the execution by default, or from the
entry to the exit points specified by the user.

API Resolution. The goal of API resolution is to instruct our
analysis to stop further tracing when entering the body of a
library function and, at the same time, to use the well-defined
interface and the API symbols to generate the function call (e.g.,
malloc,printf,recv). While there might be API-obfuscation
in the binary code (e.g., to hide malware behavior from static
analysis), our dynamic analysis can discover such obfuscation.

At a high level, our API resolution technique turns off address
space randomization (which can be done by TOP users because they
control the execution), and identifies the starting address for each
library call. At runtime, we check whether the PC of an instruction
matches any pre-defined API’s PC. For Linux, we extract all the
APIs in glibc and other dependent libraries if any, and resolve
each API’s symbol, arguments, and the starting PC.

For Windows binary, if DLLs are loaded at the virtual addresses
specified as the image base address in a DLL’s PE header1, we will
create a lookup hash table that contains all the virtual addresses of
each exported API function from all known DLLs. If the calling
target address can be found in the lookup table, we will retrieve
the API calling context (i.e., name and arguments). If the DLLs are
loaded to a nonstandard base address by system calls to explicitly
map them to a different address space, we will look for specific calls
to NtOpenSection which identifies the DLL name, and calls to
NtMapViewOfSection which provides the DLL’s base address.
We then use the base address of this DLL to add those API addresses
inside it.

Instruction Translation. Since TOP cares about code functionality
more than code readability, we use a straightforward but effective
inlined assembly rewriting approach to generate the corresponding
C code. In particular, we traverse the BBHT (§3.1), starting from
a user-specified address or a default address. For each executed
instruction, if an absolute address is used, we will replace it with our
symbolic address. If there is a missing branch that is not executed, we
will instrument it with a safety check. If there is a global data access,
we will associate it with an index (global variables are mapped to a
big array) and initialize it with value in the memory. A control flow
target will be rewritten as a specific symbolic label. If we encounter
the end instruction, we will dump the C source code. Note that the C
code is not just inlined assembly because we do recover information
that is lacking in assemblies, such as variable types and function
interfaces.

3.5 Offline Combination
To enable the combination of multiple runs of a binary, we also

design a feature that serializes our in-memory meta-data to disk
files, and then use the offline-combination component to combine
the multiple runs for larger coverage. For offline combination, all

1Since the bases of standard Windows DLLs do not conflict with
each other, the loader and linker can load all DLLs at their specified
base virtual addresses.

492

Benchmark Programs Online Phase of TOP Offline Combination Recovered Consis-
Binary Assembly #Symbolized #Safety Time Test KLEE/TOP Source tent w/

Category Programs Code (LOC) Addresses Checks (sec) Cases Coverage(%) Size (KLOC) Traces?
sha512sum 25331 133 39 0.25 35 59.53 15.4 X

Hash sha384sum 25331 133 39 0.25 45 59.74 15.4 X
sha256sum 9129 122 36 0.09 36 60.70 5.5 X
vdir 18676 788 196 0.71 65 26.93 4.8 X

File dir 18676 507 116 0.19 70 25.67 4.8 X
ls 18676 501 116 0.19 68 25.81 4.8 X
chown 10099 216 88 0.05 58 39.53 4.1 X

Privilege chmod 9811 208 81 0.02 54 29.77 2.9 X
chgrp 9436 196 80 0.04 50 31.08 2.9 X
du 14887 487 173 0.06 66 38.43 5.7 X

Disk df 9100 290 74 0.11 58 32.92 2.9 X
sync 4221 45 9 0.21 18 39.26 1.6 X
sleep 4541 85 25 0.08 58 42.05 1.9 X

Process kill 4935 83 31 0.04 37 38.71 1.9 X
nice 4680 43 11 0.05 47 41.17 1.9 X
who 6097 363 147 0.20 27 36.34 2.2 X

Environ- env 4292 53 13 0.09 22 33.01 1.4 X
ment printenv 4290 50 9 0.09 12 24.08 1.0 X

od 10172 245 61 0.09 119 53.42 5.5 X
Utility pr 7611 480 130 1.01 79 40.03 3.0 X

wc 5959 210 45 0.24 45 44.47 2.7 X

Table 2: Evaluation results with top-3 binary programs in 7 categories (in terms of recovered source code size).

the serialized meta-data are loaded into memory, and the CFG in
the multiple meta-data is traversed. Whenever there is a path that
is executed in one run but not in another, we will eliminate the
safety instrumentation code and combine the two runs. After the
combination, given the starting PC of a target function to reuse, TOP
will traverse the BBHT, translate the instructions, and dump the
source code reachable from the target function.

4. EVALUATION
We have implemented a proof-of-concept prototype of TOP. To

handle obfuscated Windows binary code, we choose QEMU-1.0.1 [4]
as the underlying dynamic binary instrumentation engine. We per-
form virtual machine introspection (VMI) [31] to inspect the target
process and thread, intercept all executed instructions, collect context
information, and resolve and store the information in the BBHT. To
show the effectiveness and generality of TOP, we have implemented
process/thread introspection and API resolution for both Windows
and Linux. It is important to note that the five key components of
TOP are generic, hence there is no need to customize for Windows
and Linux.

More specifically, TOP needs to trace binary execution at thread
level. To identify thread-level context, our introspection will use both
process ID (by traversing the corresponding kernel data structure)
and kernel stack pointer (with the lower 12 bits masked). This is
because each thread will have a unique kernel stack (besides user
level stack). Also, many programs create new processes. TOP tracks
process creation by inspecting relevant system calls, and performs
binary code translation and isolation for all child processes.

In this section, we present the results of evaluating TOP with a
large number of legacy Linux binary programs (§4.1) and obfuscated
Windows binaries (§4.2). The evaluation is performed on a machine
with Intel Core i-7 CPU with 8GB physical Memory. The host Linux
platform runs kernel-2.6.38; and the guest OS is Ubuntu-11.04 or
Windows XP SP3.

4.1 Evaluation with Legacy Linux Binaries
Unlike the large pool of obfuscated binaries on Windows, much

fewer obfuscated binaries exist on Linux. Hence our evaluation of

TOP for normal, un-obfuscated binaries is mainly performed on
Linux. We use the coreutils-6.11 package as our benchmark suite.
Our goal is to use TOP to generate C code from execution traces,
and further recompile them to generate customized binaries. We
compare the functionality of the new binaries with the original ones
for effectiveness evaluation.

Effectiveness. There are in total 100 programs in coreutils-6.11.
Most of them are single process except three multi-threaded pro-
grams, sort, mkdir and ginstall. TOP can detect the thread-
level control flow correctly. In our experiment, we compile them
with “gcc -O2”, strip out their symbols, and run each of them to
generate the corresponding source code from the trace.

When running these programs, we do not provide explicit com-
mand line option (e.g., we just type ls), unless we have to provide
one such as for cat. For those that require files as input, we provide
files with a size of 1KB. Next, we run the the recompiled binaries
with the same option for tracing, and compare the output to test
whether we retain the correct semantics of the original binary with
the given inputs.

As expected, all 100 benchmark programs run successfully, and
consistently generate the same result as their original counterparts
for the same input. If we enter any other command line options, the
new programs will generate exceptions and exit gracefully. Note
that in such a case, the user can choose to further generate a more
complete version of the recovered program using the exception-
inducing input. For space constraint, we classify these 100 programs
into seven categories and rank the source code size (in terms of
LOC) generated for each program, as shown in the first column
of Table 2. For each category, we report the top 3 programs in the
2nd column of Table 2 for detailed presentation of our results. The
4th column reports the number of symbolized memory addresses,
and the 5th reports the number of safety checks TOP added. These
results reveal more details about the internal operations of TOP as
well as the program-specific characteristics in these aspects. We
observe that all programs require hundreds of symoblized addresses.
For safety checks, the number varies across programs.

Performance Overhead. There are two kinds of performance over-
head: (1) overhead of TOP tracing binary execution and generating

493

Obfuscated Samples #bytes Obfuscation Techniques A
nt

i-
D

is
as

.

A
nt

i-
D

eb
ug

A
nt

i-
V

M

#S
ym

bo
liz

ed

#S
af

et
y

#L
O

C

C
ov

er
ag

e

C
on

si
st

en
t?

garbage_bytes.exe 1536 Adding garbage bytes X 3 1 38 71.4% X
program_control_flow.exe 1536 CFG Obfuscation (push/jmp) X 3 0 30 100% X

pushret.exe 1536 CFG Obfuscation (push/ret) X 3 0 40 100% X
call_trick.exe 1536 CFG Obfuscation (call/push/ret) X 8 0 71 100% X

middle_instruction.exe 1536 Instruction Aliasing X 10 1 78 100% X
Win32.Bamital.exe 22016 Encryption Packer X 303 37 1264 - X

Virus.Win32.Adson.exe 5632 Compression Packer X 60 6 739 - X
hardware_bp.exe 1536 Hardware Breakpoint X 12 4 78 70.8% X

heapflags.exe 1536 Heap Flags Detection X 9 1 59 81.8% X
instr_counting.exe 1536 Instruction Counting X 12 3 136 65.6% X

ntglobal.exe 1536 PEB NtGlobalFlag X 9 1 71 81.8% X
peb.exe 1536 IsDebuggerPresent X 9 1 59 81.8% X

rdtsc.exe 1536 RDTSC Instruction Timing X 8 1 75 90.0% X
softice.exe 1536 Softice Interrupt X 8 1 75 83.3% X

software_bp.exe 1536 Soft Breakpoint Detection X 10 1 77 91.7% X
ss_register.exe 1536 SS Register X 9 1 83 88.2% X

anti-vm_in_instruction.exe 1536 Anti-Vmware IN Instruction X 7 0 59 100% X

Table 3: Evaluation results with 17 obfuscated binary programs.

new source code and (2) overhead of new software generated com-
pared with the original software.

For the 100 programs, TOP on average runs about 0.2 second
to generate the new program from a single trace. To further study
performance overhead, we present the TOP runtime (incurred by
its four online components) in the 6th column in Table 2. For each
program, it takes less than one second for TOP to finish, except
utility pr that takes 1.01 seconds. For each new program generated,
we recompile and run it using the same arguments as those used for
tracing. Since the translated code is almost identical to the original
assembly code, the new program incurs negligible performance
overhead, thanks to the use of inlined assembly.

Coverage. Recall that TOP supports combining multiple traces into
one program (§3.5). To evaluate this feature, we use KLEE [12]
to generate test cases as inputs for program tracing by TOP. To
simplify the experiment, we use the same KLEE command for
coreutils programs2. The 7th and 8th columns of Table 2 show
the number of test cases and the coverage for each program (use
klee-stats command), respectively. The final source code size
of these programs is reported in the 9th column of Table 2. Mean-
while, the average offline combination time (not shown in Table 2)
is 0.18 second.

4.2 Evaluation with Obfuscated Windows Bi-
naries

Obfuscated binaries, especially those of malware, abound on
Windows. The goal of binary code obfuscation is to disrupt analysis
of the code and deter reverse engineering efforts. In general, there are
three types of widely used binary analysis platforms: disassembler,
debugger, and virtual machine (VM). Consequently, obfuscation
techniques can be categorized into anti-disassembler, anti-debugger,
and anti-VM. For each category, there exist a variety of techniques.
For example in the anti-dissembler category, there exist the tech-
niques of garbage code insertion, control flow obfuscation, instruc-
tion aliasing, binary code compression, and encryption.

To evaluate the resilience of TOP against these obfuscation tech-
niques, we select 15 representative obfuscated samples from [5]
(shown in Table 3), which cover the state-of-the-art obfuscation
2http://ccadar.github.io/klee/CoreutilsExperiments.html

techniques. The samples and their source code, plus two additional
binary-only, packed samples, are from offensivecomputing.net. Note
that a reason for selecting the 15 samples is that they allow us to
verify the recovered code’s correctness. For the two packed malware
samples, we have no knowledge about their implementation, except
that they are packed.

Effectiveness. Interestingly, many of these binary samples have only
1536 bytes as shown in the 2nd column of Table 3. The reason is
that their source code is very small, each containing only a few lines
of code for simple demonstration of an obfuscation technique. That
also explains why the recovered source code is also small (shown in
the 9th column). For all the obfuscated samples, TOP successfully
recovers their source code from traces. We have run the recovered
and recompiled programs and verified that they have consistent
semantics with the original binaries (last column).

To better illustrate the strength of TOP, consider the two pieces of
assembly code in Table 4, one from the sample middle_instruc
tion.exe for instruction aliasing, and the other from garbage_
bytes.exe for adding garbage code. For instruction aliasing, we
see that the original code’s execution at line 3 will jump to the middle
of the instruction at line 1 as the condition for jz is always true (by
xor in line 2). Then eb 05 in line 1 would be disassembled as a
direct jmp which goes to line 5. In other words, the garbage byte in
line 4 will never be executed. However, IDA Pro cannot disassemble
this obfuscated code because it would disassemble db as opcode
call at line 5 in the second column. Due to incorrect alignment of
instructions, the subsequent disassembling would be incorrect. In
contrast, TOP dynamically generates the correct results as shown
in the third column. Note that in line 6, TOP adds a safety guard
(jmp) to handle partial coverage issue. For the second example,
since a garbage byte 0x6a in line 3 is introduced, IDA Pro fails
to perform static disassembling. In both cases, we can compile the
code generated by TOP.

Performance overhead. With the small size of the majority of these
samples, TOP quickly recovers their source code within several
milliseconds. For Win32.Bamital.exe and Virus.Win32.
Adson.exe which are real-world malware, it takes TOP about
14 seconds to perform online tracing. The reason for the much

494

Original Assembly Code Disassembly from IDA Pro Disassembly from TOP

1 66 b8 eb 05 mov ax,0x05eb

2 31 c0 xor eax, eax

3 74 fa jz $-4

4 e8 db 0xe8 ;garbage byte

5 58 pop eax

(middle_instruction.exe)

1 loc_401006:

2 mov ax, 5EBh

3 xor eax, eax

4 jz loc_401008

5 call near ptr 6A98686Bh

1 mov ax, 0x5eb

2 xor eax, eax

3 jz loc_0x401008

4 jmp loc_ERROR

5 loc_0x401008:

6 jmp loc_0x40100f

7 loc_0x40100f:

8 pop eax

1 31 c0 xor eax, eax

2 74 01 jz .destination

3 6a db 0x6a ;garbage byte

4 .destination:

5 58 pop eax

(garbage_bytes.exe)

1 xor eax, eax

2 jz loc_401007+1

3 loc_401007:

4 push 58h

1 xor eax, eax

2 jz loc_0x401008

3 jmp loc_ERROR

4 loc_0x401008:

5 pop eax

Table 4: Disassembling results from IDA Pro and TOP for obfuscated programs.

longer time is that both malware binaries involve many iterations
for decryption and decompression.

Coverage. Unlike the Linux samples, we do not have KLEE to
generate test cases for the obfuscated binaries to improve coverage.
Instead, we perform a manual check on the coverage for the obfus-
cated samples with source code, as reported in the 10nd column.
The TOP-generated code has high coverage, with 5 of them having
100% coverage. For the two malware samples, we do not estimate
their coverage due to lack of ground truth.

5. APPLICATIONS
With the capability of translating binary execution traces into C

code, TOP enables a variety of security applications. In this section,
we demonstrate two such applications: malware unpacking and
identification, and security function transplanting.

5.1 Malware Unpacking and Identification
Many malware programs today are heavily armored with anti-

analysis mechanisms to make analysis of them difficult. Binary code
packing is the most common anti-reverse engineering technique.
According to a recent report, 34.79% of the malwares is packed [49].
An earlier research paper [35] reports that over 80% of malware is
packed. Dynamic analysis has been shown a promising approach to
unpacking malware [50, 42, 36, 35, 54].

Unpacking. Based on dynamic analysis, TOP naturally possesses
the capability of unpacking malware. To this end, we design an
unpacking plugin based on TOP. As we trace the entire execution
of a binary (using layers), we are able to detect the unpacking code
and the real program code. The real program code is the one that
is finally settled in the memory and executed. It might happen that
a packer could alternatingly execute the unpacking code and the
real code (though we have not seen such a case in the wild). In that
case, we might not be able to identify the real code based on full
lifetime tracing. Still TOP will output all the traced code, which can
be further analyzed to identify the unpacking code.

To test TOP’s unpacking capability, we use 10 publicly available
packers often used by malware authors and by researchers of many
related efforts [50, 42, 36, 35, 54]). For the “testing goat” program,
we use Windows tasklist.exe, a command console program
with a binary of 77824 bytes, to generate packed samples. The
samples are created using the default configuration for all the packers.
To test multi-layer packing, we deliberately create two samples that
are packed by two packers. Finally we have 12 samples: 10 are
packed once and two are packed twice. We run all these samples
without any command line option.

The evaluation results are reported in Table 5. The first column
shows the size of packed tasklist.exe, and the second column
shows the packer used for packing. We report the numbers of
symbolized addresses, safety checks, traced functions, and lines
of code, of the generated source code. The TOP unpacking plu-
gin can successfully detect the unpacking routine and the real
tasklist.exe code, even if the sample binary is packed by two
packers. Interestingly, as shown in the last 4 columns of Table 5,
the real tasklist.exe programs generated by tracing the 12
samples (under the same configuration) have identical results across
the samples. Next, we recompile the generated source code of
tasklist.exe and execute it with the same command line option
of the original program. We confirm that the outputs are the same as
that generated by the original tasklist.exe.

Identification. Having been able to unpack malware, TOP can be
further applied to malware identification. As shown in Table 5, each
packer has its own distinctive features; and the code that follows
the unpacking code belongs to the real program code. As such, we
can identify the prefix of the recovered code to identify packers, and
eliminate the unpacking code to expose the real program code. In
particular, we could perform source code diff-ing (text-based) to
identify the unpacking prefix; or we could build and normalize the
program control structures (e.g., CFGs) to identify the prefix.

To perform malware identification, we first generate a suite of
(un)packer signatures. Given an unknown binary, we run it using
TOP. By comparing the output with the signatures, we eliminate
the unpacking code. Then, we can apply various techniques to
identify/classify the real malware code (e.g., source code diff-ing and
control structure comparison). In our experiment, for simplicity, we
use source text diff-ing, which indicates that the recovered programs
from the samples are actually the same piece of malware. This is
also confirmed by the last four columns of Table 5.

5.2 Security Function Transplanting
Binary code reuse is meaningful for both goodware and malware.

To extract the binary code of interest, a user only needs to designate
the entry point and exit point, and TOP will automatically translate
the executed instructions into C code. This code includes all the
functions called and the symbolized global data accessed.

Goodware Function Reuse. We take an MD5 hash algorithm im-
plementation as an example. Program md5sum (from coreutils)
is a widely used cryptographic hash tool whose implementation
contains an important function digest_file (instruction address:
0x8049f70 in our experiment) which computes the MD5 digest of a
given file.

495

Binary Unpacking Code Recovered tasklist.exe Code
Size (KB) Packer #Fun #LOC #Symbolized #Safety #Fun #LOC #Symbolized #Safety
34.00 UPX 1 169 34 1 144 5748 1171 271
39.50 ASPack 14 913 140 16 144 5748 1171 271
363.50 ASProtect 19 504 86 3 144 5748 1171 271
46.46 RlPack 30 734 145 22 144 5748 1171 271
34.00 MPress 9 941 126 20 144 5748 1171 271
32.16 Mew 11 616 114 0 144 5748 1171 271
34.04 XComp 9 282 84 2 144 5748 1171 271
33.66 XPack 9 262 80 2 144 5748 1171 271
29.98 WinUnPakc 17 390 49 2 144 5748 1171 271
35.50 PEcompact 6 171 31 0 144 5748 1171 271

ASPack 14 864 130 16
42.50 ASPack 14 913 140 16 144 5748 1771 271

ASPack 14 797 113 16
39.50 XPack 9 262 80 2 144 5748 1771 271

Table 5: Evaluation results with 10 publicly available packers using tasklist.exe as a testing goat program.

To avoid the effort of re-implementation, a programmer can run
md5sum binary on TOP with tracing/translation entry point be-
ing 0x8049f70 and exit point being 0x804a07e (the ret instruc-
tion of function digest_file). TOP automatically generates
the source code of all the executed functions during tracing, in-
cluding fun_0x8049f70 and 11 other sub-routines, symbolizes
151 addresses, and adds 32 checks. Next, the generated function
can be reused as a normal C function in developing new software.
We have successfully developed a file comparison program that
performs MD5 hash check for two input files by reusing function
fun_0x8049f70 and its subroutines.

Malware Function Reuse. For demonstration purpose, we target
three functions – two for environment detection and one for stream
cipher – in malware code and show how to reuse them. The environ-
ment detection functions are from the two samples anti-vm_in
_instruction.exe and hardware_bp.exe we have tested
earlier. Our purpose is to extract the functions for VM and debugger
detection and reuse them in new programs. We have successfully
extracted these two functions and linked them with other software
components.

We have also extracted an RC4 stream cipher function from
Worm: Win32/Sality.AU. Since the malware is packed, we run
TOP to get the trace of the whole program, from which we identify
the RC4 cipher function. Our manual analysis reveals that the entry
address of the RC4 function is 0x401212 and the exit address is
0x402723. We then run the malware on TOP again, symbolizing
86 memory addresses and adding 24 checks for this function and
its 5 callees. Now we can write a new program to reuse the cipher
function and confirm the correctness of its functionality.

6. DISCUSSIONS AND FUTURE WORK
The main limitation of TOP is the incomplete coverage that

arises from its dynamic analysis approach. The recovered code
only reflects the traced behavior and rejects the behavior that is not
exercised. As demonstrated in our evaluation, path coverage can be
improved by advanced program testing techniques (e.g., symbolic
execution [12, 14]). Part of our future work is to better integrate
these techniques into TOP.

The current focus of TOP is its source code reconstruction and
reuse capability. Hence we have not attempted to make the recovered
code more readable or optimized. Our future work will address
the readability issue by introducing a richer set of structures (e.g.,
do-while and for structures for loops) and leveraging advanced
decompilation techniques (e.g., Hex-Rays [2], Boomerage [27], and

Phoenix [51], which tend to achieve better readability). We also plan
to optimize the recovered code (e.g., by eliminating unnecessary
safety guards). Consider the middle_instruction.exe ex-
ample in Table 4. We could have removed the jmp loc_ERROR
guard because xor eax, eax will clear the zero flag.

TOP is currently platform and environment dependent. More par-
ticularly, it requires the same kernel and library support to compile
and execute the reconstructed code. It also relies on the presence of
the same needed external resources as the original executions, such
as configuration files.

TOP currently has an effective scheme to ensure control flow
safety, which is the challenge we have encountered in the programs
we consider. It is possible that more complicated and subtle safety
conditions may arise when TOP is applied to more complex pro-
grams. Also, the offline trace merging process simply merges control
flow paths, which may not be sufficient when more extremal situa-
tions are encountered (e.g., when executions are non-deterministic).
We plan to further investigate these issues.

TOP may not be able to recover the source code of all binaries. For
example, a malware program may involve virtualization-based ob-
fuscation [53]. Even though TOP can generate its source code from
traces, the virtualization code will be recovered as well. Moreover,
TOP cannot handle hypervisor-level malware such as the red pill,
due to the lack of hypervisor-level tracing capability. This limitation
will be addressed by our future work.

It is well known that broken dependences caused by control flows
pose an issue for taint analysis in general. However, that is not an
issue for TOP because we use taint analysis in a very restricted
context. Specifically, to handle indirect control transfers, we use it
to back track from an indirect invocation to the original instruction
that loads the indirect target and replace the target with a symbol
to ensure that the corresponding function becomes relocatable. The
propagation from the original load of the target and the invocation
must be via data dependence. It is possible that the invocation is
relevant to other instructions through control dependences, yet it
is unnecessary to symbolize those relevant instructions. While it is
possible that aggressive obfuscation may cause problems for TOP in
the future, we have not encountered such a case in our experiments.

7. RELATED WORK
Decompilation. Decompilation is the process of reconstructing pro-
gram source code from code in lower-level languages (e.g., assembly
or machine code) [16, 6]. Tools like HexRay [2], Boomerage [27],
and Phoenix [51] offer a variety of techniques to elevate low-level

496

assembly instructions to higher-level source code. While these
techniques are all based on static analysis, TOP is based on dynamic
analysis, one of the first decompilation techniques to do so.

Binary Code Extraction and Reuse. Our work is closely related
to BCR [9], Inspector Gadget [38], Virtuoso [24], and VMST [29].
While the discussion of these systems can be found in §1, we note
again that TOP is a novel technique that translates all executed
instructions into C code, with automatic addition of safety checking
code. Moreover, the recovered code is readily reusable and incurs
negligible performance overhead compared with the original binary
(§4). Moreover, TOP does not focus on identification of functional
components for reuse.

Most recently, in a parallel effort of TOP we proposed Bistro [23],
which is a binary manipulation, rewriting and instrumentation infras-
tructure that allows binary-to-binary functional component extrac-
tion (from one binary) and implanting (in another binary). Different
from TOP, Bistro operates directly and statically on binaries.

Dynamic Data Dependency Tracking. TOP leverages dynamic
data dependence tracking (i.e., taint analysis) to symbolize memory
addresses. Data dependence tracking has been widely applied to
many security applications, such as data lifetime tracking [15],
exploit detection [20], vulnerability discovery [44, 28, 13, 34, 32],
protocol and data structure reverse engineering (e.g., [11, 21, 56, 10,
40, 55], and malware analysis [25]). TOP does not make any new
advances in taint analysis per se but demonstrates its new application
– memory address symbolization.

Malware Analysis and Unpacking. Unpacking aims at uncovering
the original malicious code which had been packed by a variety
of (binary) transformations. Unpacking techniques exist, such as
PolyUnpack [50], OmniUnpack [42], Renovo [36], Justin [35], and
Eureka [54]. There also exist a wide range of malware analysis tech-
niques [45, 26, 37, 38]. TOP complements these efforts and enables
useful malware analysis capabilities such as malware identification
and function extraction.

8. CONCLUSION
We have presented trace-oriented programming (TOP), a new

framework to enable the reuse of legacy binary code from execution
traces. Through dynamic execution of a binary, TOP collects neces-
sary information such as control structures, memory addresses and
accesses, and safety information; and then translates each executed
instruction into a predefined template or inlined assembly according
to its semantics. While TOP shares the same goal with existing
decompilation techniques, it enjoys unique benefits from dynamic
analysis, such as being obfuscation resilient and free from point-to
analysis. We have implemented a proof-of-concept TOP prototype.
Our evaluation results with over 100 legacy binaries (including
malware binaries) indicate the effectiveness, efficiency, and safety
of TOP and demonstrate the application of TOP to malware analysis
and security function reuse.

Acknowledgement
We thank the anonymous reviewers for their insightful comments.
Kenneth A. Miller is supported by a DoD scholorship under con-
tract H98230-12-1-0452. This research is funded by DARPA under
contract 12011593. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily reflect the
views of the funding agencies.

9. REFERENCES
[1] Intel-64 and IA-32 Architectures Software Developer’s Manual

Combined Volumes 3A, 3B, and 3C.

[2] Hex-rays decompiler SDK. http://www.hex-rays.com/.
[3] Making a disassembler: Instruction aliasing.

http://trusted-disassembler.blogspot.com/2012/
12/instruction-aliasing.html.

[4] QEMU: an open source processor emulator.
http://www.qemu.org/.

[5] BRANCO, R. R. Scientific but not academical overview of malware
anti-debugging, anti-disassembly and anti-vm technologies. In Black
Hat Technical Security Conf. (Las Vegas, Nevada, July 2012).

[6] BREUER, P. T., AND BOWEN, J. P. Decompilation: The enumeration
of types and grammars. ACM Trans. Program. Lang. Syst. 16, 5
(1994), 1613–1647.

[7] BRUMLEY, D., AND NEWSOME, J. Alias analysis for assembly. Tech.
Rep. CMU-CS-06-180, Carnegie Mellon University School of
Computer Science, 2006.

[8] BURKE, M. G., CARINI, P. R., CHOI, J.-D., AND HIND, M.
Flow-insensitive interprocedural alias analysis in the presence of
pointers. In Proceedings of the 7th International Workshop on
Languages and Compilers for Parallel Computing (London, UK,
1995), Springer-Verlag, pp. 234–250.

[9] CABALLERO, J., JOHNSON, N. M., MCCAMANT, S., AND SONG, D.
Binary code extraction and interface identification for security
applications. In Proceedings of the 17th Annual Network and
Distributed System Security Symposium (NDSS’10) (San Diego, CA,
February 2010).

[10] CABALLERO, J., POOSANKAM, P., KREIBICH, C., AND SONG, D.
Dispatcher: Enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the 16th ACM
Conference on Computer and and Communications Security (CCS’09)
(Chicago, Illinois, USA, 2009), pp. 621–634.

[11] CABALLERO, J., AND SONG, D. Polyglot: Automatic extraction of
protocol format using dynamic binary analysis. In Proceedings of the
14th ACM Conference on Computer and and Communications
Security (CCS’07) (Alexandria, Virginia, USA, 2007), pp. 317–329.

[12] CADAR, C., DUNBAR, D., AND ENGLER, D. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08) (San Diego, CA, 2008).

[13] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., AND
ENGLER, D. R. Exe: Automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS’06) (Alexandria, Virginia, USA,
2006), ACM, pp. 322–335.

[14] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2e: a platform
for in-vivo multi-path analysis of software systems. In Proceedings of
the sixteenth international conference on Architectural support for
programming languages and operating systems (Newport Beach,
California, USA, 2011), ASPLOS ’11, pp. 265–278.

[15] CHOW, J., PFAFF, B., CHRISTOPHER, K., AND ROSENBLUM, M.
Understanding data lifetime via whole-system simulation. In
Proceedings of the 13th USENIX Security Symposium (2004).

[16] CIFUENTES, C. Reverse Compilation Techniques. PhD thesis,
Queensland University of Technology (1994).

[17] CIFUENTES, C., AND GOUGH, K. J. Decompilation of binary
programs. Softw. Pract. Exper. 25, 7 (July 1995), 811–829.

[18] COLLBERG, C., THOMBORSON, C., AND LOW, D. A taxonomy of
obfuscating transformations. Technical Report 148, Department of
Computer Science, University of Auckland (1997).

[19] CONSTANTIN, L. Decompiled stuxnet code published online, 2011.
http://news.softpedia.com/news/Anonymous-Publishes-Decompiled-
Stuxnet-Code-184448.shtml.

[20] CRANDALL, J. R., WU, S. F., AND CHONG, F. T. Minos:
Architectural support for protecting control data. ACM Trans. Archit.
Code Optim. 3, 4 (2006), 359–389.

[21] CUI, W., PEINADO, M., CHEN, K., WANG, H. J., AND IRUN-BRIZ,
L. Tupni: Automatic reverse engineering of input formats. In
Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS’08) (Alexandria, Virginia, USA,
October 2008), pp. 391–402.

497

http://trusted-disassembler.blogspot.com/2012/12/instruction-aliasing.html
http://trusted-disassembler.blogspot.com/2012/12/instruction-aliasing.html
http://www.qemu.org/

[22] DEBRAY, S. K., MUTH, R., AND WEIPPERT, M. Alias analysis of
executable code. In Symposium on Principles of Programming
Languages (POPL’98) (1998), pp. 12–24.

[23] DENG, Z., ZHANG, X., AND XU, D. Bistro: Binary component
extraction and embedding for software security applications. In
Proceedings of 18th European Symposium on Research in Computer
Security (ESORICS’13) (Egham, UK, September 2013), LNCS.

[24] DOLAN-GAVITT, B., LEEK, T., ZHIVICH, M., GIFFIN, J., AND LEE,
W. Virtuoso: Narrowing the semantic gap in virtual machine
introspection. In Proceedings of the 32nd IEEE Symposium on
Security and Privacy (Oakland, CA, USA, 2011), pp. 297–312.

[25] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., , AND SONG, D.
Dynamic spyware analysis. In Proceedings of the 2007 USENIX
Annual Technical Conference (Usenix’07) (June 2007).

[26] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG, D.
Dynamic spyware analysis. In ATC’07: 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual Technical
Conference (Santa Clara, CA, 2007), USENIX Association, pp. 1–14.

[27] EMMERIK, M. V., AND WADDINGTON, T. Using a decompiler for
real-world source recovery. In Proceedings of the 11th Working
Conference on Reverse Engineering (2004), pp. 27–36.

[28] FORRESTER, J. E., AND MILLER, B. P. An empirical study of the
robustness of Windows NT applications using random testing. In
Proceedings of the 4th Conference on USENIX Windows Systems
Symposium (Seattle, Washington, 2000), USENIX Association,
pp. 1–10.

[29] FU, Y., AND LIN, Z. Space traveling across vm: Automatically
bridging the semantic gap in virtual machine introspection via online
kernel data redirection. In Proceedings of 33rd IEEE Symposium on
Security and Privacy (May 2012).

[30] FU, Y., AND LIN, Z. Exterior: Using a dual-vm based external shell
for guest-os introspection, configuration, and recovery. In Proceedings
of the Ninth Annual International Conference on Virtual Execution
Environments (Houston, TX, March 2013).

[31] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine
introspection based architecture for intrusion detection. In
Proceedings Network and Distributed Systems Security Symposium
(NDSS’03) (February 2003).

[32] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y. Grammar-based
whitebox fuzzing. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’08)
(Tucson, AZ, USA, 2008), ACM, pp. 206–215.

[33] GODEFROID, P., KLARLUND, N., AND SEN, K. Dart: Directed
automated random testing. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’05) (Chicago, IL, USA, 2005), ACM, pp. 213–223.

[34] GODEFROID, P., LEVIN, M., AND MOLNAR, D. Automated
whitebox fuzz testing. In Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS’08) (San Diego, CA,
February 2008).

[35] GUO, F., FERRIE, P., AND CKER CHIUEH, T. A study of the packer
problem and its solutions. In Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection (RAID 2008)
(Boston, USA, September 2008).

[36] KANG, M. G., POOSANKAM, P., AND YIN, H. Renovo: a hidden
code extractor for packed executables. In Proceedings of the 2007
ACM Workshop on Recurring malcode (Alexandria, Virginia, USA,
2007), ACM, pp. 46–53.

[37] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA, E.,
ZHOU, X., AND WANG, X. Effective and efficient malware detection
at the end host. In Proceedings of the 18th conference on USENIX
security symposium (Montreal, Canada, 2009), pp. 351–366.

[38] KOLBITSCH, C., HOLZ, T., KRUEGEL, C., AND KIRDA, E.
Inspector gadget: Automated extraction of proprietary gadgets from
malware binaries. In Proceedings of 2010 IEEE Security and Privacy
(Oakland, CA, May 2010).

[39] LIANG, D., AND HARROLD, M. J. Efficient points-to analysis for
whole-program analysis. In Proceedings of the 7th European Software
Engineering Conference held jointly with the 7th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC/FSE-7) (Toulouse, France, 1999), Springer-Verlag,
pp. 199–215.

[40] LIN, Z., ZHANG, X., AND XU, D. Automatic reverse engineering of
data structures from binary execution. In Proceedings of the 17th
Annual Network and Distributed System Security Symposium
(NDSS’10) (San Diego, CA, February 2010).

[41] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K.
Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’05)
(Chicago, IL, USA, 2005), pp. 190–200.

[42] MARTIGNONI, L., CHRISTODORESCU, M., AND JHA, S.
Omniunpack: Fast, generic, and safe unpacking of malware. In
Proceedings of the 23rd Annual Computer Security Applications
Conference (ACSAC’07) (2007), pp. 431–441.

[43] MIECZNIKOWSKI, J., AND HENDREN, L. J. Decompiling java
bytecode: Problems, traps and pitfalls. In Proceedings of the 11th
International Conference on Compiler Construction (London, UK,
UK, 2002), CC ’02, Springer-Verlag, pp. 111–127.

[44] MILLER, B. P., FREDRIKSEN, L., AND SO, B. An empirical study of
the reliability of UNIX utilities. In Proceedings of the Workshop of
Parallel and Distributed Debugging (1990), Academic Medicine,
pp. 9–19,.

[45] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring multiple
execution paths for malware analysis. In Proceedings of the 2007
IEEE Symposium on Security and Privacy (Washington, DC, USA,
2007), IEEE Computer Society, pp. 231–245.

[46] MYCROFT, A. Type-based decompilation (or program reconstruction
via type reconstruction). In Proceedings of the 8th European
Symposium on Programming Languages and Systems (ESOP’99)
(London, UK, 1999), Springer-Verlag, pp. 208–223.

[47] NEWSOME, J., AND SONG, D. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In Proceedings of the 14th Annual Network and Distributed
System Security Symposium (NDSS’05) (San Diego, CA, February
2005).

[48] PEARCE, D. J., KELLY, P. H., AND HANKIN, C. Efficient
field-sensitive pointer analysis of c. ACM Trans. Program. Lang. Syst.
30, 1 (2007), 4.

[49] RODRIGO RUBIRA BRANCO, G. N. B., AND NETO, P. D. Scientific
but not academical overview of malware anti-debugging,
anti-disassembly and antivm technologies. Tech. rep., "NOSPAM"
qualys.com, Qualys-Vulnerability and Malware Research Labs.

[50] ROYAL, P., HALPIN, M., DAGON, D., EDMONDS, R., AND LEE, W.
Polyunpack: Automating the hidden-code extraction of
unpack-executing malware. In Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC’06) (Washington,
DC, USA, 2006), IEEE Computer Society, pp. 289–300.

[51] SCHWARTZ, E. J., LEE, J., WOO, M., AND BRUMLEY, D. Native
x86 decompilation using semantics-preserving structural analysis and
iterative control-flow structuring. In Proceedings of the 22nd USENIX
Security Symposium (Washington DC, USA, 2013), USENIX
Association.

[52] SEN, K., MARINOV, D., AND AGHA, G. Cute: A concolic unit
testing engine for c. In Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC/FSE-13) (Lisbon, Portugal, 2005), ACM, pp. 263–272.

[53] SHARIF, M., LANZI, A., GIFFIN, J., AND LEE, W. Automatic reverse
engineering of malware emulators. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy (2009), SP ’09, pp. 94–109.

[54] SHARIF, M., YEGNESWARAN, V., SAIDI, H., AND PORRAS, P.
Eureka: A framework for enabling static analysis on malware. In
Proceedings of the 13th European Symposium on Research in
Computer Security (Malaga, Spain, October 2008), LNCS.

[55] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A
dynamic excavator for reverse engineering data structures. In
Proceedings of the 18th Annual Network and Distributed System
Security Symposium (NDSS’11) (San Diego, CA, February 2011).

[56] WONDRACEK, G., MILANI, P., KRUEGEL, C., AND KIRDA, E.
Automatic network protocol analysis. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium
(NDSS’08) (San Diego, CA, February 2008).

498

