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ABSTRACT

System-level audit logs capture the interactions between applica-
tions and the runtime environment. They are highly valuable for
forensic analysis that aims to identify the root cause of an attack,
which may occur long ago, or to determine the ramifications of an
attack for recovery from it. A key challenge of audit log-based
forensics in practice is the sheer size of the log files generated,
which could grow at a rate of Gigabytes per day. In this paper, we
propose LogGC, an audit logging system with garbage collection
(GC) capability. We identify and overcome the unique challenges
of garbage collection in the context of computer forensic analysis,
which makes LogGC different from traditional memory GC tech-
niques. We also develop techniques that instrument user applica-
tions at a small number of selected places to emit additional system
events so that we can substantially reduce the false dependences
between system events to improve GC effectiveness. Our results
show that LogGC can reduce audit log size by 14 times for regular
user systems and 37 times for server systems, without affecting the
accuracy of forensic analysis.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Unauthorized access (e.g., hacking, phreak-

ing) ; Invasive software(e.g., viruses, worms, Trojan horses); D.4.2
[Operating System]: Storage Management—Garbage Collection

Keywords

Attack Provenance; Audit Log; Garbage Collection; Reverse Engi-
neering

1. INTRODUCTION
System-level audit logs record the interactions between applica-

tions and the underlying operating system (OS), such as file opens,
reads and writes; socket reads and write; and process creations and
terminations. Each of these is recorded as an event in the audit log,
consisting of process/user/group id involved in the event, as well
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as the type and parameters of the event. In attack forensics, au-
dit logs are critical to the construction of causal graphs. A causal
graph shows the causality relations between system-level objects
(e.g., files and sockets) and subjects (e.g., processes), including

those that existed in the past. For instance, a process p1 is causally
dependent on another process p2 if p2 spawns p1; a process p is
causally dependent on a file f if p reads f ; and a file f is dependent
on p if f is created or modified by p. Causal graphs can be used
to track the root cause of an attack. Upon observing a suspicious
symptom (e.g., a zombie process) in the system, the administrator
can use the casual graph to determine what had initially led to the
presence of this process, which could be that a careless user viewed
a phishing email, clicked an embedded URL, visited a malicious
web site, triggered a driver-by download which compromised the
system. Note that the initial attack may have happened days or even
weeks before the symptom is observed. Hence the audit log and the
derived causal graph are needed to disclose the attack path. Further-
more, the causal graph will disclose the damages or contaminations
caused by the attack.

Recent work has focused on generating accurate, complete causal
graphs from audit logs. Traditional causal graphs [13, 16] may suf-
fer from imprecision caused by dependence explosion, where an
event is unnecessarily dependent on too many other events and the
corresponding causal graph is excessively large for human inspec-
tion. BEEP [20] involves program instrumentation to reduce the
granularity of subjects from processes to “units” for fewer false-
positive dependences. Other efforts propose using timestamps [12]
or file offsets [23] to capture dependences more accurately.
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Figure 1: Audit log growth.

However, a major hindrance of audit log-based attack forensics
in practice is the sheer size of audit logs. According to [16], even
compressed audit logs grow at the rate of 1.2GB/day. Our own ear-
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lier work [20] shows an audit log growth rate of 800MB/day. Fig. 1
shows how audit log size grows over time in moderately loaded
server and client machines, respectively in our experiments. We
can see that the audit logs grow at an average rate of 3.18GB/day
(server) and 1.2GB/day (client), incurring excessive space and pro-
cessing overhead. Unfortunately, the reduction of audit log volume
has not received sufficient research attention.

To fundamentally reduce audit log volume, we make a key obser-
vation: Many event entries in an audit log can be removed without
affecting future forensic analysis. Such entries are about operations
on system objects (e.g., files, sockets) that neither influence nor are

influenced by other processes or system objects. We call such ob-
jects unreachable objects. We monitored a lab machine for a period
of six days and observed that each day more than 94% of the objects
accessed were destroyed (or terminated) and over 80% of those de-
stroyed objects had very short lifetime, usually exclusively within
a single process. These objects are likely to be unreachable, which
suggests room for log reduction.

The log reduction problem we address shares some conceptual
similarity to garbage collection (GC) in heap memory management.
We hence call our solution LogGC . However, the two problems are
technically different as memory GC is an instantaneous problem,
namely, it focuses on removing unreachable heap memory objects
in a snapshot of the memory. In contrast, we are trying to remove
redundancy in audit logs that record history over a long period of
time. We also face challenges that are caused by the unique re-
quirements of forensic analysis and the coarse object granularity in
audit logging.

The main contributions of LogGC are the following.

• We develop a basic GC algorithm that works directly on au-
dit logs, each of which is a flat sequence of events. The al-
gorithm can be invoked at any moment during system exe-
cution, taking the current audit log and generating a new and
reduced audit log (Section 2).

• An important requirement in forensic analysis is to under-
stand attack ramifications, which entails supporting forward

causal analysis. The basic GC algorithm, which is an adapta-
tion of a classic reachability-based memory GC algorithm, is
incapable of supporting forward analysis. We hence propose
a new extension to the algorithm (Section 3).

• To improve GC effectiveness, we leverage our previous tech-
nique BEEP [20] to partition a process to multiple execution

units. We also propose a new technique to partition a data file
into logical data units, by instrumenting user applications at
a small set of code locations to emit additional system events.
As such, better precision can be achieved and many more un-
reachable events can be exposed and garbage-collected (Sec-
tion 4).

• We propose to leverage applications’ own log files to further
remove event entries in audit logs (Section 5).

• We conduct extensive evaluation of LogGC on a pool of real-
world applications. Our results show that LogGC can garbage-
collect 92.89% of the original audit logs for client systems
and 97.35% for server systems. Furthermore, through a num-
ber of case studies, we show that the reduced logs are equally
effective in forensic analysis.

Assumptions and Limitations of LogGC First, we trust the OS as
LogGC collects, stores, and reduces audit logs at the kernel level.
Hence, a kernel-level attack could disable LogGC and tamper with

the audit log. However, LogGC can be implemented at the hyper-
visor level to mitigate such risks.

Second, we assume that, when LogGC initially starts, all user
programs and files in the system are “clean”. Attacks against these
programs and files will hence be logged by LogGC . If LogGC
begins with a compromised program, the program could disrupt
LogGC by generating bogus system-level events. Note that while
a program that gets compromised when LogGC is active may per-
form the same attack, the attack will be captured by LogGC . Our
first two assumptions are standard for many existing system-level
auditing techniques [12, 15, 16, 17, 20, 23].

Third, LogGC instruments user programs to partition executions
and data files. While applicable to most application binaries, for
some applications (e.g., mysql), our current file partitioning tech-
nique requires the user to inspect the application’s source code us-
ing a profiler and select the instrumentation points from a small
number of options provided by the profiler. The manual efforts
are minor – only 15 statements were selected and instrumented for
mysql. More importantly, this is a one-time effort. The user also
needs to provide a small set of training inputs for LogGC to de-
termine the instrumentation points. However, the instrumentation
points are not sensitive to the inputs.

Finally, while LogGC can preprocess a large pool of commonly
used applications, users may install new applications. If a user in-
stalls a new long running application (e.g. servers or UI programs),
he/she may need to instrument the application for identification of
execution units. If the user installs an application that induces a
large number of dependences through files (i.e., by writing to a file
and reading it later), such as a database application, he/she may
also need to instrument the application for partitioning a file into
data units. In the worst case where a newly installed application
is not instrumented, LogGC can still garbage collect logs from the
existing applications without affecting the un-reduced log entries
generated from the new application.

2. BASIC DESIGN
Redundancy abounds in audit logs. Many applications create

and operate on temporary files during execution. Such files are de-
stroyed after the applications terminate. As a result, no future sys-
tem behavior will be affected by these files. Keeping their prove-
nance is hence unnecessary. An application may only read files
or receive information from remote hosts, and send the contents to
display without saving them. After the application terminates, its
provenance is of no interest for future forensic analysis.

In this section, we present a basic algorithm that garbage-collects
redundant entries in an audit log. It is analogous to garbage collec-
tion in memory management. We define root objects as the live
processes and files at the time LogGC is invoked. We then traverse
backward in the audit log. If any root object is directly or transi-
tively dependent on a logged event, the event is marked reachable.
In the end, all unreachable log entries are removed from the audit
log. Different from classic GC, our algorithm will operate on the
log file, which is a linear sequence of events, instead of a refer-
ence graph of memory cells. Moreover, the dependences between
event entries are often not explicit. For example, assume a process
receives a packet and saves it to a file. This leads to two event en-
tries, one is a socket read and the other is a file write. It is not easy
to infer the dependence between the two events from the audit log.
A conservative approximation made by many existing audit log-
ging techniques (also called provenance tracing) [12, 15, 16, 17,
20, 23] is to assume that an event is dependent on all the preceding
input events for the same process.
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Event type Events

Input file read; socket read

Output file write (excluding stdout); socket write; process
spawn; chmod; chown; link; truncate; create

Dead-end write to stdout; file deletion∗ ; process kill∗

∗ denotes destruction events.

Table 1: Classification of event types

Before explaining the algorithm, we first classify logged events
into three categories (Table 1) as the algorithm will behave differ-
ently based on type of events.

• An input event is one that receives data from input devices.

• An output event is one that creates influence on some other
system object and such influence will persist beyond the com-
pletion of this event.

• A dead-end event is one that has effect only on objects di-
rectly involved in the event and the effect will not create de-
pendences in subsequent execution of the system. For exam-
ple, writes to stdout will not influence any system object.

Algorithm 1 Basic Audit Log Garbage Collection Algorithm

Input: L - the audit log P - the current live processes.
F - the current live files.

Output: L′ - the new audit log.

Definition ReachableProc - the set of reachable processes.
ReachableObj - reachable system objects (e.g. files).

1: L′ ← nil
2: ReachableProc← P

3: ReachableObj← F

4: for each event e ∈ L in reverse order do
5: if e is an output event involving an object in ReachableObj then

6: L′ ← e · L′

7: ReachableProc← ReachableProc ∪ the process of e
8: else if e is an input event involving a process in ReachableProc then

9: L′ ← e · L′

10: ReachableObj← ReachableObj ∪ the objects operated by e

The basic algorithm is Algorithm 1. It takes the audit log, and the
current set of live processes and live files as input, and produces a
reduced audit log. It leverages two data structures ReachableProc

and ReachableObj to maintain the set of reachable processes and
system objects, respectively. We say a process, either alive or termi-
nated, is reachable if a live process or file is directly or transitively
dependent on it. Reachable system objects are similarly defined.

The algorithm first initializes ReachableProc with the set of live
processes and ReachableObj with the set of live files. It then starts
traversing the events in L in the reverse order. If an output event e

in the log operates on a reachable object (line 5), the event becomes
reachable and gets inserted to the output log L′. In the mean time,
the process involved in the event is set to reachable. According
to lines 8, 9, and 10, all the preceding input events in the process
become reachable too. Note that setting the process reachable only
affects the events preceding e, all the events that happen after e are
not reachable even though they involve the same reachable process.

The algorithm is presented with a high level of abstraction. At
the implementation level, LogGC also handles reuse of file ids and
socket ids, and supports various system objects beyond files and
sockets.
Example. Consider the example in Fig. 2. The live file and process
are shown on the right bottom of the figure. The algorithm traverses
backward. Log entries 8, 7, 6 are garbage-collected as they do not
operate on any reachable objects or involve a reachable process.

(2) Proc_A write(O)    File1

(3) Proc_A read(I)      File2

(4) Proc_B read(I)      File1

(5) Proc_B write(O)    File2

(6) Proc_B read(I)      File1

(7) Proc_B delete(D)  File1

(8) Proc_B read(I)      Socket

(1) Proc_A spawn(O) Proc_C
O - output type
 I  - input type
D - dead-end Type

Live processes: Proc_C
Live files : File2

Figure 2: An example of the basic GC algorithm. An event

entry consists of the process id, the event name (event type),

and the system object being operated on.

Entry 5 is an output event with live file File2 so it is inserted to
the output log file. In the mean time, Proc_B becomes reachable.
Hence, all the input events with Proc_B preceding entry 5 become
reachable including the read of File1 in entry 4. As a result,
File1 becomes a reachable object, which leads to entry 2 being
inserted to the new log. Entry 1 is the creation of a live process
and hence retained. It is worth mentioning that although entry 3
involves a reachable object File2, it is not an output event and
hence garbage-collected.

Despite its simplicity, such a basic design is insufficient in prac-
tice. We will discuss how we handle various challenges in the fol-
lowing sections.

3. SUPPORTING FORWARD ANALYSIS
The basic design enables inspection of the history of any live

object, which is a backward analysis. An equally important usage
of audit logs is to facilitate understanding of attack ramifications,
namely identification of damages that have been inflicted during an
attack. We call this a forward analysis as it inspects the audit log
in a forward fashion to look for ramifications of an event (e.g., the
root attack event).

Fig. 3 (a) shows a causal graph generated from the audit log of
the following hypothetical attack, with the numbers representing
the corresponding events in the graph: (1) The user visited a ma-
licious web site at “x.x.x.x:80”; Firefox is exploited such
that (2) it spawns a backdoor process and (3) downloads a mali-
cious dynamic library file x.so. (4) Later, the user launches the
ls command in bash. (5) The ls process makes use of the mali-
cious x.so. As a result, (6) while the process emits to the screen
as usual, it also (7) removes an important file .permission and
(8) the malicious library file x.so.

Assume that the user later notices the backdoor process, which
is the only trail left by the attack (without analyzing the audit log).
By performing backward analysis on the audit log, he can backtrack
to the earlier visit to the malicious web site. However, to identify
the damages caused by the attack, he also needs to perform for-
ward analysis starting from the site visit event (1). As such, the
past existence of the malicious library x.so and its removal of the
important file and the library itself can be disclosed.

However, the basic design presented in Section 2 is insufficient
for forward analysis because it garbage-collects all dead-end events
since they will not affect any live system object in the future. How-
ever, some dead-end events (e.g. file removal and process termina-

tion) become important when performing forward analysis.
Revisiting the example in Fig. 3 (a), at the time of GC, only

bash and the backdoor processes are alive. Files x.so and .per-
mission have been removed from the file system. After applying
Algorithm 1, only events 1 and 2 are left. While this is sufficient
to disclose the causality of the backdoor, it loses information about
the malicious library and the damages it caused. Note that stdout
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x.x.x.x:80 x.x.x.x:80

firefox

backdoor x.so

bash

ls

stdout .permission

(1)read(I)

(2)spawn(O)
(3)write(O)

(4)spawn(O)

(5)read(I)

(6)write(O)

(7)delete(D)

(8)delete(D)

firefox

(1)read(I)

.permission...

(2)delete(D)

x.x.x.x:80

firefox

(1)read(I)

.permission

...

(3)delete(D)

(2)create(O)

(a) (b) (c)

Figure 3: Causal graph examples. Ovals, diamonds and boxes represent processes, sockets and files, respectively. Edges denote events, annotated

with numbers representing their order in the audit log, event names and types (i.e., I for input, O for output, and D for dead-end). The shaded shapes

represent those no longer live at the GC time. Events in light blue denote those garbage-collected following Algorithm 1.

is a special file such that the “output-to-stdout” event at step (6) is
considered a dead-end event (Table 1) and hence garbage-collected.

We cannot simply keep all dead-end events. Intuitively, keeping
a dead-end event means that it may be of importance for foren-
sic analysis. As such, events that may have led to the event must
also be important. In other words, we cannot garbage-collect the
input events preceding the dead-end event. Consider the example
in Fig. 3 (b). It shows another hypothetical scenario in which (1)
firefox visited a malicious web site and was exploited and (2)
the infected firefox removed an important file .permission
as part of the malicious payload. Suppose firefox has been ter-
minated when GC is performed. If we keep the dead-end event 2,
we need to keep the preceding input event 1 in order to understand
its cause. However, if we were to keep all dead-end events and their
preceding input events, garbage collection would not be effective at
all.

One observation is that we do not need to consider all kinds of
dead-end events as not all of them are of interest to forensic anal-
ysis. In particular, only those that cause destructive effects on the
system are of interest, such as file removal and process termination.
We call these events destruction events, such as the ones annotated
with ‘*’ in Table 1.

Log Accessed Files Deleted Files
Total Temp Files

User1 14,909 11,981 (80.36%) 10,118 (84.45%)
User2 2,373 1,211 (51.03%) 1,197 (98.92%)
User3 2,991 2,046 (68.41%) 1,985 (97.02%)
User4 7,611 4,902 (64.41%) 2,610 (53.24%)
User5 2,988 1,416 (47.39%) 1,401 (98.94%)

Total 30,872 21,556 (69.82%) 17,311 (80.31%)

Table 2: Number of deleted files and temporary files

Unfortunately, considering destruction events only is still too ex-
pensive as many programs generate and delete a large number of
files in their life time. Note that since a file deletion is a destruc-
tion event, it prevents us from garbage-collecting all the preced-
ing input events. Fig. 3 (c) shows a typical execution pattern in
firefox: it involves creating and removing a large number of
files. These files are used to save/cache pages temporarily. They
will be deleted when firefox is closed. In this scenario, if we
retain all file deletions, there would not be many events that can be
garbage-collected.

In Table 2, we have collected and analyzed five different audit
logs from machines of different users with different settings (de-
tailed settings in Section 6). Each log corresponds to one day’s
execution. The table shows the number of accessed files in each ex-
ecution (column two) and the number of files that are deleted (col-

umn three). Observe that most of the accessed files are deleted. If
we retain such deletions, the saving from garbage collection would
be small.

Fortunately, another observation comes to the rescue: Most of
the deleted files are temporary files. A temporary file is defined as a

file whose entire life time belongs exclusively to a single process. In
other words, a temporary file is only accessed (created/read/written/
deleted) by a single process. Besides web browsers, document
viewer applications and compilers also use temporary files very of-
ten. As shown in the fourth column, 80.31% deleted files are tem-
porary files. Such deletions have little forensic value and hence can
be garbage-collected, which will transitively provide other garbage
collection opportunities.

Hence, our final solution that supports forward attack analysis is
as follows. Upon a dead-end event, we check if it is a destruction

event. If not, it will be garbage-collected. Otherwise, we will fur-

ther determine if it is a file deletion event. If so, it will be retained

and its process is set reachable, except when it is a temporary file

deletion, which will be garbage-collected. We perform a forward
preprocessing to identify all temporary files before each GC proce-
dure. When we retain a destruction event, we do not set the object
being destroyed reachable, because the content of the object is not
important but rather the deletion action itself is. As such, the pre-
ceding outputs to the object are still eligible for garbage collection.

One possible concern is that the attacker may exploit an appli-
cation in such a way that the compromised application downloads
a malicious library file, executes it and finally removes it. Since
all these events occur within the same process, according to our
policy, we consider the malicious library a temporary file and may
garbage-collect its history. In this case, if the malicious library has
ever affected or changed the system, such as changing other files
or sending packets, its events will be marked as reachable by our
traversal algorithm and thus retained. Otherwise, the event will
never appear in any causal graph even though it is the deletion of a
malicious library file. Therefore, it is safe to remove the event.

4. PROVENANCE TRACING WITH FINER

GRANULARITY
In the basic design, attack provenance tracing is conducted at the

system level, meaning that audit log entries are events captured by
the OS. This is also the default setting of the Linux audit system.
However, we observe that system-level tracing is overly coarse-
grained, which substantially limits the effectiveness of audit log
GC. In particular, the following two problems are dominant.

First, since we cannot afford tracing instruction level depen-
dences in practice, we have to conservatively assume that an event
is dependent on all preceding input events involving the same pro-
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5 (I)

1  read(I)

2  read(I)

3 (I) 6 (I)

4 (I) 7 (O)

9 (O)

10 (O) 12 (O)

13 (O)

5 (I)

1  read(I)

2  read(I)

3 (I) 6 (I)

4 (I) 7 (O)

9 (O)

8 (I) 11 (I)

13 (O)
12 (O)10 (O)

8 (I) 11 (I)

Unit1 U2 U3 U4

Figure 4: Partitioning a process execution into units. Event names may be omitted if inferable from context.

cess. Consequently, during garbage collection, if an event of a pro-
cess becomes reachable, meaning that it may directly/transitively
affect live processes or objects, the process becomes reachable,
making all the preceding input events of the process reachable. It
further implies that the objects operated in those events will also be-
come reachable. This is particularly problematic for long running
processes.

Consider a sample execution of firefox in Fig. 4. It accessed a
number of URLs with different IP addresses, read and wrote a num-
ber of files, and spawned two processes. At the time of garbage col-
lection, the process has terminated and many of the files accessed
are also removed. The child process p1 and file f5 are still alive.
Following the basic GC algorithm, live file f5 makes firefox
process reachable when the backward traversal reaches event 12,
preventing garbage-collection of any input event before that. Con-
sequently, only events 7, 10, and 13 are removed. In practice, audit
logs are dominated by event entries from long running processes
that may run for hours or even days.

Second, treating a file as a single object such that any read of the
file is considered dependent on all preceding writes is too coarse-
grained for some applications, especially those that need to repeat-
edly read/write to a file. For example, mysql creates an index file
and a data file for each table. Upon receiving a query, mysql usu-
ally first reads the index file to find the location of a tuple (in the
data file) given the tuple id. Then it reads the tuple from the data
file and sends it back to the user. The index and data files need to
be frequently updated. They also stay alive as long as the table is
alive. According to our basic GC strategy, none of the reads/writes
to these files can be garbage-collected.

Fig. 5 (a) shows three SQL queries executed by three mysql

processes. In the first update query, mysql first reads the index
file, which stores ids and locations of tuples in a B-Tree as shown
in the figure. The corresponding table is shown in the data file. In
this case, mysql first reads the root node in the index file which is
the requested node (id=3) and finds the location of the tuple (event
1). Then it updates both the index file and the data file. In the sec-
ond select query, mysql first reads the root node from the index
file (event 4), which does not satisfy the where clause. It then fur-
ther reads the child node in the index file (event 5), which satisfies
the clause. Then mysql reads the data file to get the tuple (event 6)
and returns it (event 7). In the third delete query, mysql reads in-
dividual tuples from the data file (events 8 and 10) and then checks
them against the where condition. If the condition is satisfied, tu-
ple deletion is performed by updating the index file (events 9 and
11).

According to Algorithm 1, since both the data and index files are
alive, none of the writes to them can be garbage-collected, making
the preceding reads non-garbage-collectable. Consequently, none
of the events can be removed. Note that a simple idea that uses
file offsets [23] to detect more precise dependences does not work

here because mysql tends to read many input tuples to memory to
process a query, but only a (possibly small) subset of them are used
in computing the result tuples (e.g., the delete query in the previous
example).

We have conducted an experiment in which we applied the ba-
sic GC algorithm to audit logs of firefox and mysql. Our re-
sults show that only 0.07% and 0.0004% of them can be garbage-
collected, respectively. And the log entries from mysql can be as
large as 90.68% of the overall audit log in a server system.

4.1 Dividing Process into Execution Units
To overcome the first problem discussed earlier in this section

(i.e., treating a process as a single subject), we adopt our earlier so-
lution called BEEP [20] by dividing a process into execution units.
The basic idea is that the execution of a long running program is
dominated by event handling loops. According to our study of over
100 applications [20], event handling loops are present in most of
those applications and each loop iteration can be considered as a
logical execution unit that handles an individual external request.
Hence, instead of considering an event dependent on all preceding
input events in the life time of an entire process, BEEP considers
that it is only dependent on the preceding input events in the same

unit.
Consider the example in Fig. 4 (b). The execution of firefox

in (a) is divided into four units corresponding to four event handling
loop iterations, each accessing an individual URL. As such, events
1-6 can be garbage-collected. This is because the reachable output
events 12 and 9 only cause the input events in their units (i.e., u4
and u3) to be marked as reachable. Note that the history of live
objects, i.e., process p1 and file f5, is correctly preserved.

We adapt the binary profiling technique in BEEP to identify event
handling loops in a binary program. Loop entries and exits are in-
strumented to emit special system events that serve as unit delim-
iters. We also identify workflows between units that may introduce
cross-unit dependences. Details can be found in [20]. Since these
are not our contribution, details are elided.

4.2 Dividing File into Data Units
To address the second problem (i.e., treating a file as a single

object), we propose to divide a file into data units such that depen-
dences can be defined with respect to the smaller data units.

Consider the example in Fig. 5 (b). The data file is divided into
units with each unit being a tuple. Furthermore, since index files
are completely internal to mysql, reads and writes on them are
of no forensic interest and hence removed. We are now able to
garbage-collect all events except 6 and 7. Observe that with the
finer granularity, we can claim that tuple 3 is not reachable hence
event 3 can be garbage-collected.

However, dividing files into data units is highly challenging. One
may have to have knowledge about the internal structure of a file.
Also, one has to identify all operations on data units. When an
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update T set val=11 where id=3 select * from T where id=2 delete from T where val>8

1 read(I) 2 write(O)

3 (O)

4 (I)
5 (I) 6 (I)

7 (O)

8 (I) 9 (O)
10 (I)10 (I)

11 (O)

…………

update T … select * from T … delete from T … 

1 read(I) 2 write(O)
3 (O) 4 (I)

5 (I) 6 (I)

7 (O)

8 (I) 9 (O)

10 (I)

11 (O)
…………

Figure 5: Partitioning data files into units improves garbage collection.

operation is performed, the specific units being operated on need to
be figured out. For instance, mysql has 1.2M lines of code. It is
prohibitively difficult for a non-mysql developer to identify such
information manually. Instruction-level tracing may determine data
provenance precisely down to the byte level. However, it is too
expensive to be useful for production systems.

Solution Overview. Our solution is to leverage a profiler to iden-
tify and instrument a small number of places in the application pro-
gram such that special system events will be emitted by our instru-
mentation to disclose the provenance of data units. Take mysql
as an example, given a query, the result tuples are computed from
some input tuples that may come from multiple tables. We identify
the code locations that exclusively access those input tuples used in
computing the result tuples and instrument the code to emit the ids
of the input tuples to the audit log. When an output tuple is written
to disk, we also emit a write event tagged with its tuple id. Since
all such events occur within the execution unit handling a single
query, by following the default strategy that considers an output
event (i.e., tuple write) as dependent on all preceding input events
(i.e., input tuple reads), we can correctly determine the tuple-level
dependences and allow more garbage collection.

Consider the example in Fig. 6 (a). It shows a piece of pseudo-
code1 that models the procedure that mysql handles the query on
top of the figure, which performs a join query between tables t1
and t2 and writes the result table to t3. Mysql first loads all the
tuples of t1 and stores them to the cache. It then loads individ-
ual tuples of t2 and compares their value fields with those in the
cache. If there is a matching pair, the corresponding data fields
are extracted (lines 12-14) and used to compose the result tuple.
Finally, the result tuple is written at line 18.

With our solution, we will identify and instrument lines 12 and
13 for input tuples. Particularly, we will add a special system call
after line 12 to emit the tuple id of t1 and another one after line
13 to emit the tuple id of t2. According to the semantics of the
code snippet, since lines 12 and 13 are within the true branch of
the comparison at line 11, the tuples represented by the two lines
must be the input tuples used to compute the output tuple. The
result tuple composition at line 17 is also instrumented to emit the
output tuple id. As such, we can associate the output tuple with the
corresponding input tuples via the default audit log analysis.

In the following, we explain our techniques to identify those in-
strumentation points. Our discussion will be mainly focused on
mysql as it is the core database engine for many web service ap-
plications.

1The real code is too complex to present and explain with limited
space.

Definitions: Pv[&x] - the provenance of a variable x, which is a set of
input tuple ids.
pc: op (y1 , ..., yn) - an instruction at pc that has op as the
opcode and y1 ,..., yn the operand variables.
S[pc] - aggregated provenance set for the instruction at pc.

Instruction Action

id=readRecord(“t”,&bu f ,&s...) for (i=0 to s-1)
Pv[bu f + i]={ id}

pc: x=op (y1,...,yn) Pv[&x]= Pv[&y1] ∪ ...∪ Pv[&yn]
S[pc]=S[pc] ∪ Pv[&x]

Table 3: Instruction-level provenance profiler

Algorithm 2 Identifying instrumentation points for input tuples

1: execute mysql on a given query with the provenance profiler
2: Let “pc: writeRecord(...,out_bu f ,s...)” be the instruction emitting the

output tuple
3: pv←Pv[out_bu f ]∪...∪Pv[out_bu f + s−1]
4: R← {}
5: for each executed instruction i do

6: l← the program counter of i

7: if S[l]⊂ pv and all tuples in S[l] belong to one table then

8: R← R∪{l}

9: return the minimum subset(s) of R whose provenance covers pv

Detecting Output Tuple Writes. The first profiling technique is to
identify instrumentation points that disclose writes of output tuples.
For each query category (i.e. select, join, aggregation, update, and
insert), we have a small set of training runs (2-5). If we observe
a write to data file, we manually identify the tuple id in the output
buffer and leverage a data dependence tracking technique to back-
track to the earliest point that defines the tuple id value. For exam-
ple, if a tuple id is generated using a counter “id=counter++” at
line 1, and then copied at lines 2, 3, and 4, which is the final tuple
write, we backtrack to line 1. Essentially, we identify the root of
the data dependence chain to the tuple id such that all instruction
instances along the chain have the same id value.

Detecting Dependent Input Tuples. The second profiling tech-
nique is to identify instrumentation points that can disclose the in-
put tuples that are used to compute individual output tuples. The
basic idea is to leverage an instruction level provenance tracing
technique that can precisely compute the set of ids of the input
tuples that are directly or transitively used to compute a value at
any program point. As such, given an output tuple, we can pre-
cisely know its input tuple provenance. Then we inspect the set of
executed instructions to determine a minimal subset such that the
union of their provenance sets is precisely the provenance of the
output tuple. In other words, each of the instructions in the sub-
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Figure 6: Using profiling to determine instrumentation points. The code snippet models how mysql handles the query on top. Function

readRecord(“table_name”,&buf, &s) reads a tuple from data file, returns it in buf that is allocated inside the function, the size is set in s

and the tuple id is the return value; store_cache() stores a tuple to cache; getField() gets a tuple field from a buffer given the field label;

insertField() inserts a field to a buffer; writeRecord() writes a tuple (buffer) to a given table. Symbols a1, a2, b1, b2, and c1 in (b) denote the

different buffer address values. The subscripts in statement labels denote instances. Each data field is 4 byte long.

set has processed (part of) the dependent input tuples. We hence
can instrument these instructions to emit the ids of the tuples that
they process. Note that instruction-level tracing is only used for

profiling.
The semantic rules of the instruction-level provenance tracer are

presented in Table 3, which specifies the action the tracer takes
upon an instruction. Function readRecord() loads a tuple from
data file. The result tuple is stored in bufwith size s. The function
returns the tuple id. When an invocation of the function is encoun-
tered, it is considered a source of input provenance. Therefore,
the corresponding action is to set the provenance of each individual
byte in buf, which stores the data fields of the tuple, to the input tu-
ple id. This function is an abstraction of four functions in mysql,
namely, _mi_read_static_record(), _mi_read_rnd_static
_record(), _mi_read_dynamic_record(), and _mi_read_rnd

_dynamic_record().
The last row shows the rule for assignments. We normalize the

right-hand-side to an operation on a set of operands. The prove-
nance of the left-hand-side is computed as the union of the operand
provenance sets. We also compute the aggregated provenance set
of the instruction, which is essentially the union of provenance sets
of all the executed instances of the instruction.

Algorithm 2 shows how to identify the instrumentation points,
leveraging the instruction-level tracer. It first executes mysql with
a given query. Lines 2 and 3 compute the provenance of the output,
stored in pv. Set R denotes the candidate instrumentation points,
which are denoted by program counters. In lines 5-8, the algorithm
traverses all the executed instructions and determines the candidate
instructions. The candidacy requires that the aggregated prove-
nance of an instruction must be a subset of the output provenance.
Otherwise, it must be an instruction that does not exclusively pro-
cess dependent input tuples, such as line 2 in Fig. 6 (a), which
processes all input tuples. Furthermore, the instruction should ex-
clusively process input tuples from the same table. Otherwise, it
is an instruction that aggregates information from multiple tables.
It is usually impossible to acquire the original tuple ids at such an

instruction. For example, line 17 in Fig. 6 (a) has exactly the output
provenance. However, since it is just a composition of fields from
input tuples, it is in general difficult to extract input tuple ids from
the composed result. With the candidate set, at line 6, the algorithm
identifies the minimal set of instructions that can cover the output
provenance. It may return multiple such sets.

Fig. 6 (b) shows a sample profiling run. The input tables are
shown on top. One can see that there will be just one result tuple,
whose provenance is tuple 1 from t1 and tuple 1 from t2. The
figure shows part of the execution trace. The Pv and S sets are also
shown for each executed statement. The program first loads tuples
from t1, which leads to the provenance sets of the buffer to be
set to {1} and {2} in the two respective instances of instruction 2.
Then, the program reads t2 and compares tuples. Since the first
tuple of t2 matches the first tuple of t1, lines 12-14 are executed
to extract data from input tuples. Hence, their provenance includes
the corresponding input tuple id. At the end, the aggregated prove-
nance of line 2 is {1,2}, line 9 is {5,6}, line 12 is {1}, and lines
13 and 14 are {5}. Since the output provenance is {1,5}, the mini-
mal cover set could be lines 12 and 13 or 12 and 14, which are the
places reported by the algorithm.

Even though our discussion is driven by a specific query, the al-
gorithm is generic. We apply it to a training set of various types of
queries. Since the profiler can only give hints about the instrumen-
tation points, we assume that human users will inspect the source
code to eventually determine the instrumentation points from the
reported ones. In practice, the human efforts are small and they are
one-time efforts. We instrumented a total of 15 places in mysql

after inspecting about 40 places suggested by the profiler. The
instrumentation supports typical select, join, aggregation, update,
insert and sub-queries with nesting level of 2. We have validated
that it can correctly identify tuple-level dependences in the standard
database workloads from RUBiS [5] and SysBench [1].
Discussion. In this work, we do not consider control dependences

between tuples. For example, in the following query:
select * from t1 where t1.val > (select avg(val) from t1);
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Figure 7: Apache application log examples.

Our instrumentation will emit the ids of tuples whose values are
greater than the average. However, all tuples in t1 are correlated
to the output tuples as they are used to compute the average, which
is used in the where condition. It is analogous to the traditional
concept of program control dependence. In this work, we deem
such precise tuple control dependences of limited forensic value.
Note that even though SQL injection attacks are often achieved by
manipulating where conditions, knowing the tuples that are used
in malicious where clauses are unlikely useful as they often serve
only as a true condition enabling other malicious actions, which
will be captured by LogGC .

If a query generates multiple output tuples, the output tuples will
belong to the same execution unit. However, we cannot simply
consider a tuple output event as dependent on all the preceding tu-
ple input events in the same unit. Instead, we leverage the fact that
output tuples are computed one after another. Hence a tuple out-
put event is only dependent on those preceding tuple input events
that are in between this output event and the immediate preceding
output event.

Finally, since instrumentation points for data units are produced
by the profiler and validated manually by the user, it is possible
that they be incomplete and unsound (i.e., inducing false tuple de-
pendences). Also, the profiler takes regular use cases provided by
the user to determine the instrumentation points. Our experience
does show that our techniques are sufficiently effective. Section 6.3
shows that LogGC with data units effectively reduces log size with-
out affecting forensic analysis of realistic attack scenarios. The re-
sults show that the reduced logs (7 times smaller than the original
ones) are equally or even more effective in forensic analysis that in-
volves databases. In the future, we plan to develop more automated
techniques to statically determine instrumentation points.

5. LEVERAGING APPLICATION LOGS
We observe that many long running applications have the fol-

lowing two characteristics: (1) They have their own log files that
record some execution status (we call them the application logs to
distinguish from audit logs); (2) They often send data to remote
users through socket writes. For instance, apache records ev-
ery remote request it receives and the status of fulfilling the re-
quest. It also sends the requested (html) file back to the remote
client through socket writes. On one hand, the two characteristics
make garbage collection difficult, because both application log file
writes and socket writes are output events. According to our earlier
discussion, any preceding input events within the same unit may
have dependence with those output events hence they cannot be
garbage-collected. On the other hand, the two properties also pro-
vide an opportunity to prune more events in the audit log if they are
already present in the application logs.

Fig. 7 (a) shows two execution units of apache that handle
requests for index.html and about_me.html, respectively.

They both have the following event pattern: socket read to receive
the request; file read to load the file; socket write to send the file;
and file write to the application log to record the history. This is
also the dominant event pattern for apache. Both socket write
and file write prevent garbage-collecting any other events. Accord-
ing to our experience, such server programs can generate as much
as 71.4% of audit log events.

To address this problem, we propose to leverage the application
logs themselves. More specifically, we observe that the aforemen-
tioned event pattern (as shown in Fig. 7 (a)) forms a small isolated
causal graph independent of the other events in the audit log. It
simply receives the request and returns the file. It does not affect
other objects in the system except the application log. Furthermore,
all events in the graph can be inferred from the application log. In
Fig. 7(a), all the four events can be inferred from the application
log and hence removed from the audit log.

One important criterion for replacing audit log events with ap-
plication log events is that the events are self-contained. They do
not have dependence with any past event or induce any dependence
with future events. For example, if about_me.html in Fig. 7
(a) has been modified in the past by some user request, which is
recorded in the audit log, events in the second unit will not be
garbage-collected. In case of a malicious modification, this will
allow us to back-track to the malicious change and determine its
ramifications. Furthermore, if a unit produces side effects on the
system, such as writing to a file or writing to a database (e.g., via
socket y.y.y.y to the mysql server in Fig. 7.(b)), its events will
not be garbage collected.

We apply this strategy to server programs (e.g., web server and
ftp server) and user applications that generate their own logs, with
the exception of mysql because we rely on the tuple-level events
to perform garbage collection.

6. EVALUATION
We have implemented a LogGC prototype composed of train-

ing, profiling, instrumentation, log analysis and garbage collection
components. The training and profiling components are imple-
mented on PIN [21], instrumentation is through a binary rewriting
tool PEBIL [19]. The log analysis and garbage collection compo-
nents are implemented in C++.

Table 4 shows a list of sample applications we have installed
and preprocessed for our evaluation. For each application, we have
trained and instrumented it to support process and file partitioning.
Columns 3 and 4 indicate applications that make use of tempo-
rary files and have application logs, respectively. Recall that we
garbage-collect temporary file deletions, which enables removing
other dependent events. The last column indicates if an application
needs to be instrumented for data unit partition. Currently, we only
instrument mysql to achieve more log reduction.
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Logs Total Basic GC Execution Unit Temp file Application Logs Data Unit
# logs # logs (%) # logs (%) # logs (%) # logs (%) # logs (%)

User1 1,159,680 745,424 64.28% 667,104 57.52% 308,144 26.57% 172,688 14.89% - -
One day User2 985,185 984,261 99.91% 685,233 69.55% 602,715 61.18% 197,718 20.01% 108,172 10.98%
execution User3 1,329,854 1,246,804 93.75% 618,572 46.51% 134,859 10.14% 83,595 6.29% - -

User4 1,921,038 1,920,363 99.96% 247,409 12.88% 228,428 11.89% 61,100 3.18% - -
User5 973,789 592,521 60.85% 300,824 30.89% 238,577 24.5% 1,403 0.14% - -

Average 1,273,909 1,097,875 86.18% 503,828 39.55% 302,545 23.75% 108,470 8.51% 90,668 7.11%

Rubis1 8,676,521 8,676,260 100.00% 8,467,229 97.59% 8,355,045 96.29% 7,886,531 90.90% 259,139 2.99%
Web server Rubis2 8,433,427 8,433,345 100.00% 8,433,142 100.00% 8,323,800 98.70% 7,812,483 92.64% 166,968 1.98%
benchmark Rubis3 8,352,924 8,352,842 100.00% 8,352,630 100.00% 8,243,034 98.68% 7,731,299 92.56% 206,786 2.48%

Rubis4 8,900,179 8,897,798 99.97% 8,126,108 91.30% 8,011,739 90.02% 7,508,254 84.36% 326,705 3.67%
Rubis5 7,933,792 7,933,710 100.00% 7,933,501 100.00% 7,829,530 98.69% 7,209,876 90.88% 161,523 2.04%
Average 8,459,368 8,458,791 99.99% 8,262,522 97.67% 8,152,629 96.37% 7,629,688 90.19% 224,224 2.65%

Firefox 3,260,948 3,258,628 99.93% 1,518,640 46.57% 999,160 30.64% 371,336 11.39% - -
MC 16,020 15,940 99.50% 2,380 14.86% 1,685 10.52% 5 0.03% - -

Mplayer 452,400 452,338 99.99% 252,296 55.77% 0 0.00% 0 0% - -
Pidgin 47,018 47,018 100% 9,475 20.15% 8,605 18.30% 231 0.49% - -
Pine 91,215 91,215 100% 44,982 49.31% 41,769 45.79% 970 1.06% - -

Proftpd 51,906 51,404 99.03% 20,044 38.62% 20,044 38.62% 3,156 6.08% - -
Sendmail 7,321 7,176 98.02% 6,376 87.09% 4,560 62.29% 684 9.34% - -

Sshd 148,885 148,885 100% 148,885 100% 148,885 100% 72 0.05% - -
Applications Vim 98,791 98,791 100% 98,142 99.34% 4,213 4.26% 4,191 4.24% - -

W3m 128,569 127,330 99.04% 127,302 99.01% 80,934 62.95% 32,914 25.60% - -
Wget 80112 80112 100% 40,344 50.36% 40,344 50.36% 40,344 50.36% - -
Xpdf 76,015 76,015 100% 27,401 36.05% 0 0% 0 0% - -
Yafc 477 477 100% 477 100% 477 100% 477 100% - -

Audacious 216,428 216,427 100% 9,031 4.17% 867 0.4% 867 0.4% - -
Bash 1,325 111 8.38% 109 8.23% 109 8.23% 109 8.23% - -

Apache 3,951,923 3,951,523 99.99% 3,951,130 99.98% 3,951,130 99.98% 490,023 12.40% - -
Mysqld 38,344,585 38,344,430 100% 37,363,478 97.44% 37,363,395 97.44% 36,865,575 96.14% 631,115 1.65%

Table 5: Number of log entries after garbage collection.

Applications Temp Log Data unit

Servers

Sshd-5.9 N Y N
Sendmail-8.12.11 N N N

Proftpd-1.3.4 N Y N
Apache-2.2.21 N Y N
Cherokee-1.2.1 N Y N

Squid-3.2.6 Y Y N
Gmediaserver-0.13.0 N Y N

MySQL-5.1.66 Y Y Y

Wget-1.13 N N N
W3m-0.5.2 Y Y N
Pine-4.64 N N N

MidnightCommand-4.6.1 Y Y N
Vim-7.3 Y Y N
Bash-4.2 N Y N

UI Firefox-11 Y Y N
Programs Yafc-1.1.1 N N N

Pidgin-2.10.6 Y Y N
Xpdf-3.03 Y N N

Mplayer-1.1 Y N N
Audacious-2.5.4 Y N N

Table 4: Application description

6.1 Effectiveness
Regular User Systems. In the first experiment, we collect audit
logs from machines of five different users (with the same system
image). Each log is collected from one day’s execution. The users
have different usage patterns. User1 is a software developer who
used Vim editor and compilers a lot. He also downloaded and in-
stalled several tools during the one-day experiment. User2 ran a
web server and a public ftp server. User3 mostly used Firefox

for web surfing and Xpdf to view PDF files. He also used the
Pidgin chat client to communicate with friends. User4 watched
a set of movies using Mplayer and also used Audacious to
listen to music. User5 used the system in the console mode. He
used text-based applications such as W3m for the Web and pine

for emails.
We ran LogGC at the end of the one-day execution. The re-

sults are presented in Table 5. The third column shows the total

number of log entries in each original audit log. Columns 4 and
5 present the reduced log size (and percentage) when we perform
the basic GC algorithm (Section 2), except that we do not garbage
collect any dead-end event, in order to support forward analysis
(Section 3). The results in the first 5 rows show that the basic al-
gorithm is not very effective. It can reduce 35%/40% for the logs
of User1/User5 because they ran short-running applications hence
false dependences, which would unnecessarily prevent garbage col-
lection, are less likely.

Columns 6 and 7 show log reduction when we use execution
partitioning for long running applications on top of the basic algo-
rithm. In the first five rows, we can remove an average of 60.45%
of the audit logs. In columns 8 and 9, we additionally garbage-
collect temporary file deletions, which also enables collecting the
events that they depend on (Section 3). LogGC reduces an average
of 76.25% of the original log entries. In columns 10 and 11, we re-
move the redundant entries captured in application logs (Section 5).
The results show that LogGC reduces 91.49% of the original logs.
The last two columns show log reduction when we use data unit
partitioning (Section 4.1). Only User2 used mysql as the backend
for his web server. LogGC can reduce half of the remaining entries
for User2. Finally, the average size of the remaining logs (of the
five users) is only 7.11% of the original size, indicating an order of
magnitude of reduction.

Server Systems. In the next experiment, we focus on evaluating
LogGC on server system logs. We use RUBiS [5] which is an
auction service similar to eBay. We setup the auction site using
the default configuration with apache as frontend and mysql as
backend. In our setup, both apache and mySQL are located in the
same machine. After initialization, we have 9 tables in the database
which contain 33,721 items for sale in 20 categories. This database
is acquired from [5]. Then we use the client emulator that acts as
users (buyers or sellers) of the bidding system. The client emulator
uses 27 pre-defined transitions such as user registration, item reg-
istration, item browsing by category, bidding, buying and leaving

1013



comments during execution. We use all 5 different setups for client
emulation provided by RUBiS. Each execution emulates 240 users
performing 60,000 to 70,000 transitions and lasts 20 to 30 minutes.
We acquire the audit log of the bidding server after each execution
and apply LogGC .

The “Web server benchmark” rows in Table 5 show the results.
We can observe that most GC strategies are not as effective as
on user systems. With “execution partitioning”, “temp file” and
“application log” strategies, we can reduce only 10% of the logs
(columns 10 and 11) even though both apache and mysql have
independent execution units, temporary files, and application logs.
This is because the executions heavily access the index and data
files in the database such that most execution units become reach-
able through file-level dependences. Columns 12 and 13 show the
reduced log size with data unit partitioning. Only 2.65% of the log
entries need to be preserved on average, corresponding to a 37-time
reduction.

Per Application Results. We also present the results for individ-
ual applications. They are aggregated from the aforementioned
user system executions and server executions. We observe that the
events from some applications can be completely garbage-collected
such as Mplayer and Xpdf. Mplayer is a video player and it
interacts with the screen and the sound card. But its execution does
not affect system execution in the future. Similarly, Xpdf only
displays PDF files on the screen. On the other hand, we cannot
garbage collect any events from Yafc, an ftp client, because the
user downloaded files using Yafc and kept all the files in the sys-
tem. Similar explanation applies to W3m and Wget.

6.2 Performance
Table 6 shows the performance of LogGC. The experiments were

performed on an Intel Core i7-3770 CPU with 4GB memory run-
ning Linux 2.6.35. The execution time of LogGC is mainly di-
vided to two parts: the log parsing time and the GC time. The table
shows that LogGC is reasonably efficient. It processes 3GB of logs
in about 2 minutes, with parsing time being the dominant factor.
Table 7 shows the runtime overhead incurred by data unit instru-
mentation, using two popular benchmarks: RUBiS and SysBench.
The results show that the runtime overhead is very low.

Log Parsing time (s) GC time (s)

User1 35.97 3.76
User2 22.09 2.65
User3 26.71 2.82
User4 47.47 4.52
User5 23.65 3.17

Rubis1 104.88 10.62
Rubis2 101.21 9.45
Rubis3 101.09 9.48
Rubis4 102.89 10.13
Rubis5 98.21 9.16

Table 6: Garbage collection performance.

Benchmarks Response time (ms) Overhead (%)
Without Instrumentation With Instrumentation

RUBiS 4,769.6 4,825.6 1.17%
SysBench 44.68 45.58 2.04%

Table 7: Runtime overhead for data unit instrumentation.

6.3 Attack Investigation
In this section, we show that the reduced audit logs are equally

informative in forensic analysis through a number of case stud-
ies. We adopt eight attack scenarios previously used to evaluate

Scenarios # of audit log entries Back- For-
Total After GC ward ward

1. Trojan attack [20] 356,798 9,614 (2.69%) Match Match
2. Attack ramification [20] 690,231 50,271 (7.30%) Match Match
3. Information theft [20] 572,712 178,213 (31.12%) - Match
4. Illegal storage [12] 212,321 59,236 (27.90%) Match Match
5. Content destruction [12] 328,297 37,282 (11.36%) Match -
6. Unhappy student [12] 572,385 45,821 (8.01%) Match Match
7. Compromised database [12] 102,415 4,657 (4.55%) Match Better
8. Weak password [12] 182,346 43,214 (23.70%) Better Better

Table 8: Attack scenarios (“Match” means identical causal graphs

with and without LogGC; “Better” means a smaller and precise graph

with LogGC.)

related approaches [12, 20]. For each attack scenario, we generate
the causal graphs from both the original log and the reduced logs,
starting from an attack symptom event (for backward analysis) or
the root attack event (for forward analysis). Then we compare the
two graphs to verify if they contain all causal relations pertinent to
the attack and further, if they carry any unrelated ones. To avoid
having over-sized graphs, the original logs are generated with exe-
cution partitioning (i.e., BEEP) [20]. In other words, we are com-
paring graphs from LogGC with graphs by BEEP (only).

Table 8 summarizes the results. The second and third columns
show the number of audit log entries in the original and reduced
logs, respectively. The last two columns show the results of causal
graph comparison in both backward and forward analysis. The re-
sults show that all causal graphs by LogGC capture the minimal
and precise attack paths and the right set of attack ramifications;
whereas the graphs from the original logs either are identical to
their counterparts or contain extra (and unrelated) causal relations.

In the first scenario (“trojan attack”), the victim received a phish-
ing email that contained a malicious URL. The user clicked it and
firefox visited the malicious page. The user downloaded a back-
door trojan and executed it. The administrator later detected the
backdoor program and started forensic analysis. In the second sce-
nario, the attacker exploited a vulnerability of Proftpd to acquire
a root shell and installed a backdoor. Then he modified .bash_history

to remove the footprint. The user later noticed the backdoor pro-
cess. The causal graphs (from both the original and the reduced
logs) precisely capture that the attacker modified .bash_history.
The third scenario involves information theft. An insider used vim
to open three classified files and two other html files. He copied
some classified information from secret_1 to secret.html and also
modified index.html. Then an external attacker connected to the
web server and read secret.html. LogGC does not garbage col-
lect the httpd units that sent the modified html files and thus
the reduced log contains the event that sent secret.html to the at-
tacker. The forward casual graphs from the secret files clearly
tracks down the attack, including the attacker’s IP through which he
retrieved the secret information. In the fourth scenario, the attacker
launched a pwck local escalation exploit to get a root shell and
then modified /etc/passwd and /etc/shadow to create an account.
Then the attacker created directories and downloaded illegal files,
including a trojaned ls to hide the illegal files. A victim user used
the trojaned ls and created two files in his home directory. Later,
the attacker logged into the system using the created account and
downloaded more illegal files. The administrator later detected the
trojaned ls and started forensic analysis. There are two forward
causal graphs in this case. The first one starting from the trojaned
ls identifies the victim user and the files generated, which may
be compromised. The second one from /etc/passwd is larger be-
cause it includes all ssh login activities. The attacker’s login and
download activities are captured but events from normal users are
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Figure 8: Causal graph comparison for attack scenario 7.

also included. In the fifth scenario (“content destruction”), the at-
tacker exploited a sendmail vulnerability to get a root shell and
he deleted files from other users’ directories. The victim detected
some of his files were missing and restored them from backup stor-
age. In the sixth scenario, the attacker launched a remote attack
on the ftp server and modified some file permissions to globally
writable. Two other malicious users modified a victim’s files and
copied them into their own directories. The victim later detected
that his files were globally writable.

In the next two scenarios, mysql played an important role on
the attack paths. LogGC hence produces better causal graphs than
those derived from the original logs. In the seventh scenario, the at-
tacker launched a remote attack on the Samba daemon to get a root
shell and created a backdoor. The attacker logged in later through
the backdoor and issued SQL queries to remove some transaction
from the local database. Later the user accessed the database and
detected problems. We performed backward analysis from the back-
door. The causal graphs from both the reduced log and the original
log are identical. However, data units prove to be very effective
for forward analysis such that we can precisely pinpoint tuples af-
fected by the attacker. In contrast, the graph from the original log
indicates that the entire table may be affected by the attacker. In
Fig. 8, we compare the forward causal graphs for this case with
and without data unit support. The graph by LogGC (with data
unit support) precisely detects the tuple modified by the attacker,
whereas the graph without data unit support indicates that the en-
tire bid table was affected and it also shows three other users who
accessed table bid even though they did not access the modified tu-
ple. The user from x.x.x.1 modified a tuple in table item after
he read bid hence table item is considered affected. After that,
another user from x.x.x.4 accessed table item and thus is also
included in the graph. As a result, the graph by LogGC contains 5
nodes which precisely capture the attack ramifications, whereas the
graph without data unit support has 16 nodes including 10 unrelated
objects and users.

In the last scenario, the administrator used photo-gallery

to upload digital pictures and created an account with a weak pass-
word for the user. Before the user changed the password, the at-
tacker grabbed the password using dictionary attack. The attacker
logged into the gallery program, uploaded some pictures, and viewed
the user’s album. The user later detected the attacker’s pictures.
The graphs by LogGC are precise in revealing the attack: The back-
ward graph includes 47 nodes and the forward graph contains 61
nodes. Both are verified to carry the precise set of forensic infor-
mation items related to this attack. In contrast, the backward graph
from the original log contains 326 nodes and the forward graph has
517 nodes. Most of them are introduced by false database depen-
dences.

7. RELATED WORK
Classic Garbage Collection. There is a large body of work on
garbage collecting in-memory objects [4, 9, 10, 14]. The nature
of our problem has some similarity to classic garbage collection.
However we cannot simply use classic GC for provenance log re-
duction for the following reasons. First, we have to operate on audit
logs with a flat structure instead of on memory reference graphs in
classic GC. Second, classic GC only needs to identify object reach-
ability in one direction; but we have to consider both forward and
backward directions to cater for attack forensic needs. Third, clas-
sic GC can make use of very precise byte level reference informa-
tion to determine reachability; whereas we only have the coarse-
grain system level dependences in audit logs. As shown in our
experiments, a basic reachability-based GC algorithm can hardly
work on audit logs.
System-level Provenance. In recent years, significant progress has
been made on tracking system-level dependences for attack foren-
sics using audit logs [3, 8, 11, 13, 16, 17, 18, 20, 22, 23, 24]. These
techniques use audit logs to identify root cause of an attack and
perform forward tracking to reveal the attack’s impacts. LogGC
complements these techniques by garbage collecting audit logs to
substantially reduce their size without affecting forensic analysis
accuracy. In particular, while we leverage the execution partition-
ing technique in BEEP [20], LogGC and BEEP differ in that: (1)
LogGC focuses on garbage-collecting audit logs whereas BEEP
does not; (2) BEEP cannot handle dependences with database en-
gines, which are critical to reducing server audit logs and generat-
ing precise causal graphs.

System-level replay techniques have been proposed to roll back
a victim system after an attack [6, 12, 15]. They record system-
wide execution events so that the whole system can be replayed
from a checkpoint. LogGC may potentially complement these tech-
niques by garbage-collecting unnecessary events from execution
logs without affecting replay fidelity.
Database Provenance. There exists a line of research in pro-
viding fine-grain data lineage for database systems. Trio [2] and
SubZero [25] introduce new features to manage fine-grain lineage
along with data. They track provenance by transforming/reversing
queries. As such, they need to know the queries before hand, with-
out instrumenting the database engine.
Log Compression. Some existing techniques involve compressing
provenance logs via a web graph compression technique [26] or
detecting common sub-trees and then compressing them [7]. As
log compression techniques, they are orthogonal to LogGC . We
envision future integration of LogGC and these techniques.

8. CONCLUSION
We present LogGC, a GC-enabled audit logging system towards

practical computer attack forensics. Audit log garbage collection
poses new challenges beyond traditional memory GC techniques. It
should support both forward and backward forensic analysis whereas
traditional memory GC only needs to support one direction of cor-
relation. Moreover, the granularity of existing audit logging ap-
proach is insufficient, especially for long running programs and
database servers. We propose a technique that partitions a database
file into data units so that dependences can be captured at tuple
level. Together with our earlier solution of partitioning a process
into execution units, LogGC greatly reduces false dependences that
prevent effective GC. LogGC entails instrumenting user programs
only at a few locations, incurring low overhead (< 2.04%). With-
out any compression, LogGC can reduce audit log size by a factor
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of 14 for user systems and 37 for server systems. The reduced audit
logs preserve all necessary information for full forensic analysis.
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