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Abstract— Internet worms continue to plague the Inter-
net infrastructure with wider and deeper impact since the
Morris Worm in early 1988. It has been further shown
that better-engineered worms like Warhol worms and Flash
worms could spread across the Internet in minutes or even
tens of seconds rather than hours. Such virulent spread-
ing invalidates any manual counter-measures and poses an
extremely serious threat to the safety of the Internet.

To address this challenge, this paper proposes a novel
worm-curtailing scheme, i.e., beehive, which is able to fight-
back worm propagation by actively immunizing any en-
countered worm-infected node. More specifically, by own-
ing a portion of the unused but routable IP space that is
open to infection attempts of different worms, a beehive not
only attracts and traps these attempts, but also defensively
gives a security shot to each attempting worm-infected node.
The security shot will immunize the infected node so that
the node will not be able to infect others. Our formal anal-
ysis shows that even one beehive network with a reasonable
IP address space can effectively mitigate active spreading
of worms among a million nodes. This paper presents both
analysis and simulation results of beehive evaluation. Par-
ticularly, our results show that for a random-probing worm,
a /13 beehive network or 8 class B networks are able to re-
duce the maximum worm infection coverage to as low as
13%. To the best of our knowledge, no such worm fight-
back mechanism has been proposed and analyzed before.
Finally, a beehive prototype is presented to demonstrate its
practicality.

Index Terms—security, worm, modeling, simulation, sys-
tem design

I. INTRODUCTION

Since the Morris Worm of early 1988, the persistent
existence and destructive spreading of worms have posed
significant threats to the shared Internet infrastructure.
Recent worm incidents like Code Red worms [1] and MS-
Blaster worms [8] have just warned us how fragile our
networks are and how fast a virulent worm can spread.
Even worse, better-engineered worms like Warhol worms
and Flash worms could spread across the Internet in min-

utes or even tens of seconds rather than hours [15]. Also,
with current computer systems becoming more and more
complicated, it is more difficult than before to eliminate
software bugs. In fact, new more security vulnerabili-
ties have been discovered on a daily basis and exploiting
worms have been observed more frequently than before:
Code Red worms [1] and Nimda worms [6] in 2001, SQL-
Slammer worms [7] in 2002, MSBlaster worms [8] and
SoBig worms [10] in 2003, and MyDoom worms [11],
Witty Worms [12], and Sasser worms [13] in 2004. This
serious situation poses great challenges for the effective
containment of fast-spreading worms.

There are few answers, either proactive or reactive,
to the worm threat. Proactive approach puts the com-
puter systems always on alert for potential vulnerabili-
ties and tries to seal vulnerability holes before they are
exploited. For example, the Windows Update Service
checks the availability of security patches and applies
them to eliminate security defects [6][7][8] in a timely
fashion. However, experience [27] has shown that end-
users or even network administrators often do not install
security patches even long after they are made available
because of the following concerns [29]:

• Service disruption: Applying a patch typically in-
volves restarting affected host service or even restart-
ing the entire host system, which may not be accept-
able for critical services.

• Patch unreliability and irreversibility: Security
patches are released as quick responses for identified
vulnerabilities and may not have been fully verified.
Moreover, installing a security patch is a commonly
irreversible operation; once a patch is applied, there
is no easy way to un-install the patch.

Other worm containment schemes are also proposed:
Moore et al. [22] proposed Address blacklisting and con-
tent filtering to isolate worms; Williamson et al. [14] sug-
gested modifying the network stack to throttle the worm
propagation rate; Chen et al. [23] described a distributed
anti-worm architecture (DAW) to slow down worm prop-
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agation.

This paper presents a novel and complementing worm-
repressing scheme called beehive. Residing in an un-
used but routable network which would be, either ran-
domly or preferably, attacked by different worms, a bee-
hive not only attracts and traps these attempts, but defen-
sively gives a security shot to each infected node that is
attempting to infect an IP belonging to the beehive. The
security shot will then inoculate the infected node. As we
will show, a beehive with a reasonably large IP space can
effectively mitigate active spreading of worms among a
million vulnerable nodes. The contributions of this paper
are threefold:

• First, a new mechanism is proposed to suppress
worm propagation by actively fighting back and im-
munizing attempting worm instances. To the best of
our knowledge, no such worm fight-back mechanism
has been proposed previously.

• Second, this paper conducts a formal study of bee-
hive and presents associated models based on two
worm models, i.e., the classic epidemic model and
the two-factor worm model [20]. Both numerical and
simulation results show promise.

• Third, a signature-based beehive prototype has been
built to demonstrate its practicality and effectiveness.

The rest of this paper is organized as follows: Section II
presents background on worms and describes how beehive
can be used to contain worm propagation. The follow-
ing section analyzes beehive using the classic epidemic
worm model and shows analytical expressions, numeri-
cal solutions, and simulation results. Furthermore, bee-
hive is modeled based on a recently proposed two-factor
worm model [20] to demonstrate its generality. In Section
IV, beehive deployment issues are discussed. Our bee-
hive prototype is presented in Section V. Finally, Section
VI examines related work and Section VII concludes this
paper.

II. THE BEEHIVE APPROACH

This paper focuses on worms replicating themselves
without human interactions by remotely exploiting known
vulnerabilities in operating systems or application ser-
vices. If we break down the actions of these worms [1]
[8] [13], the following common behaviors or stages will
be exposed:

• Target Selection This stage picks up a target either
randomly [1] or with certain local subnet preference
[8]. A simple ICMP or TCP syn network probe could
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Fig. 1. Staged View of Worm Infection

be used to locate a node running a vulnerable service.
The vulnerability can be remotely exploited by this
worm. Once such a node is identified, an ensuing
exploitation attempt will be observed.

• Exploitation Successful exploitation relies on the dis-
covery of a particular vulnerability in the victim
node. It is often true that worms take advantage of
well-known vulnerabilities and published exploits to
compromise their victims.

• Replication A worm infection is not completed un-
til a replica is successfully transferred from the in-
fecter to the victim. However, the boundary between
this stage and the exploitation stage is often blurred:
some worm could contain a copy of itself as the pay-
load during the exploitation; and others may have
an explicit process downloading a worm replica. A
completed replication converts the victim to a worm
node, which is able to begin infecting others.

Based on the staged view of worm infection, there exist
initially two classes of nodes: infectious nodes and vul-
nerable nodes. However, once a security patch is applied
to either a vulnerable node or an infectious node, the node
will be turned into an inoculated node. Virulent worms
attempt to move more nodes from vulnerable status to in-
fectious status, while worm containment strategies strive
to either slow down such movement or inoculate more
nodes from either vulnerable state or infectious state. Un-
fortunately, the existence of worm outbreaks shows faster
worm infection rates than inoculation rates.

However, if the victim in Figure 1 is able to fight back
the attempted infection, a significant difference can be
made. This paper explores such a “fight-back” scheme
and proposes a special “defensive” victim - the beehive.
A beehive can be thought of as an immunization service
guarding an unused but routable IP subspace. An unused
IP space has the advantages of collecting and monitor-
ing highly concentrated suspicious traffic, and meanwhile
avoiding possible disturbance to production networks.

The beehive has knowledge about currently known vul-
nerabilities. With the IP space “attracting” the worms,
the beehive is able to monitor and identify the worms’ ex-
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Fig. 2. Interactions Between Beehive and Worms

ploitation behavior associated with the known vulnerabili-
ties. The beehive will then identify the infecting node, and
defensively inject a vulnerability-specific security shot to
immunize the node. We note that due to the associated
risks and responsibilities, a beehive must be managed by
a trusted authority.

Figure 2 shows a typical interaction between a beehive
and worm instances. Residing in a routable and unused
network space, a beehive will detect various worm infec-
tion attempts. For simplicity, the figure only shows the
beehive and four vulnerable nodes.

1) At first, node B, the only infectious node, will
spawn several threads to simultaneously probe and
infect other nodes: A, C, D, and the beehive (more
specifically, an IP belonging to the beehive).

2) Since nodes A, C, and D are vulnerable, the infec-
tion attempts result in successful replication of the
worm from B to A, C, and D. The nodes A, C, and
D will then be instructed to activate the worm and
thus become infectious nodes attempting to pass the
worm to others. However, when node B is infecting
the beehive, the latter is able to discern such infec-
tion attempt and a security shot is injected to immu-
nize B.

3) Nodes A, C, and D, which are now infectious, will
also actively seek to infect other nodes. If the bee-

hive’s IP address space is reasonably large, it may
receive some of the infection attempts. If attacked,
beehive will fight-back by injecting security shots
to the infectors.

4) Suppose the security shots are able to successfully
immunize the infecting nodes, some (if not all) pre-
viously vulnerable nodes will become inoculated
and thus the worm propagation will be mitigated or
even stopped.

The scheme of beehive are based on the following two
assumptions:

• The trusted authority managing beehive should be
allowed to inject security shots to those worm-
infected nodes that are actively infecting others.
This assumption is justifiable from the following ob-
servations: (1) Worms infecting nodes not only cause
disturbance in the infected nodes, but also generate
lots of traffic affecting other normal nodes and the
whole Internet. The vast detrimental impacts, includ-
ing networked service disruption and business slow-
down, demand an immediate stoppage of infecting
nodes. (2) The defensive-only security shot, which
is signed and administrated by a trusted authority, is
a technically harmless response with the benign in-
tention of immunizing infected nodes [29].
Although this assumption may not be universally ac-
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ceptable in the Internet, it will become more realis-
tic and acceptable, when different administration do-
mains, like ISPs, deploy their own beehives to pro-
tect their internal hosts and cooperate with each other
in tracking down worms propagating across different
domains. If a beehive detects a worm infection from
its own internal domain, it can directly inject the se-
curity shot to immunize the node; if the infection is
from another domain, the beehive could collect the
evidence of the infection, and send a signed copy of
this evidence to the beehive responsible for the other
domain. The latter beehive could then take appro-
priate actions based on the evidence. Also within a
large ISP network, a hierarchy of beehives may be
deployed, each being authoritative over its own sub-
network.

#!/bin/sh
# launch the exploit against the internal infected attacker
# then execute commands to purify the ugly victim
/usr/local/bin/evil_exploit_dcom -d $1 -t 1 -l 4445 << EOF
taskkill /f /im msblast.exe /t
del /f %SystemRoot%\System32\msblast.exe
echo Windows Registry Editor Version 5.00 > c:\cleaner_msblast.reg
echo [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
>> c:\cleaner_msblast.reg
echo "windows auto update" = "REM msblast" >> c:\cleaner_msblast.reg
regedit /s c:\cleaner_msblast.reg
del /f c:\cleaner_msblast.reg
shutdown -r -f -t 0
exit

EOF

Fig. 3. Remotely Cleaning a MSBlaster-Infected Node

• It is technically feasible to inject a security shot to
a worm-infected node and the shot is able to pro-
tect the node from both incoming and outgoing ex-
ploitation. Considering current network security re-
ality and the way worms infect hosts using remotely
exploitable vulnerabilities, we argue that a security
shot can be injected in a way similar to worm infec-
tions 1. Here we cite one real-world example justi-
fying this assumption: during the MSBlaster worm
outbreak in August, 2003, Oudot Laurent, a security
expert, wrote a script [30] (Figure 3) which is able to
remotely clean a MSBlaster-infected node. Once an
infectious node is identified, the script is able to kill
the MSBlaster process in that node and also remove
affected registry entries.
However, the script itself in Figure 3 does not prevent
the node from being affected again and thus it is still
not enough for beehive purpose. More importantly,
it requires the worm’s signature. To further immu-
nize the node without specific worm signatures, we

1In some extreme cases, worms could download security patches to
prevent vulnerabilities from being exploited. In these cases, beehive is
not able to remotely inoculate infected nodes and need other mecha-
nisms to block or filter traffic from infected nodes.

need a more powerful technique. Security patches
are able to seal vulnerability holes independent of
worm signatures, but it may introduce service dis-
ruption. Network filters can minimize such distur-
bance by examining incoming and outgoing traffic
and drop traffic that exploits vulnerabilities. How-
ever, regular filters either coarsely block certain port
number or require known worm signatures. Fortu-
nately, in a recent worm-blocking project shield [29],
a vulnerability-driven network filter is developed for
the prevention of known vulnerability exploits with-
out knowing worm signatures. By applying their fil-
tering technique, beehive security shots can be de-
veloped once a vulnerability is identified, before ex-
ploiting worms come into being.

In the following section, we evaluate the effectiveness
of the beehive approach and attempt to answer the follow-
ing questions: How effective can a beehive be? What is
the reasonable size of the associated IP space?

III. EVALUATION OF BEEHIVE

In this section, we first introduce the notations used
in our analysis and describe the classic worm epidemic
model. We then derive a beehive model and present its
analytical and numerical solutions. Simulation results
are also presented to confirm beehive’s effectiveness. Fi-
nally, we analyze beehive under a more realistic two-
factor worm model.

A. Classic Epidemic Model

This paper uses i(t), v(t), and r(t) to represent the
number of infectious nodes, the number of vulnerable
nodes, and the number of inoculated nodes at time t, re-
spectively. Also we denote the total number of nodes in-
volved in a worm outbreak as N (N = i(t)+v(t)+r(t)).
The notations used throughout this paper are collected in
table I.

Suppose the infection rate of a certain worm is a con-
stant α, the classic epidemic worm propagation model
[33] with a finite population is defined by :

di(t) = α ×
v(t)

N
× i(t) × dt (1)

where v(t) = N − i(t). α × v(t)
N

× dt represents the
number of new worm nodes contributed by a single worm
source within dt period and di(t) is the number of new
worm nodes during the time period [t, t+ dt] with current
worm population i(t).
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TABLE I
NOTATION USED IN THE PAPER

Symbol Description

v(t) the number of vulnerable machines at time i during the spread of worm
i(t) the number of infectious machines at time i during the spread of worm
r(t) the number of machines which were infected but later inoculated before time t

N the total number of machines involved in a specific worm outbreak: N=v(t)+i(t)+r(t)
α/α(t) the infection rate of a (self-replicating) worm at time t

B0 the size of IP address space associated with a beehive
s the average number of machines scanned by an infected machine per unit time
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Eq (1) is also known as the logistic equation [36] and
has the following solution:

i(t) = N −
N

1 + eα(t−T )
(2)

where T is some constant dependent on the initial worm
population. Based on eq (2), example worm propagations
with three different infection rates are drawn in figure 4.
The curves are known as the logistic curves [36] and ex-
hibit the “sigmoid” shape.

B. Beehive Under Classic Epidemic Model

Let s be the average scanning rate of one worm source
probing for victims, then during the time period [t, t+dt],
the number of scan attempts from one worm source is
s × dt, and there are s × dt × i(t) scans in total for all
i(t) worm sources. Assuming the scans are uniformly dis-
tributed over all IPv4 address space (232), the probability
of a machine being scanned is α(t) = 1−(1− 1

232 )si(t)dt ≈
C0i(t)dt 2, where the constant C0 = s

232 .

With the total number of current scan attempts, the ex-
pected number of vulnerable machines that will be sub-

2The approximation is achieved by Taylor expansion based on the
fact that si(t)dt is much smaller than 232.

verted into infectious nodes during [t, t+dt] is α(t)×v(t).
In other words,

dv(t) = −C0i(t)v(t)dt (3)

The minus sign shows the decreasing number of vulner-
able nodes and thus the increasing number of infectious
nodes due to current infection attempts.

Similarly, when a beehive guarding an unused IP ad-
dress space of B0 is deployed, the probability of a worm
source hitting this IP space during time period [t, t + dt]
is β = 1 − (1 − B0

232 )sdt ≈ C1dt, where the constant
C1 = sB0

232 = B0C0. Therefore, the number of infec-
tious machines that are inoculated during the time period
[t, t + dt] is:

dr(t) = β × i(t) = C1i(t)dt (4)

By N = v(t) + i(t) + r(t), eq (4) can be rewritten as:

di(t) = −dv(t) − dr(t) = (C0v(t) − C1)i(t)dt (5)

Summing eq (3) and eq (5), we achieve beehive model
based on the classic epidemic worm propagation:

d

dt

[

i
v

]

=

[

−C1 C0i
0 −C0i

] [

i
v

]

,

i(0) = i0, v(0) = v0

(6)

where i0 is the initial infected nodes or “hit-list” [15] size,
and v0 is the initial number of vulnerable nodes.

C. Numerical and Analytical Results

Numerical solutions of eq (6) are presented in Figure 5
with varying beehive network (i.e. size of associated IP
address space) from /16 to /12 3, where the initial values

3The number /16 is the network mask length, which corresponds to
a class B network with netmask 255.255.0.0. Similarly, the number
/12 corresponds to a network with netmask 255.240.0.0.
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Fig. 5. The Effectiveness of Beehive Based on Classic Epidemic Worm Model

and average scanning rate are:

i0 = 10, v0 = 106, s = 10

The value of 106 is a reasonable estimate for initially vul-
nerable nodes. For example, it is estimated that the num-
ber of nodes vulnerable to MSBlaster is 360, 000 [8]. The
X-axis is in infection time units: each time unit is the du-
ration of one successful worm infection session (usually
several seconds to tens of seconds). The cases of different
beehives are compared with the classic epidemic model
with no beehive (“Beehive Network 0” case in Figure 5)
and random scanning strategy is assumed. Figure 5(a),
5(b), and 5(c) show the number of infectious nodes, vul-
nerable nodes, and inoculated nodes (immunized by bee-
hive), respectively. It is obvious that both the worm cover-
age and intensity have been further mitigated with larger
beehive network. A /13 beehive network is able to ef-
fectively mitigate the worm propagation by reducing the
maximum number of infection nodes to as low as 13% of
potential maximum vulnerable nodes, while a /12 network
is able to totally prevent the worm outbreak. Specially,
Figure 5 exposes two interesting results:

• Figure 5(a) shows that after the 10000th time unit,
the worm outbreak under a smaller beehive network
(/14) has fewer infectious nodes (active worm in-
stances) than the worm outbreak under a larger bee-
hive network (/13).

• Figure 5(c) shows that a smaller beehive network
(/14) inoculates more worm instances than a larger
beehive network (/13).

These seemingly unexpected results can be explained
as follows: Based on Figure 5(b), during the time pe-
riod when the first result above comes up, there exist a

larger number of remaining vulnerable nodes (which are
untouched during the outbreak) in the larger beehive case
than in the smaller beehive case. The reason for this is that
the outbreak is put under control faster by a larger beehive
network and thus fewer nodes are infected. The second re-
sult above can be explained using the same argument: A
larger beehive is able to contain the worm outbreak earlier
- more specifically - during its slow start phase [19].

The effectiveness of beehive can be better character-
ized by the acuteness (Λ) and maximum coverage (Φ) of
a worm outbreak. The acuteness of an outbreak is defined
as the first-order differentiation of i(t), i.e., Λ = di(t)

dt
,

while the maximum worm coverage (Φ) can be modeled
as max{ i(t)

N
: t ≥ 0}.
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Fig. 6. The Acuteness of Worm Outbreak

Figure 6 shows the acuteness of worm outbreaks us-
ing different beehive networks. With a larger IP address
space, beehive will be more capable of slowing down
worm propagation. Figure 7 shows the effectiveness of
beehive in reducing the maximum worm coverage. The
larger the associated IP space, the more powerful the bee-
hive in reducing the worm coverage.
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To complete our analysis, we further obtain the analyt-
ical form of maximum worm coverage Φ and the corre-
sponding time instance.

We add up the two equations in (6) and derive the fol-
lowing equation:

d(i + v)

dt
= −C1i

Based on eq (3), the previous equation can be re-written
as:

d(i + v)

dt
=

B0

v

dv

dt

Integrating on both sides, we have:

i(t) + v(t) = i0 + v0 + B0 ln
v(t)

v0
= N + B0 ln

v(t)

v0

Hence

i(t) = N − v(t) + B0 ln
v(t)

v0
(7)

When the worm propagation reaches its maximum cov-
erage, di

dt
reaches 0. From the equation of di(t)

dt
in (6), we

have
C1i(t) = C0iv(t)

Thus,

v(t) =
C1

C0
= B0.

Finally, we obtain

Φ =
i(t)

N
= 1 −

B0

N
+

B0

N
ln

B0

v0

Theorem 1: Assume that (i(t), v(t)) is the unique so-
lution of eq (6), then i reaches its maximum value Φ×N
if and only if v(t) = B0, where Φ = 1 − B0

N
+ B0

N
ln B0

v0

If we further substitute i(t) in eq (7) to eq (3) , we ob-
tain

dv

v(C0v − C1 ln v − C0C2)
= dt (8)

where C2 = N − B0 ln v0.

According to Theorem 1, i(t) reaches its maximum
value at v = B0. If we define the corresponding time
point as Γ and integrate the left-hand side of eq (8) from
v(0) = v0 to B0, the result is the same as integrating the
right-hand side from 0 to Γ:

Γ =

∫ B0

v0

dv

v(C0v − C1 ln v − C0C2)

D. Simulation Results

To verify our numerical and analytical results, we have
developed a beehive simulator based on a uniform-scan
worm simulator developed by Zou [40] to confirm the ef-
fectiveness of beehive.

In the simulation, the propagation of uniform-scan
worms is modeled in discrete time and the simulated sys-
tem consists of N (N = 106) hosts that can reach each
other directly. A host could stay in one of three states at
any time: infectious, vulnerable, or inoculated. However,
a host is in the inoculated state only when it is attempt-
ing to infect beehive and is thus immunized. The other
simulation parameters are: s = 10, i0 = 10.
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Fig. 8. Simulation: Number of Infectious Nodes

We run the simulation 100 times in a Dell PowerEdge
server with a 2.6GHz Intel Xeon processor and 2GB
RAM. Figure 8 shows the average number of infectious
nodes with varying beehive network from /16 to /12.
The time unit of X-axis is minute, which is used in this
discrete-time-based simulator and thus is different from
the infection time unit used in the numerical results. The
simulation results match well with the numerical results
in Figure 5(a). We further calculate two envelop curves
for these 100 runs based on the maximum and minimum
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values for the number of infectious hosts at each time t
and find that the maximum difference between these two
curves is only 0.4% to the population size N (106).
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Fig. 9. Simulation: Load of Beehive

Figure 9 shows the number of security shots injected
per minute during the worm propagation, which is inter-
esting for understanding the possible load on beehive. The
maximum number is 8200 per minute or 137 per second
in the case of a /14 beehive network. Interestingly, the
beehive workload is not in a linear relation with the bee-
hive IP space size. In the Figure, the ranking of beehive
peak load is /12 < /16 < /13 < /15 < /14. The reason
is similar to that for the results in Section III-C: A beehive
with a larger IP space leads to a higher worm hit rate and
therefore quenches the worm outbreak earlier, resulting in
lower worm immunization workload.

Additionally, we examine the impact of immunization
time (i.e., the time to immunize one node) on the effec-
tiveness of beehive. Figure 10 shows worm propagation
under a /14 beehive network with varying immunization
time. As expected, longer immunization time makes bee-
hive less efficient in suppressing worm propagation, but
the impact is not significant.
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Fig. 10. Simulation: Effect of a /14 Beehive Network with Varying
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E. Beehive Under Two-Factor Worm Model

The classic epidemic model is simple and does not con-
sider other factors like network congestions and human
counter-measures which could also affect the worm prop-
agation. The two-factor worm model, shown in eq (9), is
proposed to capture these factors and exhibits more real-
istic results. This subsection applies beehive to the two-
factor model. However, beehive can be generally applied
to any other worm models such as the AAWP model [25].

di(t)

dt
= α(t)× [N − rz(t)− i(t)− qz(t)]× i(t)−

drz(t)

dt
(9)

In the two-factor worm model equation, qz(t) and rz(t)
accommodate the effect of human counter-measures dur-
ing worm propagation: qz(t) represents the number of
nodes converted from the vulnerable state to the inocu-
lated state, while the rz(t) is the number of nodes con-
verted from the infectious state to the inoculated state.
The infection rate α(t), which is now a variable instead
of a constant, considers the impact of network conges-
tions caused by worm propagation itself. Other notations
are consistent with those in table I. This two-factor worm
model enhances the classic epidemic model particularly
during the last stage of worm propagation, i.e., the slow
finish stage [19].

From [20], rz(t), qz(t), and α(t) can be represented as
follows:

drz(t)
dt

= wi(t)
dqz(t)

dt
= uv(t)i(t)

α(t) = s(1 − i(t)/N)n

where constants w and u are used to adjust the rate of con-
verting nodes into inoculated state, and the constant n is
used to adjust the infection rate so that it will be sensi-
tive to the number of infectious hosts. When w = 0, u =
0, n = 0, the two factors worm model falls back to the
classic model.

Finally, we derive beehive model based on eq (9):

di(t) = α(t)[N − r(t) − i(t)]i(t)dt − drz(t)
−C1i(t)dt

dv(t) = −α(t)v(t)i(t)d(t) − dqz(t)
dr(t) = C1i(t)dt + drz(t) + dqz(t)

N = v(t) + i(t) + r(t)
(10)

The term C1i(t)dt captures the worm-immunization ef-
fect of beehive; and the r(t) here combines beehive and hu-
man counter-measures in two-factor model together and is
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Fig. 11. The Effectiveness of Beehive Based on Two-Factor Worm Model

more general than the notation of r(t) in Table I.

With the following parameters: n = 3, w = 1.5e −
6, u = 2e−12, i(0) = i0 = 10, v(0) = v0 = 106, s = 10,
we derive numerical solutions in Figures 11. The acute-
ness of worm outbreak is shown in Figure 12. These re-
sults confirm the generality and effectiveness of beehive
approach.
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Fig. 12. The Acuteness of Worm Outbreak Under Two-Factor Worm
Model

IV. DISCUSSIONS

Unused IP space The previous section has shown the
effectiveness of beehive in suppressing worm propaga-
tion. From the beehive models, the effectiveness largely
depends on the probability of worm instances hitting the
beehive. Assuming random-probing strategy during worm
propagation, a high probability of hitting the beehive re-
quires a large unused IP address space. Fortunately, bee-
hive’s IP space size requirement (e.g., a /13 network)
seems reasonable and affordable. For example, CAIDA
[1] has used a /8 network at UCSD and two /16 networks

at Lawrence Berkeley Laboratory (LBL) to collect real
data measuring the spread of the Code Red v2 worm. Four
class B networks (a /14 network) have also been used as
Internet sinks [24] for network abuse monitoring.

Avoiding beehive The fight-back nature of beehive
may disclose its associated IP space. It is possible for
a worm developer to sequentially or selectively pre-scan
the Internet space for hints to locate beehive IP addresses.
Once the fight-back activity is detected, the worm devel-
oper could presumably identify beehive and hard-code the
corresponding network space into worm code so that it
can avoid beehive.

There are several solutions: one way is to propose a
roaming beehive whose network space is not fixed. How-
ever, this roaming approach may require more IP address
space for beehive purpose. A more interesting and effec-
tive approach is to create a beehive with scattered rather
than continuous IP addresses, which will be helpful in
fighting smart topology-aware worms: each network do-
main “donates” unused IP addresses and re-directs traffic
towards these addresses to a few beehive sites. Several
recent works, including Collapsar [17] and honeyd [18],
have developed techniques for the re-direction of traffic
towards non-existent hosts in different domains to a cen-
tralized facility, run by a trusted authority. Furthermore,
with the emergence of sink hole networks [31], traffic re-
direction overhead will be significantly reduced. All these
techniques will make a beehive with scattered IP space
feasible.

Fooling beehive Spoofing is a potential way to at-
tack beehive: one worm could initiate an infection with
spoofed source address. When such infection is detected
by beehive, the ignorant beehive may inject a security shot
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to the spoofed node. Such abusing attempts need to be de-
tected and avoided, although the shot is not expected to
do any harm to the spoofed node. Several schemes have
been proposed to detect and prevent such spoofing attacks,
like router-assisted source address checking and various
authenticated methods to ensure the identity of communi-
cating peers. However, extensive study on the problem is
beyond the scope of this paper.

Proactive beehive The beehive presented in this paper
is reactive. However, a proactive beehive can also be de-
veloped, when a vulnerability is identified and the exploit-
ing worms have not yet emerged. Such proactive beehive
can be safely deployed in each network domain, and it
will actively probe and detect machines with this vulnera-
bility within its own domain. Once a vulnerable machine
is found, a security shot can be injected to prevent it from
being exploited in the future. In this case, the first assump-
tion in Section II will not be necessary.

V. A BEEHIVE PROTOTYPE

In this section, we present a signature-based prototype
to demonstrate the feasibility of beehive approach.

Figure 13 shows a generic components of a beehive:
a sensor component and a shot injector component. The
sensor component would either passively wait for worm
probings or actively monitor real-time traffic to identify
vulnerability-specific exploitations. Once an exploit is
identified, the gleaned informations such as the IP address
of the worm source and the vulnerabilities exploited by
the worm will be given to the shot injector, which then in-
jects an associated shot to the worm source. In the follow-
ing example, we describe one beehive prototype against
the Linux Adore worm [9]. The system is implemented
using RedHat 7.0 Linux operating systems.

���
���
���
���

Sensor Shot Injector

A Worm Instance

signature

1. Infection attempt 3. Shot injection

2. Identification of vulnerability exploit

Fig. 13. Generic Components of a Beehive

The Linux Adore worm attempts to propagate itself via
exploiting different un-patched services in the default in-
stallation of Linux RedHat 6.2 and 7.0 operating systems:
rpc.statd [2], wuftpd[4], BIND[3], and LPRng [5]. If there
is a node running any listed vulnerable service and it is
successfully probed, the Adore worm will try to exploit it

and execute the shell commands (shown in Figure 14) au-
tomatically regardless of which vulnerable service is ex-
ploited.

TERM="linux"
export PATH="/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin"
lynx -dump http://xx.xxx.xxx/~xxxxx/red.tar >/usr/lib/red.tar
[ -f /usr/lib/red.tar ] || exit 0
cd /usr/lib;tar -xvf red.tar;rm -rf red.tar;cd lib;./start.sh

Fig. 14. Shell Commands Propagating The Linux Adore Worm

In the current prototype, beehive leverages an open-
source IDS system, i.e., snort [34], as the sensor compo-
nent. The particular rules detecting incoming Adore worm
infection attempts are listed in Figure 15:

alert TCP $EXTERNAL any -> $INTERNAL any (msg: "IDS442/rpc-statdx"; 
flags: AP; content: "/bin|c74604|/sh";)

alert TCP $EXTERNAL any -> $INTERNAL 21 (msg: "IDS458/ftp-wuftp260"; 
flags: AP; content: "|31C0 31DB 31C9 B046 CD80 31C0 31DB 43 89D941 B03F CD80|";)

alert UDP $EXTERNAL any -> $INTERNAL 53 (msg: "IDS482/dns_named-exploit-infoleak"; 
content: "|AB CD 09 80 00 00 00 01 00 00 00 00 00 00 01 00 01 20 20 20 20 02 61|";) 
alert UDP $EXTERNAL any -> $INTERNAL 53 (msg: "IDS489/dns_named-exploit-tsig";
 content: "|3F 909090 EB3B 31DB 5F 83EF7C 8D7710 897704 8D4F20|";) 

alert TCP $EXTERNAL any -> $INTERNAL 515 (msg: "IDS457/LPRng-redhat7"; 
flags: AP; content: "|58 58 58 58 25 2E 31 37 32 75 25 33 30 30 24 6E|"; nocase;)

Fig. 15. Snort Rule Sets For Detecting The Infection of Adore Worms

Once the Adore sensor reports the exploitation attempt,
it notifies the shot injector component with the IP address
of intruding node. The injector will exploit the same vul-
nerabilities used by the Adore worm and inject adore-
bee.o, a loadable kernel module containing a set of adore
worm signatures. The signatures are shown in Figure 16.
Though the same signatures are used, adore-bee.o mod-
ule is able to drop both incoming and outgoing exploita-
tion traffic matching the signatures, while the rule sets in
Figure 15 are only used to detect incoming attempts.

drop TCP any any -> any any (msg: "IDS442/rpc-statdx"; 
flags: AP; content: "/bin|c74604|/sh";)

drop TCP any any -> any 21 (msg: "IDS458/ftp-wuftp260"; 
flags: AP; content: "|31C0 31DB 31C9 B046 CD80 31C0 31DB 43 89D941 B03F CD80|";)

drop UDP any any -> any 53 (msg: "IDS482/dns_named-exploit-infoleak"; 
content: "|AB CD 09 80 00 00 00 01 00 00 00 00 00 00 01 00 01 20 20 20 20 02 61|";) 
drop UDP any any -> any 53 (msg: "IDS489/dns_named-exploit-tsig";
 content: "|3F 909090 EB3B 31DB 5F 83EF7C 8D7710 897704 8D4F20|";) 

drop TCP any any -> any 515 (msg: "IDS457/LPRng-redhat7"; 
flags: AP; content: "|58 58 58 58 25 2E 31 37 32 75 25 33 30 30 24 6E|"; nocase;)

Fig. 16. Signatures in adore-bee.o Module

Once planted, the adore-bee.o module will be inserted
into the kernel and scrutinize every incoming and outgo-
ing packets for potential vulnerability-exploiting traffic.
Once a packet matches a signature in the signature set, the
packet is marked as worm-related traffic and thus dropped.
The performance overhead is marginal [16] since there are
only one or two signatures related to a worm in general.
The reason why the Linux Adore worm requires five sig-
natures is that it is a multi-vector worm and has the ability
to propagate itself through various channels.
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Due to the associated risks and lack of a scale worm
testbed, the system has just been deployed in a specifically
configured local network with two nodes. However, it has
shown both practicality and effectiveness by successfully
injecting a security shot from one node running beehive to
immunize another node running the Linux Adore worm.
To fully validate beehive, a scale worm testbed with tens
of thousands of nodes is needed. The DETER [38] project
is proposed to address this need, and beehive experiments
can be performed on top of it once it is available. In the
meantime, we plan to extend our beehive prototype to ad-
dress the following issues:

Heterogeneity Different system platforms and differ-
ent operating systems impose different requirements in
designing and implementing security shots. Though re-
cent active worms will usually propagate on one particu-
lar platform or one type of operating system, there are cer-
tain worms which are able to propagate on multiple plat-
forms. Developing techniques to cope with heterogeneity
is a challenging problem.

Signature independence We note that the need for
worm signatures in our current beehive prototype is
only for implementation convenience. The signature-
independent technique proposed in shield [29] will be ap-
plied to beehive security shot concoction. As soon as a
vulnerability is identified, a shield-style security shot will
be installed in the beehive to fight back any exploiting
worm in the future.

VI. RELATED WORK

Proactive or manually reactive approaches are among
the most common practices in preventing or mitigating
spreading of worms. As shown in section I, although
proactive approaches like Windows Update Service are
effective, it has shown reluctance in acceptance due to the
concern of unreliability and potential service disruption.
Also, any manual counter-measures will be invalidated by
virulent spreading of worms.

From section II, effective worm containment mecha-
nisms should be able to either decrease the flow from the
vulnerable state to the infectious state, termed as flow IN ,
or increase the flow from the infectious node to the inocu-
lated state, represented as flow OUT , or the combination.
The flow from the vulnerable state to the inoculated state
is able to decrease the number of vulnerable nodes and
thus indirectly reduce the flow IN . We classify related
work based on their impact on these two flows:

Decreasing the flow IN Most of current counter-
measures fall in this category. Moore et al. [22] explores

the effect of dynamic quarantine in confining worm propa-
gation. In particular, two defense strategies are examined:
blacklisting known infected nodes and filtering connec-
tions exhibiting worm signatures. However, they require
the existence of an efficient event notification system for
the awareness of detected infected nodes and worm sig-
natures. Williamson et al. [14] suggests modifying the
network stack so that the spreading rate of worms could
be slowed down. Such an approach requires the modi-
fication of commodity operating systems to be effective.
Chen et al. [23] proposes two rate-limiting algorithms, ei-
ther temporal or spatial, to mitigate the worm propagation
at the ISP level. The algorithms are based on the behav-
ioral difference between normal hosts and worm-infected
hosts. Particularly, a worm-infected host has a much
higher connection-failure rate when it scans the Internet
with randomly selected addresses. LaBrea [35] is a tool
that is able to create virtual presences on behalf of those
unused IP addresses on a network. The virtual presences
is able to reply the probing attempts in such a way that
makes the worm instances “stuck”. Beehive approach is
different from, and complement, these approaches, since
it can reduce the number of infectious nodes by actively
immunizing them.

Increasing the flow OUT This category requires effi-
cient worm identification and isolation/immunization. Re-
cent work [28][22] mostly focuses on the issues of worm
identification and isolation, and has not addressed the im-
munization.

Darknet 4 is another interesting research topic. Moni-
toring and characterizing background traffic for darknets
have shown promise in understanding network abuse [31]
[24], sensing Internet motions [37], and inferring certain
remote network events [26]. There exists little or no le-
gitimate traffic in the darknet and any anomaly will not
be obscured by voluminous production traffic. Additional
active responders can be further deployed to discriminate
between different types of activities, including intrusion
or attack attempts. However, they have not addressed how
to contain or suppress worms using these darknets. In an-
other interesting direction, honeypot [39] has been pro-
posed as an effective way to capture worms in the wild.
Furthermore, honeypot has also been leveraged for early
worm detection [19], global worm detention [17], or au-
tomatic worm signature extraction [32]. The concept of
evil honeypot [30], which parallels beehive effort, is pro-
posed to poison or bite back aggressive worms. However,
no formal model and analysis have been seen so far.

4A darknet is a portion of routable IP space in which no active ser-
vices or servers reside.
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VII. CONCLUSION

Destructive spreading of worms exposes the fragility of
current Internet infrastructure and invalidates any manual
counter-measures. This paper proposes beehive to sup-
press worm propagation by directly fighting back and im-
munizing worm-infecting hosts. Beehive leverages the
unused and routable IP space for worm infection cap-
ture; and beehive security shots are capable of shielding
known vulnerabilities. The effectiveness of beehive has
been evaluated and demonstrated with analysis and simu-
lation results. Furthermore, a beehive prototype has been
developed to demonstrate its feasibility.
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