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ABSTRACT
Software patch generation is a critical phase in the life-cycle
of a software vulnerability. The longer it takes to generate a
patch, the higher the risk a vulnerable system needs to take
to avoid from being compromised. However, in practice, it
is a rather lengthy process to generate and release software
patches. For example, the analysis on 10 recent Microsoft
patches (MS06-045 to MS06-054) shows that, for an iden-
tified vulnerability, it took 75 days on average to generate
and release the patch.

In this paper, we present the design, implementation, and
evaluation of AutoPaG, a system that aims at reducing the
time needed for software patch generation. In our current
work, we mainly focus on a common and serious type of
software vulnerability: the out-of-bound vulnerability which
includes buffer overflows and general boundary condition er-
rors. Given a working out-of-bound exploit which may be
previously unknown, AutoPaG is able to catch on the fly
the out-of-bound violation, and then, based on data flow
analysis, automatically analyzes the program source code
and identifies the root cause – vulnerable source-level pro-
gram statements. Furthermore, within seconds, AutoPaG
generates a fine-grained source code patch to temporarily
fix it without any human intervention. We have built a
proof-of-concept system in Linux and the preliminary results
are promising: AutoPaG is able to successfully identify the
root cause and generate a source code patch within seconds
for every vulnerability test in the Wilander’s buffer over-
flow benchmark test-suite. In addition, the evaluation with
a number of real-world out-of-bound exploits also demon-
strates its effectiveness and practicality in automatically iden-
tifying (vulnerable) source code root causes and generating
corresponding patches.
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1. INTRODUCTION
Software today is getting increasingly complicated. For

instance, the Windows XP released in 2001 contains more
than 45 million lines of code and the Windows Server 2003
has over 50 million lines of code [1]. Such complexity in-
evitably introduces software vulnerabilities, evidenced by
the fact that CERT [2] published 5, 990 new vulnerabili-
ties in year 2005, about 1.5 times of the number published
in year 2004. Moreover, we have witnessed an alarmingly
decreased time window between the release of vulnerability
information and the appearance of attack code exploiting
that vulnerability. The Blaster worm [3] (August 2003) at-
tacks a Microsoft security flaw which was announced nearly
1 month earlier. The Sasser worm [4] (May 2004) exploits
another Microsoft security flaw for which Microsoft issued a
patch less than 3 weeks ago. The Witty worm [5] (March
2004) targets a buffer overflow vulnerability in several In-
ternet Security Systems (ISS) intrusion detection software,
only 1 day after the patch was released. Even worse, most
recently, there have been a flurry of zero-day exploits 1 that
attack a variety of software, including the Windows Graph-
ics Rendering Engine [6] (December 2005), Windows Word
[7] (May 2006), Excel[8] (June 2006), and PowerPoint [9]
(July 2006). Note that these zero-day exploits are disclosed
before the corresponding patches are made available.

1In this paper, zero-day exploits are defined as those ex-
ploits that are released before or on the same day when the
vulnerability or the vendor patch are released to the public.



Advisory CVE# Vulnerability Phased Patch Released Interval (days)
MS06-054 CVE-2006-0001 11-09-2005 09-12-2006 307
MS06-053 CVE-2006-0032 11-30-2005 09-12-2006 286
MS06-052 CVE-2006-3442 07-07-2006 09-12-2006 67

CVE-2006-3443 07-07-2006 08-08-2006 32
MS06-051 CVE-2006-3648 07-17-2006 08-08-2006 22

CVE-2006-3086 06-19-2006 08-08-2006 50
MS06-050 CVE-2006-3438 07-07-2006 08-08-2006 32
MS06-049 CVE-2006-3444 07-07-2006 08-08-2006 32

CVE-2006-3590 07-14-2006 08-08-2006 25
MS06-048 CVE-2006-3449 07-07-2006 08-08-2006 32
MS06-047 CVE-2006-3649 07-17-2006 08-08-2006 22
MS06-046 CVE-2006-3357 07-06-2006 08-08-2006 33
MS06-045 CVE-2006-3281 06-28-2006 08-08-2006 41

Table 1: The time-lines of 10 recent Microsoft patches (MS06-045 to MS06-054) that are released between
August and September 2006.

If we examine the life-cycle of a software vulnerability, it
can be roughly divided into three main phases: vulnerability
discovery, patch generation, and patch installation. Among
the three phases, software patch generation is critical as it
provides the ultimate fix for a discovered vulnerability. The
longer it takes to generate a patch, the more risk a vulnera-
ble system needs to take to avoid from being compromised.
However, in practice, it is a rather lengthy process to gener-
ate and release software patches, especially in the face of the
above emerging threats. Table 1 shows the time-lines of 10
recent Microsoft patches (MS06-045 to MS06-054) [10]: af-
ter a vulnerability is identified and reported, it took a month
or even longer (75.46 days on average for the examined 10
patches) to generate and release the patch.

The long delay in generating and releasing software patches
is partially due to the current manual patch generation pro-
cess and significant challenges for patch writers. In addi-
tion to the stringent requirement of being intimately famil-
iar with the discovered vulnerability and possible exploita-
tion means, an authorized patch writer needs to laboriously
go through related source code, precisely identify and cor-
rect those vulnerable statements, and then derive an efficient
patch. After that, the patch should also go through a rig-
orous regression test phase to evaluate its robustness and
compatibility before finally releasing it to public.

A number of systems (e.g., [18, 32, 34, 35, 36, 37, 38,
39, 40, 41, 42, 44, 46, 47, 48]) have been built to mitigate
the risks introduced by the long delay. Among the most
notable, Sidiroglou and Keromytis et al. [40] proposed the
notion of automatic patch generation and explored the fea-
sibility in their follow-up works (e.g., DYBOC [41], STEM
[42], and Application Communities [45]) to automatically
derive a software patch on detected exploits by instrument-
ing (vulnerable) programs. In particular, considering every
function execution as a transaction (in a manner similar to a
sequence of operations in database), these systems will take
a snapshot of current state of the program execution when
a new transaction begins. Later, if an ongoing exploit (e.g.,
a buffer overflow attack) is detected, they will immediately
abort the current transaction and roll back the execution
to its enclosing transaction, hence “patching” the defected
execution to an uninfected state. As a result, these sys-
tems provide run-time patches that are essentially based on
a number of execution context snapshots taken whenever a

potential vulnerable transaction is invoked.
In this paper, we explore another alternative: instead of

generating run-time patches, we aim to derive source code
level software patches. There are at least two major differ-
ences between a source patch and a run-time patch: (1) The
run-time patch is a temporary fix to a software vulnerability.
To ultimately eliminate a vulnerability, a final source patch
is still necessary to generate an official patch. (2) To en-
able the run-time patch, it is necessary to snapshot current
program context whenever a new transaction is started. In
other words, every potential vulnerable function invocation
could result in a new snapshot being taken, which introduces
relatively high performance overhead (e.g., 30% for STEM).
For the source patch, once it is installed, it only incurs very
limited or even no performance degradation.

We have created a proof-of-concept system in Linux called
AutoPaG that aims at significantly reducing the time needed
for source patch generation. In our current work, we mainly
focus on a common and serious category of software vulnera-
bility: the out-of-bound vulnerability, including buffer over-
flows and general boundary condition errors. Given a work-
ing out-of-bound exploit which may be previously unknown,
AutoPaG is able to catch on the fly the out-of-bound viola-
tion, and then, based on data flow analysis, automatically
analyzes the program source code and identifies the root
cause – vulnerable (source-level) program statements. Fur-
thermore, within seconds, AutoPaG generates a fine-grained
source patch to temporarily fix it without any human inter-
vention. We point out that the root cause identification
at the source code level and the generation of a temporary
patch could greatly help an authorized patch writer to gen-
erate the official patch.

We have evaluated AutoPaG with the Wilander’s buffer
overflow benchmark test-suite [30] as well as a number of
real-world out-of-bound exploits against widely deployed soft-
ware (e.g., wu-ftpd). The results are encouraging: for every
vulnerability test in the Wilander’s test-suite, AutoPaG is
able to successfully identify the root cause at the source code
level and automatically generate a source patch within sec-
onds. Also, the evaluation with five real-world out-of-bound
exploits [11-15] further confirms its effectiveness and practi-
cality in automatically identifying (vulnerable) source code
root cause and generating source patches.

The rest of this paper is organized as follows: Sections 2
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Figure 1: An overview of AutoPaG.

presents an overview of AutoPaG while the detailed design
is described in Section 3. Section 4 provides the evaluation
based on the Wilander’s buffer overflow benchmark as well
as five real-world out-of-bound exploits. Section 5 examines
its limitations and possible countermeasures, followed by a
discussion of related work in Section 6. Finally, Section 7
concludes.

2. AUTOPAG OVERVIEW
Figure 1 shows the overall architecture of AutoPaG that

consists of three main components: (1) The out-of-bound de-
tector instruments the source code of a vulnerable program
and will capture ongoing out-of-bound exploits; (2) The root
cause locator, upon the detection of an exploit, will examine
the faulty instructions as well as related context information
to identify the root cause – the vulnerable source code state-
ments; (3) The source patch generator will transform the
vulnerable source code by generating a vulnerability-specific
source code patch, hence preventing the same vulnerability
from being exploited. The patch is then integrated back
to the detector so that the same vulnerability will not be
reported again.

In the following subsections, we describe in detail the
techniques used by these three components: Section 2.1 de-
scribes the detection approach used by the detector to cap-
ture out-of-bound exploits. The algorithm used by the loca-
tor to accurately identify the responsible vulnerable state-
ments will be discussed in Section 2.2. Finally, Section 2.3
presents how a vulnerability-fixing patch is generated.

2.1 Detecting Out-of-Bound Exploits with Bounds
Checking

The detector is responsible for capturing ongoing exploits.
Note that there already exist a number of approaches that
can be potentially used for exploit detection, such as sys-
tem randomization (e.g., address space layout randomiza-
tion (ASLR) [21, 22], instruction set randomization [19, 20],
system call randomization [23], and N-variant systems [24]),
taint analysis (e.g., TaintCheck [37], Vigilante [44], and Ar-
gos [48]), and bounds checking [25, 27, 28, 29, 51]. These
approaches have different pros and cons. For example, the
ASLR randomizes the memory layout of a running process,
which makes it hard for an exploit to accurately locate the
injected attack code and existing program code (e.g., libc
functions), hence preventing the attack from successfully hi-
jacking the control flow. Unfortunately, it will also crash the
running program in the presence of an attack, and fails to
provide sufficient information to trace back to the vulnera-
ble instruction(s). For example, the context information, in-
cluding the call stack, can be lost or completely destroyed by
the attack [46, 47]. The instruction-level taint analysis such
as TaintCheck [37] can identify the vulnerable instruction at
the machine instruction level. However, it cannot provide

semantic-level information related to the attack. Note that
the goal of our detector is to provide useful information at
the source code level for a detected attack. For this reason,
existing bounds check systems [25, 51] can be used as the
basis for our detector.

1 #include <string.h>
2 int main(int argc, char **argv) {
3 char buf[4];
4 char *p;
5 p = buf;
6 strcpy(p, argv[1]);
7 return 0;
8 }

Figure 2: An example code containing an out-of-
bound vulnerability.

However, the original bounds checking approach is still
not sufficient for our purpose. Particularly, when an out-
of-bound access is detected, we would like to obtain fur-
ther information about the attack, e.g., which variable or
data is overflowed? What are those statements making the
out-of-bound access possible? Note that such information
is crucial to the subsequent automated root cause (source
code level) identification. As an example, Figure 2 shows a
classic piece of code that contains an out-of-bound vulner-
ability or, more specifically, a buffer overflow vulnerability.
Suppose this vulnerable program is executed with a long
string argument (more than 4 bytes) that will overflow the
local variable buf, our detector needs to return the access
statement directly causing the out-of-bound violation, i.e.,
line 6 strcpy(p, argv[1]), the local pointer variable p, as
well as buf for our later use. We will describe its design in
detail in Section 3.1.

2.2 Identifying Root Cause with Data Flow
Analysis

After an out-of-bound violation is detected, we first de-
termine the variable that is overflowed by this violation. By
leveraging this variable, we further reason about the root
cause behind the out-of-bound violation. In particular, our
system finds out those program source code statements that
contribute to the computation of the overflowed variable.
For instance, if the overflowed variable is a pointer, we need
to find out its declaration statement, its scope and aliases,
as well as possible references and dereferences. These state-
ments need to be examined to eliminate the detected out-of-
bound vulnerability as they provide important information
on where the overflowed variable comes from (the declara-
tion statement) and how it is processed (e.g., its references,
dereferences, and aliases) etc. In other words, as these state-
ments contribute to the vulnerability behind the violation,
they should be revised and patched. To this end, we propose



Algorithm 1 Calculate sSet, eSet

Require: s0Set 6= ∅
{Initializing eSet with the detected out-of-bound variable e0}

1: eSet ⇐ {e0|S(e0) ∈ s0Set ∧OutOfBound(e0)}.
{Initializing sSet with the detected direct out-of-bound statement s0Set}

2: sSet ⇐ s0Set.
3: while sSet keeps adding do
4: Visiting Stmt (S)
5: match S with

{If it is a declaration statement, add it to sSet if it contains a tainted variable ei.}
6: DECLARE(ei): ei ∈ eSet → sSet ⇐ sSet ∪ {S}.

{If it is an assignment operation ei = ej and ei is a tainted variable, add it to sSet and update eSet with ej .}
7: ASSIGN(ei,ej): ei ∈ eSet → eSet ⇐ eSet ∪ {ej}, sSet ⇐ sSet ∪ {S}.

{If it is a unary operation, add it to sSet if it references/dereferences a tainted variable ei.}
8: UNOP(ei): (deref(ei) ∨ ref(ei)) ∧ ei ∈ eSet → sSet ⇐ sSet ∪ {S}.

{If it is a binary operation, add it to sSet if it references/dereferences a tainted variable ei.}
9: BINOP(ei,ej): ((deref(ei) ∨ ref(ei)) ∧ ei ∈ eSet) ∨((deref(ei) ∨ ref(ei)) ∧ ej ∈ eSet) → sSet ⇐ sSet ∪ {S}.

{If it is a function call, add it to sSet if the parameter is passed by reference to a tainted variable ei. Visit the function
body if needed}

10: CALL(f, ei): CallByRef(ei) ∧ ei ∈ eSet → sSet ⇐ sSet ∪ {S}, notCStdFun(f) ∧ CallByRef(ei) ∧ ei ∈ eSet →
Visiting Stmt (f.body).

11: end match
12: end while
13: output sSet, eSet

a data flow analysis algorithm outlined in Algorithm 1.
The goal of the algorithm is to calculate the vulnerability-

relevant statements (as the tainted set). It starts from the
overflowed variable as well as the initial access statement
causing the out-of-bound violation (provided by our detec-
tor). In our notation, sSet stands for a set of tainted state-
ments contributing to the vulnerability (e.g., the initial ac-
cess statement causing the out-of-bound violation), as well
as other statements that contain the references/dereferences
of the tainted variables; eSet is a set of tainted variables in-
cluding the overflowed variable and its aliases etc; s0Set is
the initially identified access statement causing the out-of-
bound violation; S represents a source code statement while
ei or ej refers to a variable that is included in the statement
S. For the convenience of analysis, each tainted statement
contains the corresponding location information while each
tainted variable contains its scope information.

Algorithm 1 repeatedly examines every statement in
the source code until no additional tainted statement is
added to sSet. Specifically, our algorithm differentiates dif-
ferent types of program statements.

• Declaration Statement: If the variable declaration state-
ment (DECLARE(ei)) contains a tainted variable (ei ∈
eSet), then this statement is included (sSet ⇐ sSet∪
{S}) for further analysis. The reason is that from the
declaration statement, we can infer the allocated buffer
size of the declared variable.

• Assignment Statement: If the lvalue (ei) of assignment
operation (ASSIGN(ei,ej)) is tainted, then its original
source ej as well as the corresponding statement are
also tainted (eSet ⇐ eSet∪ {ej}, sSet ⇐ sSet∪ {S}).
Essentially, this match operation is used to capture the
sources of the tainted pointers (from aliases). Note
that the string handling glibc functions (e.g., strcpy,
strcat, and memcpy) are considered as the assignment
operations; therefore, when the destination parameter

of these functions is tainted, its source and other cor-
responding arguments are also tainted.

• Unary/Binary Operation Statement: If a tainted vari-
able (e.g., a global variable) is used in different state-
ments, we need to identify all of their uses because
these statements may contribute to the propagation
of the tainted variable. This is achieved by check-
ing all of unary operations (UNOP(ei)): if the as-
sociated operation is a pointer reference (ref(ei)) or
dereference (deref(ei)), then the statement is tainted
(sSet ⇐ sSet∪ {S}). Similarly, for every binary oper-
ation (BINOP(ei,ej)), if ei or ej is tainted, this state-
ment is also tainted.

• Function Call Statement: If the tainted pointer vari-
able is passed to a function, we also examine this func-
tion. Particularly, if we check the function invoca-
tion statement CALL(f, ei) and find one of its argu-
ments is tainted (ei ∈ eSet) and called by reference
(CallByRef(ei)), then the function invocation state-
ment is tainted (sSet ⇐ sSet ∪ {S}). In addition, if
the function called is not a standard C library func-
tion (notCStdFun(f)), then the called function body
will be included for further analysis (Visiting Stmt
(f.body)). We exclude the C standard library function
mainly because it is only their unsafe usage (e.g., no ar-
gument bounds checking for strcpy) that leads to the
security vulnerabilities, and the functions themselves
are considered as safe (containing no bug in them).

To better understand the algorithm, we use the code shown
in Figure 2 as a simple illustration. As described in Sec-
tion 2.1, when we run this program with an argument of
a long string (more than 4 bytes), the detector will re-
port an out-of-bound violation that is caused by: line 6
strcpy(p, argv[1]). After that, our data flow analysis is
invoked to calculate sSet and eSet. Initially, the pointer p



is tainted since the out-of-bound write takes place at the ad-
dress to which pointer p points, and argv[1] is tainted since
strcpy equals to the ASSIGN operation. Next, because the
pointer p is the alias of buf (p = buf), the variable buf is
also considered as tainted. Lastly, it finds these two vari-
ables’ declarations (char buf[4], char *p) which are also
tainted. The calculated results of sSet and eSet for this
example are presented in Table 2.

s0Set strcpy(p, argv[1])

3: char buf[4]
4: char *psSet
5: p = buf
6: strcpy(p, argv[1])

main: p
eSet main: buf

main: argv[1]

Table 2: Root cause identification for the out-of-
bound vulnerability in Figure 2.

In general, Algorithm 1 needs to scan the source code
(in terms of its intermediate representation) a few passes to
calculate sSet and eSet (the last pass is used to determine
whether there is an addition to sSet). The sSet contains
only a few statements partially due to the observation that
related statements tend to be grouped together (e.g., inside a
function), which is confirmed by our experiments with real-
world programs. However, in the worst case, sSet might
contain every statement.

2.3 Preventing Out-of-Bound Exploits with Au-
tomated Source Patch Generation

After identifying the initial access statement (s0Set) as
well as the relevant statements (sSet), our system will auto-
matically derive a source patch that prevents the identified
vulnerability from being exploited.

Consider how an official patch is manually developed for
an out-of-bound vulnerability: The patch writer will first
identify the exact location of the vulnerability, then deter-
mine the size of the vulnerable buffer, and finally rewrite
some part of the program (e.g., replace strcpy with strncpy)
to eliminate the out-of-bound error. Our source patch gen-
eration is motivated by this manual process and is developed
to automate it without human intervention. In particu-
lar, the source patch will truncate any (illegal) out-of-bound
writes, and ensure the out-of-bound reads to be within the
bound. With the identified out-of-bound vulnerability in
Figure 2 as an example, our source patch generator will re-
place strcpy(p, argv[1]) as strncpy(p,argv[1],4). The
detailed design on how to achieve this will be described in
Section 3.3.

3. DETAILED DESIGN

3.1 Out-of-Bound Detector
Our detector component captures out-of-bound violation

by instrumenting the program source code with necessary
run-time bounds checking. Specifically, we leverage the CCured
memory safety system [51], which infers and divides all pro-
gram pointers into three main categories: SAFE pointers
(for pointers without casts or pointer arithmetic), SEQ/FSEQ
pointers (for pointers involved in pointer arithmetic but not
in pointer casts), and WILD pointers (for pointers involved

in pointer casts, in particular the arbitrary casts). Note that
the bounds checking code can obtain the related meta-data
information, e.g., the size information of these pointers [51].
At runtime, the instrumented code ensures that SEQ/FSEQ
pointers never go out of bound and WILD pointers do not
clobber the memory of other objects. If the original program
contains an out-of-bound vulnerability, the instrumented
code will detect the out-of-bound access, report an access
violation, and abort or stop current process execution.

However, the basic bounds checking capability is still in-
sufficient for our purpose. Particularly, we require other
information related to a detected access violation, includ-
ing which statement causes the violation and which vari-
able or data is overflowed by the violation. We point out
that CCured will report the occurrence of a violation and
the detected location in the source code. However, it does
not pinpoint the overflowed data and the identified location
might not be accurate. For example, for the vulnerability
shown in Figure 2, it will report that “Failure UBOUND
at lib/ccuredlib.c:3941: __read_at_least_f()”, and it
is located at “lib/ccuredlib.c:3941”. Therefore, we pro-
vide our own instrumentation code to obtain the overflowed
variable/data and derive the accurate location information.
Specifically, we replace the original memory checking library
functions (in ccuredcheck.h and ccuredlib.c) and the as-
sociated wrapper functions (e.g., wrappers for strcpy) with
our own, such that, if an out-of-bound violation is caused
by the current program implementation and the initially
identified location is located in an external library function,
our implementation will further traverse the call-stack to ac-
curately locate the calling location of the invoked external
function in the program source code.

As a simple illustration, we again use the example code
shown in Figure 2. When we test this program with a mali-
cious parameter (e.g.,“aaaaaaaaaa”), our detector will suc-
cessfully intercept the out-of-bound write, and it then tra-
verses the runtime call-stack (shown in Figure 3) from the
most-inner helper function ccured_fail_str to the outer
wrapper function strcpy_wrapper_sff, which is called by
the main function. Note that the out-of-bound write is
taking place in the strcpy_wrapper_sff function and our
detector then further infers that the statement test.c:6

strcpy(p, argv[1]) is the one that directly triggers the
out-of-bound violation.

3.2 Root Cause Locator
After the overflowed variable and the access statement

causing the out-of-bound violation are identified, the root
cause locator will use them to determine those tainted sets
of statements and variables. Based on the data flow analysis
algorithm (shown in Algorithm 1), we need to scan the
program’s source code a number of rounds until there is no
additional statement that will be considered as tainted.

Specifically, given an intermediate (compiler-generated)
representation of a program, our detector works as follows:
(i) First, with the input (i.e., s0Set, e0Set) provided by our
detector, the locator examines the high level syntax tree and
visits every statement. (ii) Second, on the basis of the data
flow analysis algorithm (Algorithm 1), it taints visited
statements and their variables if they are related to the de-
tected vulnerability. (iii) Thirdly, it repeats the whole pro-
cess until there is no additional tainted statement. Based
on the observation that most of the identified statements



#0 0x0804b0fb in ccured_fail_str (str=0x805cc73 "Ubound", file=0x805cc12 "lib/ccuredlib.c", line=3941,
function=0x805daa5 "__read_at_least_f") at lib/ccuredlib.c:909

#1 0x0804b15d in ccured_fail (msgId=3, file=0x805cc12 "lib/ccuredlib.c", line=3941, function=0x805daa5
"__read_at_least_f") at lib/ccuredlib.c:923

#2 0x0804fa0f in __read_at_least_f (ptr={_p = 0xbfaa9f90, _e = 0xbfaa9f94}, n=11) at lib/ccuredlib.c:3941
#3 0x0804fa75 in __copytags_ff (dest={_p = 0xbfaa9f90, _e = 0xbfaa9f94}, src={_p = 0xbfaabed2, _e =

0xbfaabedd}, n=11) t lib/ccuredlib.c:3947
#4 0x0804a0dc in strcpy_wrapper_sff (dest=0xbfaa9f90 "", dest_e=0xbfaa9f94, src=0xbfaabed2 "aaaaaaaaaa",

src_e=0xbfaabedd) at string_wrappers.h:79
#5 0x0804a006 in main (argc=2, __argv_input=0xbfaaa014) at test.c:6

Figure 3: The call stack information when detecting the out-of-bound violation in Figure 2.

373 void vuln_bss_return_addr(int choice) { /* Attack form 4(a)*/
374 static char propolice_dummy_2[10];
375 static long bss_buffer[BUFSIZE];
376 static long *bss_pointer;
377 char propolice_dummy_1[10];
378 int overflow;
379
380 void * addr = &choice;
381
382 if ((choice == 11) &&
383 ((long)&bss_pointer > (long)&propolice_dummy_2)) {
384 /* First set up overflow_buffer with the address of the
385 shellcode, a few ’A’s and a pointer to the return address */
386 overflow = (int)((long)&bss_pointer - (long)&bss_buffer) + 4;
387 overflow_buffer[0] = (long)&shellcode;
388 memset(overflow_buffer+1, ’A’, overflow-8);
389 overflow_buffer[overflow/4-1] = (long)(addr-1);
390
391 /* Then overflow bss_buffer with overflow_buffer */
392 memcpy(bss_buffer, overflow_buffer, overflow);
393
394 /* Overwritten data from bss_buffer is copied to where
395 the bss_pointer is pointing */
396 *bss_pointer = bss_buffer[0];
397 }
398 else printf("Attack form not possible\n");
399 return;
400 }

Figure 4: One of the buffer overflow vulnerabilities
in Wilander’s test-suite.

belong to one or a few functions (the locality property), we
have optimized our locator by scanning within an identified
function a few passes until there is no addition to the sSet
before examining other functions. Note our current pro-
totype is implemented on the intermediate representation
provided by CIL [50]. However, it is certainly applicable to
other compiler systems including gcc.

To provide a detailed illustration of how our locator works,
we use a real world example – a vulnerable program in
the Wilander’s benchmark test-suite. Figure 4 only shows
those lines of code that are related to our discussion. More
specifically, it contains an out-of-bound vulnerability (at
line 392) that overflows the bss_buffer variable. Once
this line is identified, our locator first taints the overflowed
data bss_buffer as well as the corresponding parameters
overflow_buffer and overflow. After that, the function
vuln_bss_return_addr is examined and the data flow anal-
ysis is repeatedly applied to locate those tainted statements
and variables. Eventually, we identify 12 lines of code in
sSet and 7 tainted variables in eSet. The results of the
tainted sets are shown in Table 3.

3.3 Source Patch Generator
Once the tainted sets of statements and variables are iden-

tified, our source patch generator will rewrite some of them
and attempt to automatically repair the vulnerability. In the

s0Set 392: memcpy(bss_buffer, overflow_buffer, overflow)

45: long overflow_buffer[OVERFLOWSIZE]
46: char shellcode[] = ’’\xeb\x1f\...\xff/bin/sh’’

375: static long bss_buffer[BUFSIZE]
376: static long *bss_pointer
378: int overflow
380: void * addr = &choicesSet
386: overflow =
(int)((long)&bss_pointer - (long)&bss_buffer) + 4
387: overflow_buffer[0] = (long)&shellcode
388: memset(overflow_buffer+1, ’A’, overflow-8)
389: overflow_buffer[overflow/4-1] = (long)(addr-1)
392: memcpy(bss_buffer, overflow_buffer, overflow)
396: *bss_pointer = bss_buffer[0]

global_variable: overflow_buffer
global_variable: shellcode
vuln_bss_return_addr: bss_buffereSet
vuln_bss_return_addr: bss_pointer
vuln_bss_return_addr: overflow
vuln_bss_return_addr: addr
vuln_bss_return_addr: choice

Table 3: Root cause identification for the out-of-
bound vulnerability in Figure 4.

following, we describe how the generator calculates the vul-
nerable buffer boundaries and deals with the out-of-bound
accesses (i.e., read or write):

• Determining vulnerable buffer boundaries Since the buffer
sizes pointed by many pointers cannot be statically
determined, we need to instrument necessary code to
dynamically determine them. Fortunately, our detec-
tor already calculates the boundary information when
detecting possible out-of-bound violation. We can sim-
ply re-use the same code and add bound-fixing instru-
mentation code to correct it. To be more specific, we
extend the CCured’s implementation by associating
related meta-data (e.g., the beginning addresses and
ending addresses for SEQ/FSEQ pointers) to those
pointers that need to be analyzed (i.e., in eSet). Based
on these meta-data, we can then properly handle pos-
sible out-of-bound accesses.

• Fixing out-of-bound reads For an out-of-bound read,
our current prototype redirects the read to a value lo-
cated within the buffer boundary. For example, sup-
pose p[i] (e.g., i = 10) is an out-of-bound read (it
does not necessarily mean that every p[i] is unsafe!).
we will redirect p[i] as p[i mod size], where the size
is calculated by (x.e− x.b) / sizeof(τ), where τ is the
type being read, x.b (the beginning address) and x.e
(the ending address) are the associated meta-data for
the destination buffer x. Intuitively, any value can be
used for the redirection. However, in practice, it is pos-
sible that the redirected value may be used to as a con-



Detector Locator Generator
Attack Type Attack Targets (Detected?) (#LOCs) (#LOCs) (Prevented?)

Return address
√

8 21
√

Old base pointer
√

10 22
√

Buffer overflow Function pointer as local variable
√

11 24
√

on stack Function pointer as parameter
√

12 25
√

Longjmp buffer as local variable
√

10 28
√

Longjmp buffer as function parameter
√

15 32
√

Buffer overflow Function pointer
√

13 26
√

on heap/bss Longjmp buffer
√

13 29
√

Return address
√

14 27
√

Old base pointer
√

15 30
√

Buffer overflow Function pointer as variable
√

14 29
√

of pointers Function pointer as function parameter
√

15 36
√

on stack Longjmp buffer as variable
√

13 31
√

Longjmp buffer as function parameter
√

15 30
√

Return address
√

12 36
√

Buffer overflow Old base pointer
√

14 38
√

of pointers Function pointer as variable
√

14 29
√

on heap/bss Longjmp buffer as variable
√

16 28
√

Table 4: The effectiveness of AutoPaG with Wilander’s benchmark test-suite.

dition to break out current while() loop. As a result,
before instrumenting the read redirection, we need to
first check the source code to determine whether the
redirected value is used as a loop condition. If so,
we will choose another value to avoid resulting in a
dead loop. However, this value for the redirected read
might introduce undesirable side-effects to current run-
ning program. As such, the automatically generated
source patch will contain a side note, which needs to be
manually resolved by the authorized patch writer. We
point out that our evaluations so far (with 23 different
vulnerability tests) have not encountered this issue.

• Fixing out-of-bound writes Similar to the above ap-
proach in fixing out-of-bound reads, fixing out-of-bound
writes requires the additional bounds fixing code to
discard those writes. More specifically, for an out-of-
bound write, when the bound checking code finds it
to be an out-of-bound write, the instrumentation code
will either truncate the out-of-bound write, such as
replacing strcpy with strncpy, strcat with strncat,
etc., or silently do nothing (it is essentially equal to the
truncation). For example, when executing an state-
ment *(p+i)=variable, if p has already pointed to
outside of its destination buffer boundary, the instru-
mented code can simply skip this statement. We also
point out that there might exist a need to write a
NULL value to the end of the pointed buffer if current
out-of-bound write is related to a string type (similar
to existing library functions for handling C strings).

After having fixed the identified vulnerable statements,
the generator will automatically compile the patch code to-
gether with other unaffected code to produce a new exe-
cutable that is not vulnerable to the detected exploit. Note
that our bounds fixing scheme can be directly applied to
a program’s intermediate representation. If a statement is
vulnerable, the intermediate representation can be directly
repaired with our bound-fixing instrumentation code. If it is
not vulnerable, its current representation will remain intact.

4. EVALUATION
We have created a proof-of-concept system in Linux. To

verify the effectiveness and responsiveness of our system, we
have deployed it in our lab and conducted a number of ex-
periments. We used a buffer overflow benchmark test-suite
developed by Wilander et al. [30], as well as five additional
real-world exploits [11-15] in our evaluation. These experi-
ments are performed in a machine with two 2.4G Pentium
processors and 1G RAM running the Linux kernel 2.6.3 op-
erating system. The vulnerable programs are transformed
with CIL 1.3.5 and CCured 1.1.2 (with Ocaml 3.09.0) and
compiled with gcc 4.0.

4.1 Effectiveness

4.1.1 Wilander’s Benchmark Test-Suite
There exists 18 different buffer overflow attacks in the

publicly available Wilander’s Benchmark Test-Suite 2. Based
on the overwritable buffer locations and exploitation tech-
niques, these 18 test cases can be mainly classified into four
categories: (1) The first category overflows a stack-based
buffer all the way to an attack target (that can be either a
return address, the old base pointer, a function pointer, or
even a longjmp buffer); (2) The second category overwrites
a heap/bss-based buffer all the way to an attack target; (3)
The third category attacks a stack-based pointer so that it
points to an attack target; (4) The forth category fills a
heap/bss-based pointer with a location that points to an
attack target. Table 4 reports these 18 test cases. In partic-
ular, it highlights the attack target addressed by each test
case. Interested readers are referred to [30] for more details.

AutoPaG is able to successfully detect (the 3rd column of
Table 4) all exploitation attempts introduced by the bench-
mark. Moreover, for each detected attack, AutoPaG auto-
matically identifies a set of source-level statements that are

2Note the paper [30] presenting the test-suite described 20
different attacks while the publicly available program actu-
ally contains 18 of them.



CVE# Program Vulnerability Description
CVE-2002-1549 Lhttpd 0.1 Buffer overflow in Log function in util.c

CVE-2002-1816 ATPhttpd 0.4b Buffer overflow in the sock_gets function in sockhelp.c

CVE-2002-1904 GazTek ghttpd 1.4 Buffer overflow in Log function in util.c

CVE-2003-1228 Mathopd 1.4p2 Buffer overflow in the prepare_reply function in request.c

CVE-2003-0466 Wu-ftpd 2.6.2 Buffer overflow in the fb_realpath function in realpath.c

Table 5: Evaluating AutoPaG with real-world software and their vulnerabilities.

Detector Locator Generator Locator (#LOCs)
Program Total(#LOCs) (Detected?) (#LOCs) (#LOCs) (Prevented?) / Total (#LOCs)

Lhttpd 0.1 893
√

14 87
√

1.568%
ATPhttpd 0.4b 1214

√
9 59

√
0.741%

GazTek ghttpd 1.4 837
√

14 87
√

1.673%
Mathopd 1.4p2 5027

√
19 320

√
0.380%

Wu-ftpd 2.6.2 19949
√

54 461
√

0.271%

Table 6: The effectiveness of AutoPaG with real world programs and their vulnerabilities.

responsible for the vulnerability exploited by the detected
attack. With this set, a patch writer can significantly narrow
down the source code he/she needs to examine and correct,
reducing the time and efforts needed to generate a patch.
As shown in the 4th column of Table 4, AutoPaG correlates
each detected exploit to the set (in a size from 8 to 16) of
related source statement. We manually examine the source
code in the benchmark and the results confirms with the
automated output from AutoPaG.

Table 4 (the 5th column) also shows the number of lines of
code (LOCs) in the generated source patch by AutoPaG. To
evaluate their effectiveness, we apply these source patches,
compile them with the original programs, and repeat the
same set of experiments. The results are encouraging: these
automatically-generated patches are able to prevent all of
these attacks!

Meanwhile, it is interesting to point out that the patched
benchmark process will be unexpectedly terminated in 11 of
these test cases. A detailed investigation shows that these
unexpected terminations reveal a bug in the original bench-
mark implementation that will invoke an uninitialized func-
tion pointer that is supposed to be overwritten by the attack.
As an example, our generated patch terminated the bench-
mark process when testing the vulnerability shown in Fig-
ure 4. The reason for the termination is due to the NULL
dereference by the pointer variable bss_pointer. Within
the vuln_bss_return_addr function, the bss_pointer vari-
able is defined as an uninitialized static variable. As a re-
sult, it is considered as a bss-based variable, and will be
initialized as zero by default. In the original benchmark im-
plementation, the vuln_bss_return_addr function will wait
for the memcpy(bss_buffer, overflow_buffer, overflow)

function to overwrite this bss variable. However, due to
the fact that our patch successfully prevents the overwrit-
ing attempt and hence the bss_pointer will remain as zero
(a NULL pointer). Once it is being dereferenced, it will
immediately cause the termination of the benchmark pro-
cess. After we initialize this variable to a dummy function,
the patched benchmark process will run normally and all of
these attacks are successfully prevented.

4.1.2 Real-World Buffer Overflow Attacks
In this subsection, we further evaluate the effectiveness of

AutoPaG with real-world buffer overflow attacks. We choose
5 of them , primarily because the source code as well as the
attack code are publicly available from the Internet [11-15].
These vulnerable programs and the tested vulnerabilities are
described in Table 5.

We run these vulnerable programs under AutoPaG and all
of those exploitation attempts are successfully captured by
our bounds checking based detector. For these applications,
we find no false positives and false negatives, demonstrating
the effectiveness of the bounds checking-based approach. To
evaluate the effectiveness of our locator, we again use the size
LOCs of the related source statement (sSet) as the metrics
and the results are shown in Table 6.

By showing the total LOCs of the original program in Ta-
ble 6, we can more easily compare the set size of the related
source statement with the total size. Particularly, based on
these numbers, it is likely that many software vulnerabili-
ties might only involve a small piece of code. Consequently,
if this small piece of code can be accurately identified, the
patch writer will be relieved from the burden of examining
other unrelated source code and then derive a patch in a
more timely fashion.

Table 6 also contains the LOCs (the 5th column) of the
source patches generated by AutoPaG. We would like to em-
phasize that the AutoPaG patch is not intended to serve as
the official patch. Instead, it is our goal that the identifi-
cation of only those related source code statements and the
generation of a temporary source patch can provide conve-
nient, timely hints for a patch writer to derive the official
patch, hence reducing the time for patch generation and re-
lease.

4.2 Responsiveness
We measure the responsiveness of AutoPaG by counting

the time needed for source code root cause identification
(done by our detector and locator) and source patch gener-
ation (done by our generator). We also measure the time
needed to recompile (by gcc) the patched program source
code, and compare it with the time needed to compile the
original unpatched source code. These results are presented
in Table 7. We observe the whole process (the 4th column)
only take tens of seconds or even seconds to complete. When
compared with the time needed for normal program compi-



Our System (seconds) Compilation
Program Locator & Generator Recompilation by gcc Total by gcc (seconds) Ratio

Lhttpd 0.1 2.381 0.761 3.142 0.711 4.4X
ATPhttpd 0.4b 2.154 0.884 3.038 0.847 3.6X
GazTek ghttpd 1.4 2.313 0.723 3.036 0.697 4.4X
Mathopd 1.4p2 6.157 2.372 8.529 2.326 3.8X
Wu-ftpd 2.6.2 23.096 7.726 30.822 7.514 4.1X

Table 7: Comparison of time cost between our system and gcc.

lation (the 5th column), the overall process including the
identification of source code root cause, source patch gen-
eration time, and additional recompilation time only causes
4.1 times slowdown on average. Most importantly, the whole
process can be automatically conducted without any human
intervention. Meanwhile, we point out that our total re-
sponse time could be further reduced if we keep the compiled
objects of those unaffected files. The reason is that our gen-
erated patch only affects a very small number of files, hence
significantly reducing the time for the recompilation.

4.3 Performance

4.3.1 Performance of the Detector
For the performance overhead of our detector, we use the

set of software in Table 6 for our evaluation. As these soft-
ware provide various network-oriented services, we measure
the response time while requesting large files from them.
For instance, we request a file using the ftp protocol from
wu-ftpd, while requesting another file with the same size us-
ing the http protocol from Lhttpd, Ghttpd, Mathopd and
ATPhttpd. Note that all of these software are instrumented
with our detector to detect possible out-of-bound attacks.
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Figure 5: Performance evaluation of our detector.

Figure 5 shows the measurement results. We observe that
our detector, which is primarily based on CCured, did de-
grade the performance from 1.1X to 1.4X for these tested 5
programs. However, we consider the slowdown acceptable as
we only use them for attack detection and patch generation
purpose, not in high-demanding production environments.

4.3.2 Performance of the Generated Patch
Micro-evaluation We measure the performance slowdown

for those affected functions that will be “patched” by the
generated source patch. Figure 6(a) shows the affected func-
tions in the experimented software and the corresponding
performance degradation. We observe that our instrumented
code only imposes small overhead: most of them incur the
slowdown of less than 5% while the worst case – fb_realpath

function – incurs 25% slowdown.
Macro-evaluation We also measure the performance im-

pact of our generated patch on the application as a whole.
Existing bounds checking systems [25, 27] usually impose
significant performance overhead due to the need of exten-
sively checking every related function. However, since our
patch only checks those identified vulnerable statements,
high performance cost should not occur. The result of our
measurement is described in Figure 6(b). As expected, our
patch only imposes very small overhead – from 0% to 5%.

5. DISCUSSION
In the following, we examine the limitations of the Au-

toPaG prototype and discuss possible counter-measures.

• First, the current prototype only addresses one com-
mon and severe vulnerability – the out-of-bound vul-
nerability – and does not consider other types (e.g.,
format string bugs, integer overflows, and race condi-
tion errors). The development of next-generation Au-
toPaG should take these vulnerabilities into account.
We point out that different vulnerabilities may re-
quire different mechanisms or even different method-
ologies for accurate detection and repair. For exam-
ple, exploiting a format string vulnerability can be de-
tected and prevented using a dynamic checking scheme
[31], instead of the bound checking approach described
in this paper. To this end, we can extend the Au-
toPaG prototype with a more modular architecture:
the detector accommodates a number of vulnerability-
specific sub-detectors, each of which is responsible for
a particular type of vulnerabilities (e.g., out-of-bound
vulnerabilities, format string bugs); the locator can
then be further enhanced to identify the related source
statement for all supported vulnerabilities; and the
generator needs to take into consideration the specifics
of detected vulnerabilities (possibly with additional
context information) to generate effective vulnerability-
specific counter-measures.

• Second, our current system requires access to a pro-
gram’s source code. Consequently, it may not be pos-
sible for AutoPaG to generate source patch for other
third-party proprietary software. However, we note
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Figure 6: Performance evaluation of the generated patches.

that one ultimate goal of this work is to develop and re-
lease AutoPaG so that others, including software ven-
dors, can benefit from this work.

• Third, though the generated source patch has shown
effectiveness in detecting and preventing the target
vulnerability, it may require additional rigorous re-
gression test before public release or deployment in
production systems. Note that there exist a number of
systems [40] that are capable of performing automated
regression testing. However, the scope or coverage of
regression testing may be highly specific to different
applications and their deployment environments.

6. RELATED WORK
In recent years, extensive research work has been carried

out on how to defend against fast vulnerability exploits. In
this section, we do not intend to examine all of them. In-
stead, we mainly compare those that are most related to
ours, and we divide these related work into three main cate-
gories: proactive source transformation, just-in-time execu-
tion filtering, and reactive runtime patching.

Proactive Source Transformation: This approach in-
struments the original program source code with additional
attack-resilient code so that it can detect, mitigate, or even
recovery from an ongoing attack. Failure-oblivious comput-
ing (FOC) [49], and DIRA [43] are two well-known exam-
ples.

FOC [49] leverages the CRED safe-C compiler [27] to in-
strument the program source code so that it can capture
run-time memory errors. Note that the original CRED safe-
C compiler will terminate the execution of the program once
a memory error is detected. FOC extends it so that in-
stead of terminating the execution, it discards illegal mem-
ory writes and returns a predetermined sequence of values
for illegal memory reads. Its main purpose is to allow a
program to continue its execution even in the presence of
buffer overflow attacks. Similarly, DIRA [43], implemented
as an extension to the gcc compiler, transforms the program
source code so that it can maintain a memory update log

for a running program. Based on the memory update log,
if a control-hijacking attack [43] is detected, it can roll back
the memory state so that the memory contaminated by the
attack can be restored.

However, due to the need of heavily instrumenting source
code for proactive detection of future attacks, both FOC
and DIRA impose considerably high performance overhead
(e.g., 1X-8X slowdown in FOC). Most importantly, they in-
tend to dynamically recovery from an ongoing attack, not
to investigate the vulnerability behind the attack or provide
additional leads in deriving an ultimate patch to fix it, which
is the main focus of our system.

Just-In-Time Execution Filtering: This approach typ-
ically keeps track of the propagation of tainted information
(e.g., network input) at the machine instruction level and
detects the presence of an attack if current execution (e.g.,
the EIP register) somehow points to the tainted data. Note
that the associated taint analysis algorithm can be further
extended to derive a vulnerability-specific signature for just-
in-time execution filtering. A number of systems have been
developed in this category, including TaintCheck [37], DA-
CODA [38], VSEF [39], Vigilante [44], and Argos [48].

TaintCheck [37] performs a dynamic taint analysis at the
instruction level so that it can follow the propagation of net-
work input data (that is considered as tainted), and then
raise an alert when the tainted data is directly or indi-
rectly executed. Based on the tainted network input data
that eventually leads to the alert, TaintCheck also derives
a semantic-aware attack signature for later execution filter-
ing. The follow-up work on VSEF [39] takes a step further
by avoiding the need to monitor every instruction. Instead,
it only monitors and instruments those instructions that are
related to the exploited vulnerability.

DACODA [38], Vigilante [44], and Argos [48] also take
a similar approach. DACODA monitors the execution flow
of the whole system, and correlates the network input to
control flow change that can be used to infer the existence
of an attack. Vigilante tracks the flow of information from
network inputs to data used in attacks, and further devel-
ops the notion of self-certifying alerts (SCAs) that can be



shared over the network without requiring recipients to trust
each other. Argos uses dynamic taint analysis to detect ex-
ploits in the whole system, different from TaintCheck that
is performed only for an application. Note that a major
concern in these systems is the performance overhead due
to the need for tracking every machine instruction without
efficient hardware support.

AutoPaG takes a different approach from these systems.
Instead of focusing on the detection and prevention of an
attack at the machine instruction level, AutoPaG is more
intended to automatically walk through the program source
code and then identify and patch those relevant source state-
ments that directly or indirectly “contribute” to the de-
tected vulnerability.

Reactive Runtime Patching: Upon the detection of an
ongoing attack, this approach can patch current program ex-
ecution (e.g., instructions or states) so that it can recovery
from the attack. Sidiroglou and Keromytis et al. [40] first
proposed the notion of automatic patch generation and ex-
tensively explored its feasibility. For example, the DYBOC
[41] system instruments parts of the application’s source
code which may be vulnerable to buffer overflow attacks,
and the instrumentation code will recovery from detected
attacks via a so-called function call transaction mechanism.
The STEM [42] system takes a step further by selectively
emulating the identified vulnerable code segments. The em-
ulation allows for a vulnerable program to restore or roll-
back the memory changes performed within the faulty func-
tions.

AutoPaG has a different goal. Instead of patching current
execution during runtime to recovery from an attack, Au-
toPaG focuses on the vulnerability exploited by the attack
by locating those relevant source code statements and gener-
ating a patch at the source code level. Note that an existing
software vulnerability will ultimately require a source patch
to fix it, which is the intended goal of AutoPaG.

7. CONCLUSION
In this paper, we present the design, implementation, and

evaluation of AutoPaG, a system proposed to reduce the
long delay in software patch generation. Given a working
out-of-bound exploit (e.g., a buffer overflow attack) which
may be previously unknown, AutoPaG is able to catch on
the fly the out-of-bound violation, and automatically walks
through the program source code and identifies the root
cause – vulnerable program source statements. Further-
more, within seconds, AutoPaG automatically generates a
fine-grained source patch. The evaluation using the Wilan-
der’s buffer overflow benchmark as well as a number of real-
world exploits successfully demonstrates its effectiveness and
responsiveness.
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