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Abstract—To improve software dependability, a large number
of software engineering tools have been developed over years.
Many of them are difficult to apply in practice because their
system and library requirements are incompatible with those
of the subject software. We propose a technique called platform
independent executable trace. Our technique traces and virtualizes
a regular program execution that is platform dependent, and
generates a stand-alone program called the trace program. Run-
ning the trace program re-generates the original execution. More
importantly, trace program execution is completely independent
of the underlying operating system and libraries such that it can
be compiled and executed on arbitrary platforms. As such, it
can be analyzed by a third party tool on a platform preferred
by the tool. We have implemented the technique on x86 and
sensor platforms. We show that buggy executions of 10 real-
world Windows and sensor applications can be traced and
virtualized, and later analyzed by existing Linux tools. We also
demonstrate how the technique can be used in cross-platform
malware analysis.

I. INTRODUCTION

To improve software dependability, researchers and engi-

neers have developed a large number of software engineering

tools over years. Although many of them have very advanced

capabilities, they do not gain popularity in practice. One of the

issues is that they often require certain environmental support,

such as specific operating system, libraries, and the presence of

some infrastructure (e.g. Valgrind). These requirements may be

incompatible with those of the subject software. For instance,

Windows software cannot make use of the large body of

Linux tools. A subject software that requires a new version of

libc can hardly use a runtime tool based on an older version

of libc. In our personal conversation with researchers and

engineers from Coverity R©, one of the most successful software

testing and debugging service providers, it was mentioned that

making Coverity’s tools run on the customers’ machines and

their software is one of the most prominent challenges. They

indeed have a team of developers whose responsibilities are

solely in ensuring compatibility. The team is even larger than

most of their tool development teams.

Compatibility and platform independence are not a new

challenge in our discipline. In fact, people have made a lot

of progress in mitigating such problems in recent years. The

invention of virtual machines allows running different guest

operating systems on a singe host operating system. However,

virtualization is performed at the machine level and hence

applying a cross-platform software engineering tool is still

difficult. For example, one cannot apply an existing Linux tool

on a Windows program execution even with the help of VM

techniques. We also have excellent cross-platform analysis in-

frastructures such as Pin that support both Linux and Windows

such that a Pin tool developed for Linux programs only needs

small modifications to adapt to Windows programs. However,

only tools developed on Pin can benefit from this feature.

Moreover, Pin only supports a very limited set of instruction

sets. For example, one cannot use Pin tools to analyze sensor

program execution. Programs and tools written in languages

such as Java are by their nature platform-independent due

to the presence of Java Virtual Machine. However, there are

many programs that run natively without any virtual machine

support. PIEtrace is focused on those programs.

Modern compiler infrastructures, e.g. LLVM, also try hard

to improve portability and mitigate cross-platform issues. They

can compile code written in different languages and for differ-

ent platforms to the same intermediate representation (IR) such

that static program analysis written on these infrastructures can

be used to analyze software from different platforms. However,

it is only good for static analysis. The execution of a program

compiled by these infrastructures is platform dependent. In

other words, these infrastructures offer limited help in cross-

platform application of dynamic analysis tools.

In this paper, we propose a novel technique called platform

independent executable trace (PIEtrace). Our technique traces

and virtualizes a regular program execution (or part of it) that

is platform dependent, and generates a program called the

trace program. A trace program is a stand-alone program that

can be compiled and executed on other platforms. Running

a trace program re-generates the original execution. More

precisely, it reproduces an execution that exhibits the same

user-space control flow, values and program dependences as

the original execution. Trace program execution is completely

independent of the underlying operating system and any li-

brary such that it can be on arbitrary platforms. The application

scenario is as follows. We provide a tracing/virtualization

component for each platform that we support. Such compo-

nents are written in infrastructures such as Pin and sensor

emulators. Executing a program on the component produces

the corresponding trace program. The trace program can be

compiled and executed on any environment that a third party

tool prefers. For example, one can compile and execute a

trace program generated from a sensor program execution on

a Linux platform such that Linux runtime tools can be applied.

Our technique also supports projecting the analysis results

back to the original platform, to facilitate in-context human

inspection.
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Compared to the traditional tracing techniques [24], [47], we

do not require tools to support a specific trace format. Existing

third party tools on various platforms that analyze program

execution can be used to analyze trace program execution. This

would greatly improve tool applicability. Moreover, our tech-

nique does not require the physical presence of trace, which

is very resource consuming. Compared to traditional logging

and replay techniques [6], [33], trace program execution can be

cross-platform (even cross-instruction set), without requiring

the original OS or libraries. Trace programs execute on their

own, without any replay runtime support.

Our contributions are summarized as follows.

• We propose the novel concept of platform independent

executable trace, which can be considered as an adaptor

for existing dynamic analysis tools.

• We address the underlying technical challenges. Trace

program is not a simple recording of the sequence of

executed instructions. It is more like a transformation

of the original program. An instruction in the original

program has only one virtualized copy in the trace

program even though it may be executed many times.

Our technique suppresses dependences on the underlying

hardware, operating systems, and libraries, leveraging a

novel lazy-logging method. The method does not require

the tracing component to understand any system/library

interfaces to achieve independence. Our technique en-

sures that execution of the trace program generates the

original control flow by handling direct, indirect, and even

unexpected control flow transfers caused by interrupts and

exceptions. It also guarantees the same values and data

flow to be reproduced by properly virtualizing memory

and registers of the original program.

• We have implemented PIEtrace on x86 and sensor plat-

forms. We evaluate PIEtrace by tracing/virtualizing buggy

executions of 10 real-world Windows and sensor ap-

plications including Acrobat Reader. We then use

existing Linux debugging tools to identify the root causes

of these bugs. We also show case that our technique

can be used to virtualize Windows malware execution

including packed malware so that the malware trace

programs can be executed and analyzed as many times as

desired. PIEtrace and its benchmarks are available at [23]

Limitations. PIEtrace guarantees to reproduce the user space

behavior of the original execution. Library function execution

is in the user space and hence faithfully reproduced. In

contrast, system level behavior, such as the execution inside

a system call is invisible to PIEtrace. PIEtrace does not know

the semantics of system calls either, as it does not need to.

However, it faithfully records system call invocations. PIEtrace

has limited support for multi-threaded executions. It generates

a trace program for each thread. Although it faithfully captures

individual thread executions, analyzing thread interleaving

requires additional work. PIEtrace currently has non-trivial

runtime overhead.

II. DEMONSTRATIVE EXAMPLE

In this section, we use a Windows malware example

to demonstrate our technique. It is a Browser Helper Ob-

ject(BHO) malware [41] executing on Internet Explorer(IE).

BHO is a plug-in of IE that can register callbacks for important

events. The malware monitors all visited URL so that an

advertisement is displayed when some particular URLs are

detected. In this case study, we want to identify and understand

the malicious payload of the BHO plug-in.

Firstly, we observe that the DLL binary file of the plug-

in has a non-trivial size (300kb) and complex structure. The

left side of Fig. 1 shows the static call graph generated by

IDA, the most popular binary analysis tool used in malware

analysis. The graph has 222 nodes and 1330 edges. It is

difficult for a human to determine the malicious payload inside

the complex graph. Besides, the graph is incomplete, missing

many call edges through function pointers due to the difficulty

of static analysis. The plug-in has a lot of benign functions

for initialization and normal processing.

An alternative is to observe the plug-in execution. However,

the plug-in has to execute as part of IE. That implies a tool

has to load and monitor the IE execution, which is highly

complex and expensive to monitor. In an execution in which

we load 3 pages with one of them triggering the advertisement,

the execution of the IE process is 151 times larger than the

sub-execution of the plug-in. Furthermore, to the best of our

knowledge, there is not an existing scalable and publically

available Windows dynamic analysis tool that we can easily

leverage to understand the malware.

Therefore, in this case study, we use PIEtrace to trace and

virtualize the execution of the plug-in. We then use a Valgrind

based tool Callgrind on Linux to generate the dynamic call

graph of the trace program, whose execution regenerates the

original plug-in execution. To further determine the malicious

payload, we use a simple approach to prune the benign be-

havior. Particularly, we trace and virtualize two IE executions,

one accessing the full set of pages including the one that

could trigger the advertisement and the other accessing the two

benign pages only. We acquire the two trace programs with

sizes of 453KB and 1.7MB. We execute them on Callgrind and

generate two call graphs for comparison. The right hand side

of Fig. 1 shows the result. The shaded nodes are the functions

that uniquely appear in the execution with the advertisement.

There are totally 16 such functions and we suspect they

are the malicious payload. Since our trace program contains

information of calls to external APIs, we are able to understand

the behavior of some of the functions by observing the external

API calls in these functions.

In particular, the malware first checks if there are other

loaded BHOs. If so, it unloads them in order to gain ex-

clusive control of the browser(in node A). Then, it shows

an advertisement dialog on the screen (in node B) and stops

the current navigation of the browser(in node C). While the

behavior of (B) and (C) corresponds to the observed symptoms

of the malware, the graph also reveals its stealth behavior

(A). It calls CConnectionPoint::EnumConnection
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A call graph from IDA has 

222 nodes, 1330 edges, 3356 crossings

main 0x09A229F7 0x09A2C168 0x09A23421

0x09A2A7D2

0x09A25FDE

C. CIEFrameAuto::Stop

(ieframe.dll)

0x09A26437

0x09A2AD13

0x09A24BA7

0x09A370FC

0x77E2CF41

0x77E1EB36

0x9A36AC0

A. CConnectionPoint::

EnumConnection

(ieframe.dll)

B. ShowWindow

(user32.dll)

0x09A2C168`

0x09A25132

0x09A23A28

...

0x09A2629A
0x09A36DAF

0x0DCE6BA1

0x09A2DE14 0x09A2DDFD

...

Fig. 1. BHO call graphs. The one on the right is generated by our analysis. Shaded nodes denote malicious behavior.

in ieframe.dll. Although this interface is supposed to

be called by the browser to manage registered BHOs, the

malicious BHO uses it to disable other BHOs.

III. BASIC DESIGN

Program P ::= s

Stmt s ::= s1; s2 | skip | r :=ℓ e | r :=ℓ R(ra) |
Wℓ(ra,rv) | gotoℓ(ℓ1) | if (rℓ) then goto(ℓ1) |
syscallℓ() | depinstℓ() | r := mallocℓ(rs) |
freeℓ(r) | callℓ(ℓ1) | retℓ

Operator op ::= + | − | ∗ | / | ...
Expr e ::= r | c | a | r1 op r2 | r op c
Register r ::= {sp,r1,r2,r3, ...}
Const c ::= {true, f alse,0,1,2, ...}
Addr a ::= {0,1,2, ...}
Label ℓ ::= {ℓ1,ℓ2,ℓ3, ...}

Fig. 2. Language

Language. To facilitate discussion, we introduce a low level

language to model binary executables. For simplicity, we only

model enough to illustrate the key ideas. The language and the

discussion are general, not bounded to a specific instruction

set. The syntax is presented in Fig. 2.

Memory reads and writes are modeled by R(ra) and W(ra,

rv) with ra holding the address and rv the value. Since it is

a low level language, we do not model conditional or loop

statements, but rather jumps using goto and guarded goto;

syscall() denotes system calls1; depinst() represents instruc-

tions that depend on the specific platform; malloc(r) and

free(r) represent heap allocation and deallocation. Function

invocations and returns are modeled by call(ℓ) and ret. Note

that we use sp to denote the stack pointer register and we

assume all platforms have such a register.

Our technique executes the original program P. During

execution, it constructs another program P′ that is platform-

independent, not depending on any OS, libraries, input files,

1We do not model their parameters as our technique does not require such
information.

or network connections. Running P′ regenerates the original

execution. More precisely, it regenerates an execution that has

the same user-space control flow, data flow, and values as

the original execution. To simplify our discussion, one can

consider P′ a program in a sub-language of the one in Fig. 2.

In particular, P′ will not have any system call instructions,

platform specific instructions, heap memory management in-

structions, or registers except the stack register.

Next, we elaborate the technique from different aspects.

A. Control Flow Tracing and Virtualization

The first aspect focuses on ensuring the trace program will

regenerate the same control flow when it executes. For each

executed instruction in the original program, we record it

in a buffer. For control transfer instructions (e.g. jumps and

calls), we patch the control transfer target to ensure correct

control flow. If an instruction gets executed multiple times,

our technique keeps only one copy of its virtualized version

to minimize the size of the trace program.

Upon execution of an instruction, the technique checks if

it is executed for the first time. If so, it is stored in the

buffer. At the end, the buffer is the trace program. In the

tracing/virtualization rules in Table I, function AddStmt(ℓ,s)
(defined in Fig. 3) is called upon execution of any instruction

(with label ℓ) to record the instruction. Parameter s denotes

the virtualized version of the instruction, which may contain

more than a few instructions to achieve platform independence.

We use a VirtualLabelMap V L (Fig. 3) to map an instruction

in the original executable to its virtualized version in the

trace program. Hence inside AddStmt(), we first test if the

instruction has been traced before by checking VL. If not, the

instruction is attached to the end of the trace program and the

mapping is updated.

For jump and call instructions (rules JUMP and CALL),

we look up the new label of the jump/call target using function

GetLabel(ℓ) and redirect the control to the new position. Note

that when we call GetLabel, the target instruction may not

50



P′ ∈ Program ::= s

V L ∈VirtualLabelMap ::= Label → Label

VA ∈VirtualAddrMap ::= Addr → Addr

M ∈ MemStore ::= Addr →Const
REG ∈ RegStore ::= Register →Const

SM ∈ ShadowMemory ::= Addr →Const

ACC ∈ Accessed ::= Addr → Boolean
LS ∈ LogStorage ::= LogId → LogEntry

id ∈ LogId ::= < ℓ,z >
E ∈ LogEntry ::= MEMLOG(a,c) |

REGLOG(csp,c1,c2,c3 , ...cn)
HC ∈ HitCount ::= Label → Z

V R(r) represents the global var. in the trace program representing r

GetLabel(ℓ) ::=
if V L(ℓ) is empty then

return the end position o f P′;
else

return V L(ℓ);

AddStmt(ℓ, s) ::=
if V L(ℓ) is empty then

VL(ℓ) := the end position o f P′;
P′ := P′ · s;

LogRead(ℓ, a) ::=
HC(ℓ)++;
if a 6= null then

if SM(a) 6= M(a) then
LS(< ℓ,HC(ℓ)>) := MEMLOG(a, M(a));

SM(a) := M(a);

Concretize(ℓ) ::=
HC(ℓ)++;
t := LS(< ℓ,HC(ℓ)>)
if t ≡ MEMLOG(a,c) then

W(VA(a),c)
if t ≡ REGLOG(csp,c1, ...,cn ) then

VR(sp) := csp; ...;V R(rn) := cn

Fig. 3. Definitions for virtualization rules

be executed and virtualized yet. In this case, the function

returns the end position of the trace buffer, at which the target

instruction will be put.

We also take special care of call and return instructions. In

particular, we cannot simply use call and return instructions in

the trace program because they entail implicit stack operations.

Upon a function call, the return address (i.e. the address of

the instruction immediately following the call instruction) is

implicitly pushed to the stack. Upon return, the return address

is loaded from the stack. If we use a call instruction in P′

to virtualize a call in P, the address pushed to the stack is

the neighboring instruction in P′, which does not necessarily

correspond to the instruction immediately succeeding the call

instruction in P, leading to incorrect control flow upon return.

Therefore, as shown in rule CALL, our solution is to explicitly

push the original return address, i.e. ℓ+1, and then use a jump

instruction to virtualize the call. Upon return (rule RET), the

original return address is read and then translated at runtime

using VL.

B. Data Flow Tracing and Virtualization

In the second aspect, we discuss how to ensure execution

of the trace program reproduces the same data flow in a

platform-independent fashion. This is achieved by virtualizing

memory layout, memory management, and registers, which

are platform dependent. For example, the typical stack address

of Linux applications is not available in Windows because it

is reserved for the Windows kernel. To virtualize memory,

we track all the memory locations and regions accessed in

the original execution and then declare these locations and

regions as global buffers in the trace program. The original

accesses are redirected to these buffers. One critical property

we want to ensure is that all the original user space memory

accesses, including their addresses and the values accessed,

can be preserved by our virtualization. This is critical for

cross-platform debugging as unsafe accesses such as buffer

overflows are preserved too. Registers need to be virtualized

too as different platforms support different registers. We use

a set of global variables to represent registers.

We use a mapping ACC that maps an address to a boolean

value to denote if the address has ever been accessed during

execution. Hence, in rules READ, WRITE, CALL, the mapping

is set. In a call instruction, the stack memory is implicitly

accessed to store the return address. Observe in these rules,

VR(r) denotes the global variable in the trace program that

is used to represent register r; REG is the register store and

hence REG(r) denotes the current value in r.

After the original execution terminates, we process the ACC

mapping to divide all the accessed addresses to a number of

regions. Ideally, we can allocate one variable in the trace

program for each unique accessed address. However, this

requires maintaining a very large address translation table

to map an original address to its corresponding variable in

the trace program. On the other hand, we can allocate a

large buffer to denote the entire virtual space in the original

execution. In such a case, although we only need to perform

linear address translation, the space consumption is large.

Hence, we divide the accessed addresses to a few regions to

achieve a good tradeoff between the memory overhead and

the address translation overhead. In particular, we consider

any two addresses with a distance less than a predefined

threshold (256 in this case) belong to the same region. For

each identified region, we declare a global buffer in the trace

program. During execution of the trace program, a memory

address is translated on the fly right before it is accessed, by

first performing a range query to determine the buffer for its

region and then offsetting to the right location.

In rule READ, the second instruction added by AddStmt()
translates the address to be read VR(ra), which is an address

in the original execution, to a by calling VA(), which performs

a range query and then offsetting. Its details are elided. Rule

WRITE is similar.

Doing so, our scheme does not rely on any platform specific

memory layout or memory management policy. Intuitively,

trace programs do not allocate any heap memory as heap

allocation and deallocation functions are platform dependent.

The original stack manipulations are virtualized and emulated

on a global region.

Example. Assume 0x08000400, 0x08000432, 0x080004b0 and

0x8000900 are accessed. We determine the first three form a

region and the last forms another region. We allocate a buffer
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TABLE I
TRACING/VIRTUALIZATION RULES.

Statement Action Rule

r :=ℓ R(ra) ACC(REG(ra)) = true; LogRead(ℓ, REG(ra)); READ

AddStmt(ℓ, “ Concretize(ℓ); a := VA(VR(ra)); V R(r) := R(a); ”);

Wℓ(ra,rv) ACC(REG(ra)) = true; AddStmt(ℓ, “ a := VA(V R(ra)); W(a,V R(rv)); ”); WRITE

gotoℓ(ℓ1) ℓ′ := GetLabel(ℓ1); AddStmt(ℓ, “ goto(ℓ′); ”); JUMP

if(rℓ) then goto(ℓ1) AddStmt(ℓ, “ if (V R(r)) then goto(VL(ℓ1)); ”); COND-JUMP

syscallℓ() | depinstℓ() LS(< ℓ,++HC(ℓ)>) := REGLOG(REG(sp),REG(r1), ...,REG(rn)); AddStmt(ℓ, “ Concretize(ℓ); ”); SYSDEP

mallocℓ(r) | freeℓ(r) skip HEAP

callℓ(ℓ1) ACC(REG(sp)−1) = true; ℓ′ := GetLabel(ℓ1); CALL

AddStmt(ℓ, “ sp′ := sp′−1; W(sp′,ℓ+1); goto(ℓ′); ”);

retℓ AddStmt(ℓ,“ t := R(sp′++); goto(VL(t)); ”); RET

Register sp′ is the stack pointer register in the trace program. Note that the actions in the second column are performed during
the original execution, whereas the statements added by AddStmt() constitute the trace program and will be executed separately.

A with the size (0x80004b0+4-0x8000400) for the first region.

Assume during execution of the trace program 0x08000432

is about to be accessed, the translation identifies that A is its

buffer as it falls in the range of [0x08000400,0x080004b4].
Its actual address to access is hence &A + (0x8000432−
0x08000400). �

In our design, the entire stack footprint (i.e. the maximum

stack consumption) of the original execution is often deter-

mined as a large region, as stack accesses tend to be close

to each other. The heap is often divided into smaller regions.

A region identified by our analysis may not correspond to

an allocated heap region. However, this does not affect the

soundness of our technique.

Theorem 1. All user space memory accesses, including buffer

overflows, in the original execution are preserved. Particularly,

the same sequence of addresses and accessed values is re-

generated by trace program execution.

Intuitively, all addresses are maintained and manipulated in

their original form during execution of the trace program.

They are only translated right before the access. Hence,

assume in the original run a buffer A is overflowed and

thus its neighboring buffer B is overwritten. The write to the

address within buffer B is faithfully reproduced as the same

faulty pointer manipulation that overflows A will be faithfully

replayed. It is independent of the region identification in our

virtualization process. Note that some memory related excep-

tions such as null pointer dereferences will explicitly terminate

the tracing process, they are essentially preserved by the

termination of the trace program. The formal proof is omitted.

Maintaining identical original addresses during trace program

execution is critical, even though they are not accessible. Some

functions such as printf() and fprintf() take different

execution paths according to the pointers. Also, the execution

path of EncodePointer() and DecodePointer() in

Windows depends on the given address. Furthermore, some

instructions require memory alignment. In x86, SSE and MMX

instructions such as MOVAPS and MOVNTPS are examples.

To handle them, we align all the base addresses of virtualized

memory regions according to the original base addresses.

Since the least common multiple (LCM) of alignments of SSE

and MMX is 16-byte, PIEtrace also applies 16-byte alignment.

C. System-level Dependence Elimination

A real execution is most likely system dependent. For

instance, it may have to perform system specific I/O by system

calls (e.g. read from a specific device); it may execute system-

dependent instructions such as CPUID. We have to eliminate

such dependences in order to run the trace program on a

different platform. Note that libraries are not a problem for

PIEtrace as we are able to trace into library execution. In other

words, library execution will be part of the trace program.

We also need to handle non-deterministic instructions such as

RDTSC (read current timestamp). Otherwise, they will cause

execution differences. Currently, we have limited support for

concurrency. PIEtrace generates a trace program for each

thread. While trace programs capture the user-space behavior

of individual threads, PIEtrace does not currently support

reasoning about thread interleavings.

A typical solution to handle system calls by many existing

logging and replay tools [33], [38], [2], [6] is to record the

values read/written by system calls (e.g. the packet received

by a socket read). During replay, instead of interacting with

the real device, it simply restores the recorded values from the

log. Despite its simplicity, such a design is platform-dependent

because the logging and replay has to be aware of the entire

system call interface, such as which part of memory is being

updated during a socket read.

We develop a new solution. Instead of directly tracking

system calls or platform dependent instructions. We develop a

lazy-logging approach. During tracing, we maintain a shadow

memory that can be considered as parallel to the normal

memory. When a user-space instruction of the original pro-

gram updates the memory, which is visible to our tracing

system, we update the shadow memory in the same way.

When a kernel-space instruction (inside a system call) updates

the memory, the shadow memory cannot be updated because

such writes are invisible to PIEtrace. Later, when the memory

updated by the system call is read, the discrepancy between the

normal memory and the shadow memory suggests the previous
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invisible update. We then log the value in the memory. It

will be restored during trace program execution. Besides

system calls, the method also naturally handles other platform-

dependent instructions and non-deterministic instructions in-

cluding remote thread reads and writes.

As shown by rule READ in Table I, function LogRead()
is called with the address. The function is defined in Fig. 3.

It first updates the hit count of the instruction, which counts

the number of instances of the instruction. It then compares

the shadow memory and the actual memory. If they differ, a

log entry identified by the instruction label and its hit count

is added. The hit count is to handle the case that a read

instruction gets executed many times and only some instances

have their values updated by system calls. Others have their

values updated by user-space instructions and hence can be

re-computed during the trace program execution. They do not

need to be logged.

As part of the rule, a call to function Concretize() is added

to the trace program, which will be executed when the trace is

replayed. Symmetric to LogRead(), it also first increases the

hit count, and then it checks if there is a log entry associated

with the current instance identified by the label and the hit

count. If so, it sets the corresponding memory or registers to

the recorded values.

In rule SYSDEP, even though we do not need to log any

values in memory due to the lazy logging strategy, we do

log the current register values. The reason is that register

values may be changed by system calls or platform dependent

instructions and such changes need to be captured.

IV. IMPLEMENTATION

To make the technique practical, we also need to address a

number of implementation challenges.

Handling Indirect Control Flow Transfer and Long/Set

Jumps. Indirect control flow transfer and long/set jumps are

commonly used in x86 executables. Indirect control flow

transfers are used to support function pointers, virtual function

calls in object oriented programs, and jump tables compiled

from switch-case statements. Long/set jumps are usually

used to implement control transfer to exception handlers. They

share the same characteristics that the control transfer target of

a jump/call instruction is a runtime value. For example, they

may be in the form of “goto(r)” with r the register holding

the dynamic target. Hence, the control transfer rules JUMP,

COND-JUMP, and CALL in Table I are insufficient as their

targets are a constant program label. Our solution is to look

up the new target from the virtual label map VL during the

trace program execution. For example, we have the following

rule for the indirect jump statements.
Statement Action

gotoℓ(r) AddStmt(ℓ, “ goto(VL(V R(r)); ”);

Indirect calls are similarly handled. Note that our technique

guarantees values generated in the virtualized registers during

trace program execution, e.g. in VR(r), are identical to those

generated in the real registers in the original execution. This

guarantees the correctness of the above indirect jump rule. The

use of the VL map in the trace program also implies that we

need to provide it as part of the trace program. We declare it

as a global array.

Symbolic Information Preservation. An important design

goal is to allow the trace program to be analyzed by different

tools on various platforms. However, we want to interpret the

analysis results on the original system. As such, we need to

preserve the symbolic information of the original program in

the trace program. In particular, during the tracing/virtualizing

process, we generate an offline dictionary. It maps each

instruction in the trace program to an instruction in the original

program, whose symbolic information can be looked up from

the original executable. For each variable accessed in the

original run (as captured by ACC), we also preserve the

mapping from its buffer address in the trace program to the

variable.

Supporting Different Instruction Sets. Besides x86, PIEtrace

can also trace Mica2 sensor program execution and generate

trace programs in x86 so that the wealthy set of x86 tools can

be used to analyze sensor program execution. The additional

challenge lies in eliminating the instruction set differences. For

Mica2 instructions that do not have direct correspondence in

x86, for example SBIC, we provide functions written in x86

to emulate them.

V. EVALUATION

We evaluate PIEtrace with real world applications on x86

and sensor platforms. For x86, we run 5 real world buggy

programs on Windows and collected the trace programs of

the faulty runs for cross-platform analysis. The five Windows

programs are downloaded from a vulnerability database [35].

Note that although the database lists many vulnerabilities,

most of them do not provide the exploit inputs or the ex-

ploits cannot be reproduced. After we randomly inspected

a large set of the listed vulnerabilities of COTS software,

we found these five that have the inputs available and can

be reproduced. We execute the subject programs with the

provided vulnerable inputs to get the trace programs. In the

five applications, CastRipper is a recording program and

Microsoft HTML Help is the default HTML help file

loader. PowerTabEditor is a guitar note editor program

and FreeAmp is a music player.

For the sensor platform, we run 5 buggy sensor applications

on an emulator called ATEMU [31], The supported instruction

set is ATMega128, a kind of RISC instruction set. The op-

erating system is TinyOS. The five sensor buggy applications

are mainly collected from existing literature [17], [25], [45].

We also evaluate PIEtrace on three malwares to show

that we can effectively help malware analysis, even when a

malware is packed. The IE-BHO case discussed in Section II

is one of them.

The set of subject programs and the corresponding bugs are

presented in the second column and the last column of Table II,

respectively. PIEtrace and the test benchmarks are publically

available at [23]. We also run PIEtrace on SPECINT 2000

programs to study overhead. These programs are bug free.
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TABLE II
BENCHMARKS AND VIRTUALIZATION RESULTS.

Platform Subject Software # of Inst. Program size Log size Bug

(Dynamic/Static) (Originala/Trace-program) (Plaintext/Compressedb)

x86 Acrobat Reader 9.3 208M / 506K 342KB / 31MB 78MB / 31MB Memory corruption

x86 CastRipper 103M / 230K 564KB / 13MB 25MB / 4MB Buffer overflow

x86 Microsoft HTML Help 7M / 117K 11 KB / 6MB 4MB / 1MB Buffer overflow

x86 PowerTabEditor 37M / 186K 2.16 MB / 10MB 8MB / 2MB SEH/EIP corruption

x86 FreeAmp 67M/ 120K 272 KB / 6MB 16MB / 4MB Buffer overflow

ATMega128c Sensor node by [17] 8M / 2K 31KB / 204KB 2MB / 1MB Buffer overflow

ATMega128 MultihopOscilloscope [25] 7 M / 2K 54KB / 214KB 2MB / 1MB Data race

ATMega128 CntToLedRfm [45] 3 M / 1K 18KB / 155KB 700KB / 57KB Concurrency bug

ATMega128 BlinkFail [39] 32K / 461 6KB / 78KB 22KB / 3KB Memory safety

ATMega128 RfmToLed [30] 679K / 1K 17KB / 154KB 923KB / 75KB Zero length packets

x86 Packed-Malware 246M / 239K 887 KB / 19MB 22MB / 8MB

x86 Multi-Packed Malware 322M / 263K 977 KB / 20MB 47MB / 12MB

x86 BHO 4M / 33K 264 KB / 1MB 312KB / 123KB

a. application binary only, not including dynamic libraries; b. 7zip utility was used; c. ATMega128 is a sensor instruction set.

TABLE III
EXISTING ANALYSIS TOOLS TESTED ON OUR SYSTEM.

Name Tested extensions or functionalities

Pin Program slicing tool and Memtrace

Valgrind Memcheck+ and Callgrind

DynamoRIO Instrcalls

OllyDebugger WatchMan, OllyScript, HitTrace

Immunity Debugger FullDisasm and Ariadne

Windbg PyDbgEng and Windbg Script

gdb Reverse debugging (reverse-step, reverse-continue)

A. Virtualization Results

The virtualization results can be found in Table II. The third

column shows the number of executed instructions (static) and

their instances (dynamic). The static number is also the num-

ber of instructions that get virtualized. Column four shows the

size of programs including the original and the corresponding

trace programs. Observe that the trace programs are usually

much larger than the original programs. That is because an

instruction is usually virtualized to a few instructions and a

trace program includes all the libraries used including those

dynamically loaded. Furthermore, we have to include the

virtual label mapping VL and the virtual address mapping VA

(defined in Fig. 3) as part of the trace programs. However, our

later experiment will show that the trace program size does not

change much over time.

Column five shows the log size. More detailed results about

the instructions that trigger logging and their effects are pre-

sented in Table IV. The “Data” columns present the numbers

of instruction instances (dynamic) and unique instructions

(static) that need logging because of invisible system level

memory writes. Their percentages (over the total number of

dynamic and static instructions, respectively) are also pre-

sented. The “Control Flow Change” columns show logging

caused by unexpected control flow changes. The “Platform-

Dependent Inst.” columns present logging for platform depen-

dent instructions (e.g. CPUID). The last two columns show

the total. Observe that for most cases, only a small percentage

of all executed instructions triggers logging except for two

sensor cases. That is because those two cases are very I/O

bound. For Windows cases, most loggings are caused by data

differences whereas for sensor cases, most are caused by

platform-dependent instructions. That is because sensors use

the platform-dependent instructions IN and OUT to perform

one byte hardware read and write. Another observation is that

unexpected control flow happens very often at a very small

number of places. That is due to the event driven execution

model (i.e. program execution is trapped to kernel through

interrupt instructions and various user mode handlers may get

called depending on the events).

B. Cross-Platform Analysis

An important goal of PIEtrace is to enable cross-platform

dynamic analysis, namely, using a tool on a specific platform

to analyze an execution on a different platform. In this experi-

ment, we apply a set of tools as shown in Table III to the trace

program executions. The first column shows the infrastructures

of the tools. The second column shows the tools, which are

usually implemented as infrastructure extenstions. Pin (Linux

x86), Valgrind (Linux x86), and DynamoRIO (Windows)

are dynamic binary instrumentation engines. OllyDebugger,

Immunity Debugger, Windbg, and gdb are debuggers that are

widely used on Windows or Linux.

We applied two Pin tools, namely, a dynamic slicing

tool [21] and the Memtrace tool, to the trace program exe-

cutions. The slicer detects both data and control dependences

during execution and performs backward/forward slicing given

a slicing criterion. Since PIEtrace preserves user-space de-

pendences, the slicer produces the same slices as the ones

generated when it is applied to the original executions. Note

that the slices contain some instructions that are for the

purpose of virtualization (and hence not present in the original

programs). These instructions can be pruned by the symbolic

information mapping mentioned in Section IV. Memtrace is

a tool that traces all memory addresses. As the addresses

accessed in trace program execution are the global memory

regions generated by virtualization, PIEtrace has a script

that translates such addresses back to the original addresses,

leveraging the address mapping VA.

We applied two Valgrind tools: Memcheck+ and Callgrind.

Memcheck is a tool that detects memory safety problems such

as buffer overflows and null pointer accesses. We modified the

Memcheck tool to print recent memory read operations as well
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TABLE IV
INSTRUCTIONS CAUSING LOGGING.

Subject Software Data Control Flow Change Platform-Dependent Inst. Total
Dynamic Static Dynamic Static Dynamic Static Dynamic Static

Acrobat Reader 9.3 3M(1.8%) 9K(1.9%) 19Ka 3a 21Ka 9K(1.9%) 3M(1.8%) 9K(1.9%)

CastRipper 703Ka 6K(3%) 147Ka 3a 147Ka 6K(3%) 998K(1%) 6K(3%)

MS HTML Help 226K(3.1%) 3K(3.4%) 952a 4a 1Ka 3K(3.4%) 229K(3.1%) 3K(3.4%)

PowerTabEditor 261Ka 6K(3.2%) 36Ka 3a 36Ka 6K(3.2%) 335Ka 6K(3.2%)

FreeAmp 753K(1.1%) 4K(3.5%) 18Ka 1a 19Ka 4K(3.5%) 791K(1.2%) 4K(3.5%)

Sensor node by [17] 8Ka 18a 9Ka 9a 1.6M(18.6%) 26(3.7%) 1.6M(18.8%) 103(5%)

MultihopOscilloscope 9Ka 21a 554a 9a 1.4M(20.8%) 6(3%) 1.4M(20.9%) 110(4%)

CntToLedRfm 8Ka 18(1%) 3Ka 6a 5Ka 7(2.9%) 17Ka 75(4.2%)

BlinkFail 177a 7(1.5%) 169a 1a 1K(4.2%) 6(4.1%) 1K(5.3%) 27(5.8%)

RfmToLed 8K(1.2%) 22(1.2%) 7K(1%) 5a 10K(1.5%) 8(2.8%) 26K(3.8%) 76(4.3%)

Packed Malware 1Ma 7K(3.1%) 5Ka 2a 5Ka 7K(3.1%) 1Ma 7K(3.1%)

Multi-Packed Malware 2Ma 5K(2.2%) 6Ka 2a 7Ka 5K(2.2%) 2Ma 5K(2.2%)

BHO 15Ka 1K(4.7%) 59a 4a 45a 1K(4.7%) 15Ka 1K(4.7%)

a. Its percentage is less than 1%.

as instructions that defined the values that are read. We call

this new tool Memcheck+ as it is a simple extension of the

Memcheck code base. Callgrind is a tool to generate dynamic

call graph. We applied two DynamoRIO tools. Memtrace is

similar to Pin-Memtrace. Instcalls is a tool that logs function

invocations and returns.

Besides the above tools, we have also applied a number

of debugger plugins that provide advanced debugging and

profiling capabilities. They are very similar to instrumentation

tools. Instead of using instrumentation, they use breakpoints

as the mechanism to monitor and inspect program state. For

instance, HitTrace logs program state automatically at given

breakpoints. Reverse debugging is an advanced feature in x86

gdb that allows reverse execution (e.g. step backward and

reverse-continue).

All these tools run correctly with our trace program execu-

tions. Next we show a few case studies.

Acrobat Reader 9.3 Acrobat Reader 9.3 on Windows can

be crashed by a null pointer dereference when provided with

a crafted pdf file. There is not any published explanation

of the crash. In this case study, we want to use our simple

extension of Linux Valgrind-Memcheck, called Memcheck+,

to understand the causality of the crash. We generate the

trace program from the crashing execution. We then use

Memcheck+ to back-track from the null pointer step by step.

We identify the definition point of the value at each step and

backtrack to the definition point, till we get to the first such

definition. Since Acrobat Reader is highly complex and it does

not have any symbolic information, the identified chain is long

and crosses a few functions and DLLs, we simplify it in Fig. 4.

The boxes on the left show the Memcheck+ output at each

step. Each box reports a read instruction including its PC,

source location in the trace program, value, and the definition.

The corresponding read and write (i.e. the definition) in the

original program are shown in the middle. The right column

shows the corresponding function and its DLL. At the end,

we identify that the definition of the null pointer starts in the

acroform.api DLL. As shown on the top, the loading of this

DLL is guarded by a predicate with branch target 0x4E6180A.

Its branch outcome is determined by the input on the right,

which is a line in the crafted pdf. We confirm the finding by

the fact that any changes to this line makes the crash disappear.

Searching it on the Internet, the keywords in the line seems

to indicate it is an invalid acrobat form.

Sensor Case. In [17], Qijun Gu et al. show that malicious

packets can compromise sensor nodes. We use their program

that has a buffer overflow vulnerability and can propagate

the malicious packet to other nodes automatically. Using the

provided input, the sensor program crashes on an invalid return

address. We use PIEtrace to generate the trace program of

the crashing run. And then we run the trace program inside

a Pin-based dynamic slicer [21]. Specifically, we compute

the backward slice from the faulty return address, which

contains all the executed instructions that have directly or

indirectly contributed to the given faulty value through data

and control dependences. The slice has 227 instructions.

The data slice (i.e. a slice computed by considering data

dependences only) has 38 instructions. The data slice is

sufficient to explain the crash. Part of it is shown in the

left-hand side of Fig. 5. The corresponding source code is

shown on the right. We find that the invalid return address

is dependent on Receive.receive() (on the bottom),

stackCreator(), and strcpy() (i.e., crashed when re-

turning from the function). This clearly identifies the causal

path of the exploit. The malicious packet is received by

Receive.receive(). It is passed to stackCreator(),

which calls strcpy(). The buffer overflow occurs inside

strcpy(), corrupting the return address. Note that in a trace

program, the original packets become concretized values that

are loaded from a file. Hence, the bottom box of Fig. 5 actually

corresponds to several IN instructions in TinyOS kernel.

Packed Malware Cases. PIEtrace has the following two main

advantages in malware analysis. First, since trace programs

do not have any system calls, one can analyze their execution

without any concerns about harmful side-effects. Second, since

the technique records all executed instructions, it can be

naturally used to analyze packed malwares, which unpack

themselves during execution. Compared to existing unpacking

techniques [32], [28], [20], [7] that rely on specific heuristics

or target specific packers, our technique is very general and
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RD: 0438172C  <re_func17.S, 22760>

- Contents: 0, Written By <re_func17.S, 22772>

RD: 09CF4DC8 <re_func17.S, 22772>

- Contents: 0, Written By <re_func17.S, 22329>

RD: 09CF7C28 <re_func17.S, 18071>

- Contents: 0, Written By <re_func17.S, 18044>

WR: /*[0x544E8ED1]*/ push dword ptr [edi]

RD: /*[0x545A6B4A]*/ mov eax, dword ptr [eax]

WR: /*[0x5455809C]*/push dword ptr [ebp-0x10]

RD: /*[0x544E8ED1]*/push dword ptr [edi]

WR: /*[0x04EB8BF1]*/ push ebx

RD: /*[0x04EB8D80]*/ pop ebx

0x4E6180A: … call    0x4E6189E

…

0x4E6189E: … call    0x4E61CE0 ; PlugInMain

test    al, al

jz      0x4E6180A

VM_call_imm( ..., 0x4E61CE0, 0x04E61ADB)

VM_call_imm( ..., 0x4E6189E, 0x04E6184C)

jz Func_04E6180A The branch outcome is determined by input 

"<< /AcroType /Btn"

Call LoadLibraryEx to load 

"acroform.api" which is vulnerable.

At 0x4EB8BE0 + 0x11 in acrord32.dll

At 0x4EB8BE0 + 0x1A0 in acrord32.dll

At 0x54557FEE + 0xAE in acroform.api

At 0x544E8EBF + 0x12 in acroform.api

At 0x544E8EBF + 0x12 in acroform.api

Crash at 0x545A6B46 + 0x4 in acroform.api

… … 

… … … … 

Fig. 4. Analysis results from the Acrobat Reader case study

…

ret (re_func.S:3814)

Func_22F2 (strcpy)

Func_0A7E (stackCreator)

Func_0010AC

(scheduler...runTask)

event message_t* Receive.receive(...) {

…

stackCreator(rcm+2);

...

void stackCreator(uint8_t*str ) {

...

stringCopy(str);

...

void stringCopy( uint8_t *str) {

...

strcpy(ch, str);

...

Concretized values

(incoming malicious packets)

…

… …

… …

… …

Backward slicing result Corresponding source code

Fig. 5. Backward program slicing on a sensor node.

easily applicable.

In this experiment, we use a Java runtime installer mal-

ware [23] that downloads and installs another malware to

the victim machine. The malware is packed by an unknown

version of the UPX [27] executable compressor.

We run the packed malware twice on PIEtrace, one with

Internet connection and the other not. In the second execution,

the malicious payload is not executed. We get two trace

programs. Then, we use the WinMerge tool [26] to compare

the two trace programs. The result shows that the first approx-

imately 10,000 basic blocks of the two programs are identical,

which implies they belong to the packer and the malware

initialization. The differences (about 40,000 basic blocks)

denote the malicious payload. From the trace programs, we can

also easily observe that the first 678 basic blocks belong to a

large loop. Cross checking with the original malware indicates

that they belong to the packer and the original malware entry is

at the 679th basic block. We can directly execute the malware

by putting a goto statement that jumps to the entry. Note that,

with our technique, we can easily identify about 9,000 basic

blocks that are in the malware but do not perform malicious

actions, which cannot be achieved by existing approaches.

In addition, most universal unpackers [32], [20], [7] are not

able to handle binaries packed multiple times. We call them

the multi-packed malware. PIEtrace can directly handle such

malware. Hence, in this experiment, we use XPack [19] to

further pack the previous packed sample. During execution,

the unpacking routines of XPack and UPX are executed

sequentially. We repeat the previous process to get two trace

programs. By comparing them, we find that they share about

15,000 basic blocks. The differences (the identified malicious

payload) are the same as the previous case. The malware entry

point can be easily spotted at the 6781st basic blocks at the

end of two large loops.

C. Performance and Scalability

We use SPECINT 2000 to evaluate the performance and

scalability of PIEtrace We could not use the programs in

Table II because they are mostly interactive. We run the SPEC

programs on test inputs and measure the slow-down of the

virtualization component. The results are shown in Fig. 6.

For most tests, our system incurs approximately 2000x slow-

down or less except parser and crafty. Further inspection

shows that their executions constantly perform I/O, causing a

lot of data logging. The average overhead is 2523x. We also

evaluate scalability by showing the changes of trace program

size and log size over a duration of execution (1,000 million

instructions). The results are shown in Fig. 7 and 8. We can

observe that the trace program size quickly reaches a fixed

point whereas the log size slowly grows over time except

vortex. Further inspection shows that vortex performs

more I/O than others in that duration. While we believe we

can reduce the runtime overhead by optimization, PIEtrace is

a heavyweight technique that may not be used in a production

setting. It is suitable for cases where the runtime overhead is

less a concern (e.g. in-house debugging), but rather the missing

capabilites on the current platform. Such capabilities could be

provided by cross-platform tools.

VI. RELATED WORK

Logging and Replay. Logging and replay has been widely

studied [2], [37], [36], [43], [6], [29], [44], [40], [12], [15],

[33]. However, most of these existing techniques do not sup-

port cross-platform replay. Most of them work by intercepting

and logging system calls. Replay is by executing the same

program, with the support of a replay runtime that again

intercepts system calls and then loads values from the log. The

replayed execution requires the same set of libraries and the
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Fig. 6. Slowdown on SPEC INT2000
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Fig. 7. Trace program size variation.

same platform. In contrast, we generate a trace program that

can be compiled and executed on its own, without any specific

platform or runtime support. TRANSPLAY [38] allows replay-

ing a trace on different platforms. However, execution can only

be replayed inside a replayer. Hence, debugging a replayed

execution discloses the state of the replayer, not the original

execution. A replayer has to be developed for each platform.

It has to map system calls and library calls across platforms.

Creating such mappings requires a lot of manual efforts. In

contrast, PIEtrace suppresses platform dependences by con-

cretization. It does not need to understand either the original

system interface or the target system interface. S2E [11] allows

cross-platform driver execution. Similar to TRANSPLAY, it

requires a mapping between kernel APIs across platforms.

Xu et al. [42] proposed to use compiler to generate two

instrumented versions of a program: one for logging and the

other for replay. It works on Java programs and assumes the

same set of libraries. In contrast, PIEtrace does not require

compilers, and directly works on binaries, which entails a

different set of challenges.

Tracing. Traditional tracing techniques generate traces [24],

[47], [3], [8] that can be analyzed in a cross-platform fashion.
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Fig. 8. Log size variation

However, analysis tools have to support the specific trace

formats, which precludes most third party tools. Storing traces

is also very expensive.

Virtualization and VM Introspection. There are many virtual

machines [4], [13] and emulation infrastructures [31], [1], [10]

that allow cross-platform execution. Their main disadvantage

is that a subject program has to execute along with their

system. It is hence difficult to apply any third party tools

to the execution of the subject program. Virtual machine

introspection [5], [18], [34] is a kind of technique that aims

to observe guest OS state from the host OS. Virtuoso [14]

and [16] virtualize utility commands, e.g. ls, in the guest

OS and make them executable on the host OS so that one

can directly observe the state of the guest OS by running such

commands on the host OS. These techniques need to be aware

of the system interfaces of both OS’s and they do not support

cross-platform replay of application programs.

Binary Extraction and Reuse. Inspector gadget [22] is a

technique that uses dynamic slicing to extract a part of a

malware, called a gadget, which can be replayed for behavior

analysis. BCR [9] tries to extract components of an executable,

such as the decryption/encryption function of a malware, that

can be reused in other programs. The extracted gadgets and

components are essentially sub-programs that can take inputs

and perform certain functionalities such as downloading files.

They are platform dependent. Gadget execution also requires

support from specific runtime. TOP [46] is a framework that

decompiles a binary to C code by executing it. The generated

C code can take different inputs as the original binary, whereas

PIEtrace only focuses on reproducing a specific execution.

TOP is not platform independent since it requires the pres-

ence of the same set of libraries, kernel interfaces, external

resources and devices.

VII. CONCLUSION

We propose a novel technique called platform independent

executable trace. It generates a standalone trace program from

a normal program execution that relies on specific operating

system, libraries, hardware, and instruction set. The trace

program is platform independent, without relying on any

operating system or libraries. It can be compiled and executed

on any x86 platform. Running the trace program generates the

original execution. As such, the large body of existing third

party tools can be applied to analyze trace program execution

on the platforms those tools prefer. We have implemented

the technique on x86 and sensor platforms. We show that

leveraging our technique, Linux tools can be used to analyze

Windows and sensor program executions including packed

malware executions.
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