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Abstract—Targeting the operating system kernel, the core of
trust in a system, kernel rootkits are able to compromise the
entire system, placing it under malicious control, while eluding
detection efforts. Within the realm of kernel rootkits, dynamic
data rootkits are particularly elusive due to the fact that they
attack only data targets. Dynamic data rootkits avoid code
injection and instead use existing kernel code to manipulate
kernel data. Because they do not execute any new code, they
are able to complete their attacks without violating kernel code
integrity.

We propose a prevention solution that blocks dynamic data
kernel rootkit attacks by monitoring kernel memory access using
virtual machine monitor (VMM) policies. Although the VMM is
an external monitor, our system preemptively detects changes to
monitored kernel data states and enables fine-grained inspection
of memory accesses on dynamically changing kernel data. In
addition, readable and writable kernel data can be protected by
exposing the illegal use of existing code by dynamic data kernel
rootkits.

We have implemented a prototype of our system using the
QEMU VMM. Our experiments show that it successfully defeats
synthesized dynamic data kernel rootkits in real-time, demon-
strating its effectiveness and practicality.

I. INTRODUCTION

Kernel rootkits [1]–[4] are one of the most technically

challenging malware to defend against because of their attack

targets: operating system (OS) kernels. The OS kernel is the

core of trust in a running system, with every program relying

on the information and environment it provides.

As such, if the kernel is compromised then there is ef-

fectively no trusted component remaining within the victim

system. This leaves all the system’s software, including secu-

rity software, vulnerable to being deceived by forged kernel

and system states. Rootkits have the goal of taking control

of a victim OS while eluding intrusion detection systems.

A common technique is to hijack kernel control flow or

manipulate kernel states in order to effectively blind the system

and prevent detection of the intrusion. Recent attack trends

[5], [6] show that kernel rootkits are increasingly being used

to make other malware more effective.

This paper focuses on the prevention of kernel dynamic data

attacks which may be employed by a rootkit. A traditional

kernel rootkit attack involves the injection and execution of

malicious code at the kernel level. A dynamic data attack,

however, operates by directly modifying dynamically allocated

kernel data structures without the use of injected code. These

data structures may validly be located at changing addresses,

contain variant data, or have a changing number of runtime in-

stantiations. Modern rootkit detection and prevention systems

are unable to effectively counter this type of attack.

Currently, there are two major approaches to that are used

to approach the problem of rootkit defense. Both approaches

require an external monitoring system in order to ensure a high

resistance to attacks from inside the system. (In essence, any

effective rootkit defense system must run at a privilege level

higher than that of the rootkit.) The first type of approach

works to guarantee the integrity of executed kernel code [7],

[8]. This prevention technique is able to defeat kernel rootkits

that require the execution of unauthorized code in the kernel’s

address space. Dynamic data attacks, however, do not require

the victim kernel to execute any new, unauthorized kernel code

and as such are able to freely bypass code integrity based

approaches. The second approach uses passive monitors [9],

[10] to obtain snapshots of kernel memory and analyzes them

to detect rootkit attacks based on kernel control flow integrity

violations. This technique detects violations based on changes

to invariant kernel content, however attacks against data with

variant content make such approaches simply unapplicable. In

addition, because this method relies on the periodic capturing

of snapshots, it cannot capture or prevent the action of intru-

sion, instead it can only detect the intrusion after the attack

has taken place. This passive nature makes such an approach

vulnerable to dynamic data attacks which are coordinated to

be launched and withdrawn between snapshot periods. There

are other, noticeably less effective, approaches that place the

monitor inside the system to be protected [11]–[17]. None of

these approaches can detect the manipulation of data using

existing kernel code, therefore dynamic data kernel attacks

bypass these approaches as well.

In this work, we present a system that aims at preventing

dynamic data kernel attacks. Our system uses VMM-based

memory access monitoring to actively prevent malicious mem-

ory accesses on protected kernel data transparently without

any changes to the guest operating system. Protecting kernel

data is a significant challenge due to its dynamic nature. For

example, the location, content, or even the number of instances

of various pieces of kernel data are all subject to change. Using



an external monitor (such as a VMM) to fully track the state

changes of dynamic kernel data within the monitored system

is a non-trivial task. The contribution of this paper is a state-

of-the-art technique able to prevent attacks on kernel data.

In addition, advanced VM introspection techniques useful for

tracking dynamic properties of protected data in real-time are

also contributed. We also present KernelGuard (KG), which is

an instantiation of our techniques using the QEMU VMM. Our

experiments show that KG successfully defeats synthesized

dynamic data kernel rootkit attacks.

The rest of this paper is organized as follows: Section II

introduces dynamic data kernel rootkits. Section III describes

the dynamic characteristics of kernel data and the challenges

in applying VMM monitoring techniques to them. The KG

implementation is shown in section IV. We evaluate the

effectiveness and performance of KG in section V. Section

VI has discussions on our techniques and section VII presents

related work. Finally we conclude this paper in section VIII.

II. DYNAMIC DATA KERNEL ROOTKIT ATTACKS

In this section we introduce a set of dynamic data rootkits

with advanced, elusive properties. First, let us define this type

of rootkit.

Definition: Dynamic data kernel rootkits are a family of

kernel rootkits which target kernel data that has dynamic

characteristics (e.g. variant content, variable location, or a

dynamic number of runtime instantiations) without injecting

any code into the kernel memory space.

These rootkits belong to the Direct Kernel Object Manipula-

tion (DKOM) [18] family of attacks which target kernel data.

They are a specific subset of that family, however, that avoids

the use of any malicious code injection or loading code (e.g.,

loadable kernel modules [19]) into the kernel space. The use

of malicious code run with the kernel’s privilege level may

be used as a fingerprint of the attack by detection or preven-

tion mechanisms [7], [8]. Instead, these rootkits accomplish

their attacks using direct memory access devices. In Linux,

/dev/kmem and /dev/mem are the notorious examples of

such devices and have been used in the past by kernel rootkits.

The phrack article on SucKIT [20] is a well-known intro-

duction to /dev/kmem attacks. SucKIT, however, only used

/dev/kmem to inject malicious code and hijack the system

call table. As such, it was detectable by conventional rootkit

defense systems. However, when the general technique demon-

strated by SucKIT is used to attack kernel data directly without

injecting any code, we can implement new attacks which have

advanced, evading characteristics. Although we present work

implemented on Linux, direct kernel memory manipulation

is a general problem on operating systems with similar mem-

ory devices. In Windows, \Device\PhysicalMemory and

\Device\DebugMemory are the equivalent devices. In both

operating systems the original intent of these devices is

for efficient access to video memory, kernel debugging, or

memory forensics. However, the unrestricted capability to read

and write kernel memory allows malicious kernel rootkits to

read any content or dynamically change the kernel to alter its

behavior or state.

A. Threat Model

Our threat model considers an attacker who has root priv-

ileges on a given Linux system and desires to mask his

presence. He is permitted to use the direct memory access

devices (such as /dev/kmem) but he will not inject or

otherwise execute any new code with the kernel’s privilege

level. (We operate under the assumption that execution of new

code will be detected or prevented immediately using existing

work in the area.) This means he may modify any and all data

in the kernel as well as potentially make use of existing kernel

code. The kernel data includes most kernel data structures

including kernel function pointers. (However, he will not use

those to attempt to execute new code.) The main techniques

of dynamic data attacks include changing the value of data,

changing the structure of data (e.g., by manipulating pointers),

or changing the control flow without violating code integrity.

We present examples of these attack types in the following

section.

B. Attack Examples and Effects

Given an attacker that is not permitted to execute new code,

it seems prudent to ask the question, “How much damage can

such a limited attacker really cause?” Work by Petroni et al.

[10] found that 96% of the real world Linux rootkits they

analyzed required persistent changes to the kernel’s control

flow. The attacker presented in this work, however, is severely

limited in his ability to make such changes. Can rootkits

still cause significant damage despite this limitation? In this

section, we demonstrate several types dynamic data attacks

available for use by rootkits. All of these attacks have the

ability to effectively carry out an attacker’s goals without

the execution of new code. The possible attack vectors for

dynamic data attacks are not limited to the cases presented

here. In later sections, we will discuss the challenges of dy-

namic data attacks and specific defense mechanisms available

to defeat them.

Anti-Security Mechanism - Shutting Down SELinux Ma-

nipulating only a kernel data structure can have a substantial

impact by actively disarming a security system. For example,

an attacker could disable a major security system, SELinux,

using the /dev/kmem device. We installed SELinux based

on Linux Security Modules (LSM) on top of Redhat 8 and

performed an experiment to disable the policy enforcement of

the SELinux kernel. The selinux_ops structure contains

pointers to all of the SELinux auditing functions. Whenever

a permission check is needed, the kernel uses this table to

determine which function to call. This table is registered

to be pointed to by the generic security module pointer,

security_ops. To disable SELinux’s policy enforcement

mechanism, we patched security_ops at runtime to point

to a dummy initialization structure that simply bypasses all

checks. This effectively bypasses and disarms the enforcement

mechanisms of SELinux.



Resource Status Manipulation - The Lying Network Card

Carefully manipulating kernel resource reports can create

a false view of resource consumption capable of evading

intrusion detection systems (IDS) which monitor resources.

Consider the case where an attacker is running a hidden

malicious service that makes significant use of the network.

Network usage status (e.g., number of bytes transmitted or

received) would provide obvious evidence of an attacker’s

presence. Using a dynamic data attack we can manipulate the

in-kernel status variables for the network card interface and

hence cause ifconfig and other network applications to

display forged statistics.

Hidden Services - Process Hiding One important goal

of rootkits is to ensure that any malicious processes are

not visible to the system administrator or IDS. Botnets, for

example, may use rootkits to hide the malicious bot program

that is running. This simple act of process hiding can be

accomplished using a dynamic data attack. We can manip-

ulate the task list structure using the /dev/kmem device,

effectively removing the malicious task from view, in order

to conceal the running service. This attack can be further

enhanced by using it together with the preceding resource

status manipulation to create the illusion of a normal system

both in terms of running processes and resource consumption.

C. Characteristics of Dynamic data Attacks

There are several characteristics of dynamic data kernel

rootkits that allow them to elude existing defense systems.

No Code Integrity Violation One of the most effective

mechanisms for defending against kernel rootkits is to protect

or verify the kernel code integrity of the operating system

[7], [8]. This approach defends against kernel rootkits that

inject malicious code by ensuring that only approved code

can execute in kernel mode. Dynamic data kernel rootkits,

however, target variant kernel structures which are set with

read and write permissions, and the attack is performed by

using already approved kernel code which satisfies kernel code

integrity. Dynamic data attacks are not covered by kernel code

integrity checking.

Dynamic states Some methods of rootkit defense operate

by analyzing memory dumps of the kernel’s memory and

comparing key portions of it to known good values [9].

For example, the detector may ensure that the system call

table has not been manipulated. This technique, however, is

not effective for protecting portions of the kernel that are

permitted to change and do not have invariant good values.

The usage status of a network card, for example, is represented

by kernel variables that are constantly updated at runtime. A

static memory dump of the data, even taken periodically, does

not reveal whether or not the values have been changed. In

addition, changes to the variables are common and cannot be

used as an indicator of the presence of a rootkit. As such,

dynamic data rootkits targeting dynamic kernel data are able to

circumvent standard integrity checking because the the validity

of the data is not obvious.

Transient Transient attacks are another way dynamic data

rootkits can be more robust against monitoring. A state-based

control flow integrity (SBCFI) monitor [10] may passively

detect a subset of dynamic data attacks if the possible states of

data are enumerable and a policy is used to decide desired or

undesired states. However, such a monitor analyzes periodic

snapshots, therefore the system is still vulnerable if the attack

is well coordinated to do its damage between snapshots. Being

asynchronous, SBCFI monitor does not monitor every state

change that occurs in the system, thus it is feasible for an

attack to remain undetected if it occurs in its entirety between

two monitoring periods.

III. DESIGN AND TECHNIQUES

Our approach is designed to be totally transparent to the op-

erating system (OS) being protected, meaning that we require

no changes to the underlying OS. In order to transparently

support the OS, we monitor the execution of the OS at the

instruction level within the VMM. While we operate at the

instruction level, in order to defeat dynamic data attacks we

need to have a higher level view of the kernel’s memory. We

start with a high level abstraction of what to protect and how

to protect it and use that information to enable protection at

the lower level where KG runs.

From a high level, the system functions as follows. For each

kernel data structure that needs to be protected, a policy is

written which describes how the VMM should identify the data

structure in a raw view of memory as well as the characteristics

of an attack against that data structure. In addition, the policy

describes the pointers within the kernel’s memory that point to

the data structure so that those can be tracked and protected as

well. At runtime, the VMM finds the data structure in memory

and intercepts all writes to its address in order to validate

them and ensure they do not violate the policy. In addition,

the pointers specified are also monitored in order to ensure

that if the kernel moves the data structure in memory KG can

still monitor it. This ensures that dynamic data structures can

still be monitored in real time, even if they change locations.

In the event a malicious write is detected, it can be prevented

at the KG level.

In this section, we first present the assumptions of our

design. Then we show the main challenges in defeating

dynamic data kernel attacks as well as the unique design and

techniques used to overcome such challenges.

A. Assumptions

In our design we assume that the monitor is activated after

the operating system has booted and reached a stable state.

This is because the kernel data structures undergo significant

changes during system initialization, and it is not important to

track those changes until they are completed. As an example,

consider the case where we want to monitor and protect the

data structures for the network card. During boot up that par-

ticular data structure does not exist until the card is initialized,

and as such it would not be fruitful to attempt to monitor it

before that. As a consequence of this startup assumption, we



also assume that the system reaches an initialized state before

the attacker begins his attack.

B. Dynamic Characteristics of Kernel Data

Before we describe how we protect dynamic kernel data,

we note that there is a significant challenge in determining, at

runtime, exactly where that dynamic kernel data is located in

memory. Unlike kernel code or static data, dynamic kernel

data may exist in different portions of memory at various

times and may move at runtime. Due to the fact that one

of the key mechanisms KG uses is to track every access to a

protected data structure, it is important to know exactly where

that structure is at all times. If the monitor has a stale address

then it can either fail to detect an attack or falsely prevent valid

memory accesses. This means that as dynamic data structures

are moved or the number of instantiations of them change,

KG must track those changes.

In this section, we describe the characteristics of dynamic

kernel data that make it difficult for the monitor to maintain

a correct list of memory addresses.

Location of Data Where data is located in the kernel’s

memory plays a large role in determining the best way to

protect it. We classify data location into two categories.

• Static (Immobile): Data has a fixed location determined at

compile time. (e.g., init_task_union is a statically

declared task structure for the first process.)

• Dynamic (Mobile): Location is decided at runtime and

subject to change. (e.g., task structures for new processes

created during the runtime of the system.)

Content of Data If the value of a data item can vary,

the content cannot always be used to determine whether

manipulation has occurred. We classify data content into two

categories.

• Static (Invariant): Data has the constant value that should

never change.

• Dynamic (Variant): Data can have arbitrary or multiple

possible values.

Number of Instances of Data A data structure may be

composed of multiple instances of itself (e.g., array, a linked

list) and if the number of instances changes, the VMM should

capture that change. We classify the number of instances into

two categories.

• Static (Fixed): Data is known to have a fixed number of

instances and addresses at compile time.

• Dynamic (Changing): The number of data instances in

the structure may change at runtime.

Many current rootkits target data that has a static location,

invariant content and a fixed number of instances (e.g., ker-

nel code, the system call table, or the interrupt descriptor

table). More effective attacks, however, can target mobile

data structures containing variant content and a changing

number of instances (e.g., the process list). In the following

section, we introduce techniques to handle such compilicated

characteristics of dynamic data.

C. Dealing with the Dynamic Characteristics of Kernel Data

Due to the fact that the VMM exists outside of the kernel’s

execution state, it cannot easily access internal kernel data like

the kernel does. Instead of having easy access to the process

list, for example, the VMM must instead extract the list from a

raw view of memory. This divide is referred to as the semantic

gap [21]. The semantic gap is the difference between the high-

level operating system context of a guest VM and the low-level

hardware states available to the VMM. In order to protect

kernel data, the operating system’s higher-level context for it

must be reconstructed.

Our system requires more than a simple bridging of the

semantic gap. In order to ensure proper protection of dynamic

data, (i.e., varying in size or location) the address of the data

structure being protected must be kept up to date and reflect

any valid changes the operating system may make. In order

to accomplish this, KG uses two primitives designed to assist

in watching memory. The first primitive, the memoryguard,

is a general purpose protection mechanism to guard a data

structure at a given range of memory addresses. Any memory

write to the memory range protected by a memoryguard is

intercepted and validated in order to determine if it constitutes

an attack. Its role is analogous to the protection offered by a

page table that simply applies a page’s permissions to memory

accesses on the page. A memoryguard, however, is unique in

that it can apply policies to those accesses in order to distin-

guish between legal and illegal access attempts. The second

primitive we have established is a watchpoint which assists

in protecting data by actively detecting pointer state changes

that should cause memoryguards to be updated. A watchpoint

watches memory accesses to a pointer to the data structure

protected by a memoryguard. Therefore, if the protected data

moves (which is reflected by a change in the pointer), the

watchpoint detects the address change of the moving data and

triggers an update to the associated memoryguard to reflect

the address change.

In this section we describe the techniques employed by KG

to deal with the dynamic characteristics of kernel data. The

techniques are able to overcome the semantic gap to allow the

VMM to capture and track changes to dynamic kernel data in

real time.

Location of Data Depending on the location of the data

being protected, different methods are used to determine the

raw memory addresses to be guarded.

• Static: The address of the data is known at compile time

and can be found from the kernel symbol table (i.e.,

System.map in Linux). This is easy to determine and

does not require any sort of tracking to watch for the data

to move within memory.

• Dynamic: The most difficult type of data addresses to

determine and track are for dynamic, moving kernel data.

Dynamic kernel data is declared as a pointer somewhere

in memory to a dynamically allocated portion of memory.

At runtime, the pointer may be updated to point to a new

portion of dynamic memory and the old data structure



is removed. The VMM would not normally be aware

of this type of change. It is important when protecting

dynamic data structures that the VMM knows the current

address of the structure lest it find itself guarding an old

version. We overcame the difficulty in tracking dynamic

data by using the watch primitives to assist in monitoring

the pointer and the data it points to. The memoryguard

is used by KG to track the data structure itself. The

watchpoint is used to watch pointers to the data protected

by memoryguards and update it if need be.

Content of Data Now that we know how to track the

locations of data structures that we want to protect, it is im-

portant to describe how we actually protect the data structures

themselves. This task is difficult because KG must distinguish

between valid and invalid changes to the kernel data structures.

• Static: Since invariant data should not change, protecting

it is a simple matter of ensuring that it does not change.

Traditional content integrity checking approaches eval-

uate the content of invariant data structures and signal

an alert if they are changed. We take a more active

approach by preemptively preventing writes to invariant

data structures.

• Dynamic: When content is allowed to vary (sometimes

arbitrarily) one cannot simply deny writes to it in order

to protect it, nor can one necessarily determine the

validity of the write based on its content. As such, a

new technique is needed. For KG we have developed a

way to detect illegal memory accesses using an Access

Invariant property. The property is described in detail in

section III-D, however the main idea is that for every

piece of variant data we want to protect we explicitly

enumerate the kernel functions allowed to or prohibited

from operating on it. This technique is instantiated in the

memoryguards, as mentioned earlier in this section.

Number of Instances of Data When KG is activated, all

protected data items are individually tracked and marked to

be protected. While static data can be effectively tracked by

marking it just once during KG’s activation, dynamic data

requires continuous monitoring since the number of instances

of an item can change as the data structure is updated at

runtime.

• Static: When KG is activated, the addresses of individual

instances are discovered by traversing the kernel data

structures from within the VMM.

• Dynamic: To detect any changes to the monitored data

structures, watchpoints are created using pointers that

signify the structural changes. Therefore any restructuring

will trigger the watchpoint and the whole data structure

will be re-identified.

D. Kernel Memory Access Monitoring

Once the data to be protected is found and tracked using

memoryguards and watchpoints, KG will intercede during any

memory writes to those memory ranges. This section presents

our methodology for determining whether a given write to a

Input: A write address (addr), CPU instruction pointer (EIP)

1: if the update is scheduled then

2: UpdateWatchPrimitives(GetScheduledTag())

3: end if

4: (prot, tag) ⇐ IsProtected (addr)

5: if prot = NotProtected then

6: {allow the memory write on unprotected memory}
7: else

8: if IsProhibitedCode (addr, EIP) then

9: print “Code EIP attacks the target at addr.”

10: {prevent the memory write to addr by EIP}
11: else

12: if prot = WatchPoint then

13: schedule the update of watch primitives with tag

14: end if

15: {allow the benign memory write}
16: end if

17: end if

Fig. 1. An algorithm to verify a kernel memory write

protected kernel data structure is valid or instead the result of

a rootkit attack.

Access Invariants: Protecting Variant Content As men-

tioned before, dynamic data rootkits evade code integrity based

monitors by only attacking data, usually using a direct memory

access device. An important insight to realize about such

attacks is that sort of access does not exist in the original

kernel code. Based on the source code, we can determine

which functions are normally used to access a given kernel

data structure and which functions should never be used to

access a given kernel data structure. By detecting when a data

structure is being modified from an unauthorized function, we

can detect and prevent rootkit attacks. We call the property that

the data should be accessed only by the functions intended in

the original kernel context an Access Invariant. KG explicitly

enforces this property by describing what kernel code is al-

lowed to or prohibited from accessing protected kernel data. It

exposes dynamic data attacks by determining when protected

data is manipulated by kernel functions that are not intended

to do so. The legitimacy of memory access is validated by

referring to the program counter (i.e., EIP register) when a

memory access is intercepted and inspected for an illegal

access.

E. Memory Watch Primitives and Their Dynamic Management

As presented in section III-C, our system uses memory

watch primitives to protect kernel data and track the movement

of protected data within the guest machine. Internally a watch

primitive is interpreted as a condition of memory ranges

whereby the VMM intercepts all memory accesses within the

guest machine.

Figure 1 shows the algorithm for integrated operation of

watchpoint monitoring and updating of monitored data struc-

tures in the VMM’s context. When a write occurs to kernel

code or data, the address of that write is checked to determine



WA P D 2
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WA P D 1

D 1

WA TCH (W , T AG ) ;

GUARD ( D 1 , P , T AG ) ;

WA TCH (W , T AG ) ;

GUARD ( D 2 , P , T AG ) ;

Fig. 2. The address change of protected data from D1 to D2 is recognized by
the corresponding watchpoint and the watch primitives (i.e. memoryguard and
watchpoint) are updated using the tag, TAG. (address ranges: A for allowed
access function, P for prohibited access function, W for a watchpoint, and D1,
D2 for moving, protected data)

whether or not it corresponds to any of the currently active

watch primitives.

The function IsProtected(addr) queries an efficient

data structure similar to a page table in order to determine

the protection information for the write target. If the target

address is protected, the memory address is further examined

by querying the program counter in order to determine if the

instruction issuing the writes is permitted to do so, and if not

concludes that an attack is occuring. If the write is deemed

permissible, then it assumes the write is either a valid access

(for a memoryguard) or a signal to update watch primitives due

to the movement of protected data (for a watchpoint). Memory

writes which do not meet any of the conditions mentioned

above are allowed to proceed.

Figure 2 illustrates how the watchpoint update signal is

processed. In this Figure, the VMM is using a watchpoint and

a memoryguard to protect a data structure at the initial address

range D1. The watchpoint for the pointer at the address range

W tracks dynamic address changes of the protected data from

D1 to D2. First, a watchpoint detects a change to the pointer it

is tracking because it is changed from D1 to D2. (This signifies

that a memoryguard needs to be updated.) Second, the existing

memoryguard that governs the protection of the previous data

structure is flushed using the tag, TAG, associated with the

watchpoint. Third, the removed memoryguard is regenerated

by the VMM for the new address of the data, D2. This process

generates the updated memoryguard by the description of the

policy that shares the same tag with the triggered watchpoint.

IV. IMPLEMENTATION

The methodology described in section III is portable to

any VMM that supports memory interposition (e.g., Bochs,

QEMU, VirtualBox, or VMware Workstation). Memory inter-

position is generally a part of VMMs which translate guest

instructions into host instructions. VMMs that do not support

memory interposition (e.g., Xen or VMWare ESX) can also

support this technique using traps on the data pages [7], [22].

For our prototype implementation, we chose to use the QEMU

virtual machine platform to implement KG. QEMU uses a

dynamic recompiler to translate guest instructions into host

instructions. Instead of constantly recompiling all guest code,

QEMU maintains a cache of recently recompiled and used

blocks of code in order to improve performance. We inserted

our interception routines into this cache code in order to

implement interposition effectively and efficiently.

A. Exposing and Preventing Dynamic data Attacks

One specific instance of a dynamic data attack writes its

payload from user space using direct memory access devices

such as /dev/kmem or /dev/mem. The devices use a kernel

function, __generic_copy_from_user, to actually copy

data from user space into its new location within the kernel.

This is a general function used by various parts of the kernel

to copy data from user space. Based on the analysis of kernel

source code, however, we determined that in normal usage

this function should never be used to overwrite our protected

kernel data structures. As such, we can make use of the Access

Invariant property to realize that any writes to our protected

data structures using this function are malicious. This means

that we can effectively prevent this type of dynamic data

rootkit with a simple policy for prohibited functions specify-

ing that __generic_copy_from_user is prohibited from

writing to our protected data structures. Note that this does not

disable proper usage of the direct memory access devices, but

instead prevents them from overwriting protected kernel data

structures, including dynamic ones.

B. Optimizing Monitoring Performance

Due to the fact that our approach only needs to operate on

kernel data being modified by kernel code, write interception

does not need to occur during user mode in order for our

technique to be functional. (This is because user mode code

does not have the proper privileges to write to kernel memory.)

This permits us to leverage the KQEMU acceleration module

for QEMU. KQEMU is able to execute user mode code

directly on the host processor (noticeably faster than standard

QEMU) while still executing kernel mode code using the KG

instrumented QEMU recompiler. This results in noticeable

performance improvements.

V. EVALUATION

In this section we will describe the experiments run to vali-

date the effectiveness and practicality of our defense system. In

order to test KG against dynamic data attacks we implemented

and tested the three dynamic data attacks described in section

II-B. We also ran five performance benchmark programs to

ascertain the performance overhead associated with kernel

memory access monitoring and maintaining a synchronous

view of the guest VM’s data structures.

For the SELinux attack experiment, we used a kernel built

using the LSM-based SELinux implementation patch applied

to a vanilla 2.4.21 Linux kernel. For the other two attack

experiments as well as the performance tests, the OS of the

guest virtual machine is an off-the-shelf copy of Redhat 8 with

an unmodified copy of version 2.4.18 of the Linux kernel. We

used QEMU version 0.9.0. A guest system is configured with

512MB RAM, and a host system has a 3.2GHz Pentium D

CPU and 2GB RAM. QEMU does not support dual CPUs,

therefore one core was effectively used for experiments.



A. Preventing Dynamic Data Kernel Rootkit Attacks

In order to protect against the three attacks described in

section II-B we created policies applicable to them. In each

policy, we used the kernel semantic information that is ex-

tracted from kernel and the VMM action that generates watch

primitives. For all three policies we used the address range

of the __generic_copy_from_user kernel function to

create a memoryguard which prevents the attack from using

the direct memory access devices to write to the data structure

being protected.

Protecting SELinux The attack shown in section II-B

turns off policy enforcement in SELinux by patching the

general security module pointer security_ops. The pro-

tection of this pointer is sufficient to prevent the attack. The

security_ops pointer is statically declared, therefore its

address is determined at compile time. The policy prevents

write access on the security_ops from all direct memory

access devices.

Preventing NIC Data Manipulation In Linux, an individual

NIC is represented by a net_device structure and all of a

system’s NICs are organized in a linked list pointed to by a

global static pointer, dev_base. NIC status information is

stored in a separate structure, net_device_stats. This is

the structure we desire to protect. For a loopback device the

status structure is accessible using *(net_device.priv).

For other network devices, *(net_device.priv).stat

should be used. The policy tells the VMM how to traverse the

list of NIC structures and generate memoryguards to protect

the status data.

Preventing Process Hiding The process list consists of

multiple task_struct objects which can be traversed by

following the next_task or prev_task pointers. The

head of the list, init_task_union, is statically declared,

therefore its address is determined at compile time. The

VMM traverses the list using kernel semantic information and

generates a memoryguard and a watchpoint for each object. All

watch primitives for task_struct objects share the same

tag, TAG_PROC, so that when the list is modified due to the

addition or removal of an object the list can be updated using

one tag.

B. Runtime Performance

During performance testing, we loaded the system with the

policies to prevent NIC manipulation and process hiding. The

policy for SELinux protection is not used in this performance

section because we intended to use the off-the-shelf guest

OS for performance measurement while the use of SELinux

requires a custom compilation of the kernel.

In order to evaluate the efficiency of KG, we compared the

performance of our implementation with the performance of

an unmodified QEMU virtual machine. Both KG and QEMU

ran with KQEMU support in normal mode which causes

QEMU to execute user mode instructions directly on the host

CPU. We chose five applications as benchmarks and compared

the results of running them with and without the protection.

Fig. 3. Performance results of KG with KQEMU support compared to
unmodified QEMU with KQEMU support. Results are normalized with
respect to the unmodified VMM. In the apache benchmark, time per request
is used. In the other benchmarks, the total execution time is used.

All benchmarks except apache were measured in terms of

execution time. In the apache benchmark the average process

time per request was used for comparison instead. The find

benchmark shows a workload with intensive disk and filesys-

tem activity. The gzip benchmark compresses the archived

source code of the Linux 2.4.18-14 kernel. This benchmark has

a workload of intensive user level arithmetic and filesystem

access. The make benchmark shows compilation of version

2.4.18-14 of the Linux kernel. It tests the performance of the

kernel development tool chain (e.g., gcc, ld and make) and

involves both a CPU workload and intensive I/O operations.

The nbench benchmark runs the Linux/Unix nbench 2.2.2

benchmarking program. It measures the performance of the

CPU, FPU and memory system. It is primarily CPU bound.

For the apache benchmark we ran Apache version 2.2.8

within the guest VM and used the ApacheBench tool from

outside of the VM to determine its throughput. We configured

ApacheBench to use 3 concurrent connections and 20000

requests for each connection.

Figure 3 shows the performance of KG memory access

monitoring. As can be seen, the more memory intensive an

application is, the higher the overhead. CPU bound applica-

tions, on the other hand, experience little or no slowdown.

VI. DISCUSSION

Our system uses semantic information about each piece of

data inside guest machine in order to monitor and protect

them. Therefore, our approach is currently specification-based

and can be applied to protect specific, core data structures

which require security protection which is not provided by

any existing solutions. The focus of this paper is to highlight

the challenges of protecting against dynamic data rootkits and

provide novel design techniques to overcome those difficulties.

In order to expand the coverage of protected data, one could

envision using static analysis of the kernel source code and/or

dynamic analysis to capture dynamic runtime memory man-

agement information. We are currently pursuing these avenues



as future work.

Our solution is based on the access invariant concept

which determines malicious attacks due to abnormal memory

accesses occuring from locations that were not part of the

original kernel’s context. Therefore, an attack which made use

of specific, existing kernel code in a return-to-libc style attack

would be able to bypass parts of our system.

VII. RELATED WORK

SecVisor [7] and NICKLE [8] detect kernel rootkits by

enforcing kernel code integrity. Their approach is subset of

the general concept of protecting invariant content. When the

attack is directed toward dynamic data using existing kernel

code, their approach cannot be applied to defeat the attack.

SBCFI [10] detects kernel rootkits based on permanent

attack traces observed in periodic memory snapshots. Al-

though this approach has extended protection coverage for

function pointers, the protection is effective only for targets

with invariant or enumerable content. In addition, taking an

asynchronous approach may permit dynamic data attacks.

Specification-based approaches [23] determine attacks based

on the violation of kernel semantic relationships held among

data structures at runtime. However, this approach may not be

applicable to guard data structures which do not have semantic

relationships with others. In contrast, our approach can protect

them because attacks are determined on the basis of illegal

memory accesses on the data.

Livewire [24] is the work which introduced the VMM-based

intrusion detection system and VM introspection technique.

Their work does not cover advanced attacks such as those

demonstrated in this paper.

Dynamic data kernel rootkits and user level non-control

data attacks [25] share the property of avoiding direct control

flow changes while still inflicting their damage. The difference

is that kernel attacks require a higher privilege level to

manipulate kernel data, and direct memory access devices are

used for initiating attacks against the OS kernel. Two memory

access monitoring techniques for user level programs [26],

[27] have been proposed that use similar approaches to identify

software vulnerabilities at the user level. Unlike these two

techniques, our work can protect unmodified operating system

kernels without any hardware architectural support or source

code rewriting using VM introspection.

VIII. CONCLUSION

In this paper, we present a prevention system that defeats

dynamic data kernel rootkit attacks. Our approach is based

on memory access monitoring which requires the VMM to

maintain the precise address of dynamic kernel data. We

overcome this challenge by using memory watch primitives

that instantly signal the state changes of data. The dynamic

data attacks are exposed using the enforcement of the Access

Invariant property to detect the unintended use of existing

kernel code for malicious purposes. Our proof-of-concept

implementation on the QEMU VMM is able to successfully

defeat synthesized dynamic data kernel attacks based on the

presented techniques.
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