
PROMISE: Peer-to-Peer Media Streaming Using
CollectCast

Mohamed Hefeeda, Ahsan Habib, Boyan Botev, Dongyan Xu, Bharat Bhargava
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907
{mhefeeda, habib, botevbi, dxu, bb}@cs.purdue.edu

ABSTRACT
We present the design, implementation, and evaluation of PROMISE,
a novel peer-to-peer media streaming system encompassing the key
functions of peer lookup, peer-based aggregated streaming, and dy-
namic adaptations to network and peer conditions. Particularly,
PROMISE is based on a new application level P2P service called
CollectCast. CollectCast performs three main functions: (1) infer-
ring and leveraging the underlying network topology and perfor-
mance information for the selection of senders; (2) monitoring the
status of peers and connections and reacting to peer/connection fail-
ure or degradation with low overhead; (3) dynamically switching
active senders and standby senders, so that the collective network
performance out of the active senders remains satisfactory. Based
on both real-world measurement and simulation, we evaluate the
performance of PROMISE, and discuss lessons learned from our
experience with respect to the practicality and further optimization
of PROMISE.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed Applications; H.3.5 [In-
formation Storage and Retrieval]: Online Information Services—
Data Sharing

General Terms
Design, Measurements, Performance

Keywords
Peer-to-Peer Systems, Multimedia Streaming

1. INTRODUCTION
Peer-to-peer (or P2P) systems have gained tremendous momen-

tum in recent years. In a P2P system, peers communicate directly
with each other for the sharing and exchange of data as well as other
resources such as storage and CPU capacity. Paralleling research in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’03, November 2–8, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-722-2/03/0011 ...$5.00.

other aspects of P2P, such as lookup [24, 31, 27], storage [12, 28],
and multicast [9, 1, 32], we in this paper focus on P2P real-time me-
dia streaming. Different from general P2P file sharing, P2P media
streaming poses more stringent resource requirements for real-time
media data transmission. However, as first addressed in our earlier
work [33], for a media file of playback rate R0, a single sending
peer may not be able or willing to contribute an outbound band-
width of R0. Moreover, downloading the entire media file before
playback is not the best solution, due to the potentially large media
file size and thus long download time. As our solution, we propose
a P2P media streaming model that involves multiple sending peers
in one streaming session.

Despite recent research results of ours and others, a number of
challenges intrinsic in P2P media streaming have not been addressed.
In this paper, we present our solution to the following challenge: in
a highly diverse and dynamic P2P network, how to select, moni-
tor and possibly switch sending peers for each P2P streaming ses-
sion, so that the best possible streaming quality can be maintained?
The dynamics and diversity are reflected in both peers and network
connections between peers: (1) a sender may stop contributing to
a P2P streaming session at any time, (2) the outbound bandwidth
contributed by a sender may change, (3) the connection between
a sender and the receiver may exhibit different end-to-end band-
width, loss, and failure rate, and more importantly (4) the underly-
ing network topology determines that the connections between the
senders and the receiver are not independent of each other, with
respect to their loss and failure rate. As a result, the quality of
a P2P streaming session depends on judicious selection of senders,
constant monitoring of sender/network status, and timely switching
of senders when the sender or network fails or seriously degrades.
Unfortunately, previous works in P2P media streaming do not pro-
vide a systematic solution to the above challenge. For example,
some previous works simply assume that a receiver receives media
data from only one sender [2, 32, 9]. For the works that do assume
multiple senders for one receiver [19, 22], there is no study on the
selection of the best senders.

In this paper, we present the design, implementation, and eval-
uation of PROMISE, a novel and comprehensive peer-to-peer me-
dia streaming system. In designing PROMISE, we have developed
a novel P2P service called CollectCast, which operates entirely
at the application level but infers and exploits properties (topol-
ogy and performance) of the underlying network. CollectCast has
a pattern of “one receiver collecting data from multiple senders”.
Unlike other multiple-to-one network services such as concast [6],
each CollectCast session involves two sets of senders: the standby
senders and the active senders. Members of the two sets may
change dynamically during the session. CollectCast reflects the
P2P philosophy of dynamically and opportunistically aggregating

R/4

R/4

R/2

Receiving peer

Sending peer

Peer−to−peer substrate

Figure 1: PROMISE architecture: Peers are interconnected
through a P2P substrate (e.g., Pastry, Chord). For each ses-
sion, multiple sending peers cooperate to serve a requesting
peer. Senders are chosen based on the current network con-
ditions and the reliability of peers to render the best quality.

the limited capacity of peers to perform a task (streaming) tradi-
tionally performed by a dedicated entity (a media server). Col-
lectCast realizes the functions of sender selection, monitoring, and
switching, so that the receiver will observe minimum fluctuation
of media streaming quality. We have performed both real-world
measurements and simulations of PROMISE. Our results show that
CollectCast-based P2P streaming achieves better performance than
P2P streaming based only on end-to-end network performance in-
formation.

The rest of the paper is organized as follows. An overview of
PROMISE is given in Section 2. The following three sections pro-
vide the details of PROMISE: peer selection in Section 3, rate and
data assignment in Section 4, and dynamic switching in Section 5.
We evaluate PROMISE through simulation in Section 6, and Inter-
net experiments in Section 7. Section 8 discusses the related work.
Finally, Section 9 concludes the paper.

2. PROMISE: AN OVERVIEW
The PROMISE architecture consists of a set of peers intercon-

nected through a P2P substrate (Figure 1). The P2P substrate main-
tains connectivity among peers, manages peer membership, and
performs object lookup. PROMISE operations are independent of
the underlying P2P substrate. Therefore, PROMISE can be de-
ployed on top of P2P substrates such as Pastry [27], Chord [31],
and CAN [24]. We note that each of these P2P substrates returns
only one peer for an object lookup request, if the object exists in the
system. In our prototype, we have modified Pastry to return mul-
tiple peers for each lookup request. We used Pastry because it has
been implemented [14] and the code is written in Java with good
portability.

Notations. We use bold symbols (e.g.,
�

p) to represent random
variables and regular symbols (e.g., Rp) to represent constant val-
ues. An edge from node i to node j is denoted by i → j. A
path with one or more edges from node x to node y is denoted by
x � y. The expectation of a random variable � is denoted by � .
The playback rate of the media file is referred to as R0.

Peer characteristics. PROMISE assumes that peers exhibit het-
erogeneous characteristics and they do not have server-like capa-
bility: they contribute limited capacity, and may fail or reduce their
sending rates unexpectedly. Therefore, multiple sending peers may

Receiver Side
1. CAND← P2PSubstrateLookup(fileId);
2. T ← BuildTopology(CAND, receiverId);
3. ACTV← SelectPeers(T);
4. while the session is not over do
5. Connect(ACTV); /* Establish the streaming session */
6. SendControlPackets(ACTV);
7. needToSwitch← false;
8. while needToSwitch == false do
9. needToSwitch← ReceiveSegment();
10. end while
11. T ← UpdateTopology(T , newMeasuredValues);
12. ACTV← SelectPeers(T);
13. end while

Figure 2: CollectCast: Receiver side

Sender Side
1. /* Wait for a control packet */
2. while this peer is an active supplier do
3. ctrPkt← ReceiveControlPacket();
4. rate← GetAssignedRate(ctrPkt);
5. dataToSend← GetAssignedData(ctrPkt);
6. do
7. SendData(dataToSend, rate);
8. UpdateStatistics();
9. while no control packet received;
10. end while

Figure 3: CollectCast: Sender side

be needed to serve a requesting peer at any time. In order to cap-
ture the heterogeneous characteristics of peers, we associate each
peer p with two parameters: offered rate Rp and availability

�
p.

The offered rate is the maximum sending rate that a peer can (or
is willing to) contribute to the system. A lower bound on the of-
fered rate (Rmin

p) is imposed by the system to limit the maximum
number of peers required to serve a request. This limits the number
of concurrent connections (and hence the control overhead) that the
requesting peer needs to maintain. The availability is the fraction of
time a peer is available for serving. We represent the availability of
peer p as a binary random variable

�
p, with 1.0 indicating ‘avail-

able for streaming’ and 0.0 otherwise. The rate and availability
information is collected by a daemon running in each participating
peer. The rate could be a parameter set by the user during initial set
up. The availability can either be set by the user or measured by
collecting statistics during the regular operation of the peer. Statis-
tics on how long a peer stays connected to the Internet and how
much bandwidth used are easy to collect.

CollectCast and PROMISE. The design of PROMISE relies on
a novel application level P2P service called CollectCast. Collect-
Cast judiciously chooses the sending peers and orchestrates them
in order to yield the best quality for the receiver. Specifically, Col-
lectCast encompasses a number of techniques for: (1) selecting the
best sending peers, (2) inferring and monitoring the characteristics
of the underlying network, (3) assigning streaming rates and data
segments to the sending peers, and (4) deciding when a change of
the sending peers is needed. Details of each technique are given in
subsequent sections. The functions of CollectCast are divided into
receiver-side (Figure 2) and sender-side (Figure 3) functions. The
receiver plays the leading role in CollectCast.

0.5

0.25
0.5

1.0

P1: 0.25, 0.2

Rp

P2: 0.25, 0.7

Avail bw

Virtual router

Ap
AvailabilityOffered rate

Pr: Receiver

1

3

5

4

P3: 0.25, 0.8 P5: 0.25, 0.8 P6: 0.5, 0.9P4: 0.5, 0.5

2

Figure 4: Topology-aware selection. It constructs an approxi-
mate topology and considers shared segments.

PROMISE operation. A streaming session in PROMISE is es-
tablished as follows. A peer requesting a movie runs the receiver
procedure shown in Figure 2. The procedure first issues a lookup
request to the underlying P2P substrate, which will return a set of
candidate peers who have the movie. The candidate set typically
contains 10 to 20 peers. The protocol then constructs and annotates
the topology connecting the candidate peers with the receiver. Us-
ing the annotated topology, the selection algorithm determines the
active sender set. The active set is the best subset of peers that is
likely to yield the best quality for this streaming session. The rest
of the candidate peers are kept in a standby sender set, from which
replacement peers will substitute failed or degraded peers from the
active set. Once the active set is determined, the receiver establishes
parallel connections with all peers in the active set. Two connec-
tions are established with each peer. A UDP connection for send-
ing the stream packets,1 and a TCP connection for sending control
packets. The receiver assigns a sending rate to each of the active
senders based on the sender’s offered rate and the goodness of the
path from that sender to the receiver. The streaming session contin-
ues as far as there is no need to switch to a different active sending
set. A switch is needed if a peer fails or the network path becomes
congested. At which time, the topology is updated with new values
measured passively during streaming and a new active set is se-
lected. The sender role is simple: upon receiving a control packet,
the sender determines the rate and the subset of data it is supposed
to send. The sender keeps sending till a new control packet arrives
with new assignment.

3. SELECTING BEST PEERS
The searching step returns a set of candidate peers from which

the receiving peer chooses the active set to start streaming the movie.
Three selection techniques are possible: random, end-to-end, and
topology-aware. The random technique randomly chooses a num-
ber of peers that can fulfill the aggregate rate requirement, even
though these peers may have low availability and share a congested
path. The end-to-end technique estimates the “goodness” of the
path from each candidate peer to the receiver. Based on the quality
of the individual paths and on the availability of each peer, the tech-
nique chooses the active set. The end-to-end technique does not
consider shared segments among paths, which may become bottle-
necks if peers sharing a tight segment are chosen in the active set. In
1Adjusting the rate of the UDP connection to compete fairly with
TCP traffic of other applications is discussed in [15].

P1: 0.25, 0.2

Rp

P2: 0.25, 0.7

Ap
AvailabilityOffered rate

Pr: Receiver

0.25

0.5

0.25

0.5 0.5

0.5

e2e Avail bw

P3: 0.25, 0.8 P5: 0.25, 0.8 P6: 0.5, 0.9P4: 0.5, 0.5

Figure 5: End-to-end selection. It does not not consider shared
segments.

contrast to the end-to-end technique, the topology-aware technique
infers the underlying topology and its characteristics and . consid-
ers the goodness of each segment of the path. Thus, it can make
a judicious selection by avoiding peers whose paths are sharing a
tight segment.

Illustrative example. Consider the example shown in Figures
4 and 5. The lookup step returns peers P1, P2, . . . , P6 as a can-
didate set to the receiving peer Pr. The random technique may
choose P1, P3, P4 as the active set, even though some of these
peers have low availability (P1), and others share a congested path
(P3, P4). The end-to-end technique considers the goodness of in-
dividual paths and the availability of peers. Therefore, it selects
peers P3, P5, P6. It is not, however, aware of the shared segment
between the two paths P5 � Pr and P6 � Pr, which can not
afford the aggregate rate from P5 and P6. Finally, the topology-
aware technique makes an informed decision, using the annotated
topology, and selects the best set: P2, P3, P6.

3.1 Topology-Aware Selection
This section presents the details of the topology-aware selection

technique. We first define the goodness topology and how it is an-
notated by network performance metrics (e.g., available bandwidth
and loss rate) and peers characteristics (e.g., offered rate and avail-
ability). Then, we use the goodness topology to estimate the peer
goodness for the session being established. Finally, we state the
peer selection problem, formulate it as an optimization problem,
and present an algorithm to solve it.

Goodness topology T . It is a directed graph that interconnects
the candidate peers and the receiving peer (Figure 4). Each edge
(hereafter called a path segment, or simply a segment) i→ j ∈ T
is annotated with a goodness random variable � i→j . Each leaf node
represents a peer p from the set of candidate peers � and has two
attributes: a fixed offered rate Rp and a random variable

�
p that

describes the availability of p for streaming.
The goodness topology is built in two steps. In the first step,

network tomography techniques are used to infer the approximate
topology and annotate its edges with the metrics of interest, e.g.,
loss rate, delay, and available bandwidth. This is called the in-
ferred topology. A segment in the inferred topology may repre-
sent a sequence of links with no branching points in the physical
topology. This hides unnecessary details and yields a compact rep-
resentation of the physical topology. We assume that routes from
candidate peers to the receiver do not change during the course of

the streaming session. This indicates that the inferred topology is
a tree-structured graph rooted at the receiver. Previous studies [3,
10] adopted the same assumption, which is backed by Internet mea-
surement studies. For example, [35] indicates that the end-to-end
Internet paths often remain stable for a significant period of time.
More details on building the inferred topology are given in Section
3.3. The second step transforms the inferred topology to the good-
ness topology. The transformation process is basically computing
a “logical” goodness metric for each segment from its properties.

Segment goodness. The segment goodness � i→j is, in general,
a function of one or more properties of the segment i → j, de-
pending on the feasibility and ease of measuring these properties
segment-wise. Segment properties may include loss rate, delay, jit-
ter, and available bandwidth. In PROMISE, we represent the seg-
ment goodness as a function of the loss rate and available band-
width because these two metrics: (1) can be measured segment-
wise [3], and (2) are the most influential on the receiving rate, and
hence on the quality. A segment with high available bandwidth and
low loss is unlikely to introduce high jitter or long queuing delay.
The goodness of segment i→ j is defined as: � i→j = wi→j � i→j ,
where wi→j is a weight that depends on the available bandwidth
and level of sharing on segment i → j, and � i→j is a binary ran-
dom variable that depends on the loss rate. � i→j is defined in terms
of the packet loss rate as follows:

� i→j =

�
1, if a packet is not lost on i→ j
0, otherwise

(1)

If the average loss rate on segment i→ j is � i→j , then the mean of
� i→j is: E[� i→j] = � i→j = 1× (1− � i→j) + 0 = 1 − � i→j .

The weight wi→j is determined by the available bandwidth on
segment i → j (denoted by bi→j) and the aggregate rate from
peers sharing this segment if they are selected in the active set. The
segment weight is a per-peer metric, that is, the weight of segment
i → j (and hence, its goodness) could differ for two peers sharing
segment i → j. The weight of segment i → j for a peer p is
denoted by w

(p)
i→j and is given by:

w
(p)
i→j = min � 1, max(0, (bi→j − �

s∈S,i→j∈s � r
Rs)/Rp) � ,

(2)
where S is the set of peers selected to be in the active set thus far,
and s � r is the path from the sending peer s to the receiving peer
r. The intuition behind this formulation is that, if a segment has
a bandwidth equal to or higher than the aggregate rate contributed
from peers sharing this segment, then this segment will not throttle
this aggregate rate, and hence its weight is set to 1. Otherwise, the
weight is a fraction proportional to the shortage in the bandwidth
if peer p along with peers in S are chosen to serve. The exam-
ple given later in this section explains numerically how to compute
these weights.

Peer goodness. We define the goodness of a peer p, � p, as a
function of its availability and the goodness of all segments com-
prising the path p � r. � p has the following form:2

� p =
�

p �
i→j∈p � r

� i→j =
�

p �
i→j∈p � r

w
(p)
i→j � i→j . (3)

Peers with high expected goodness values (close to 1) indicate that
these peers are likely to provide good and sustained sending rate.
This is because they are unlikely to stop sending packets and these

2For the feasibility of the analysis, we are making a reasonable
assumption: the quality of individual segments of the path is inde-
pendent from each other and from the availability of the peer.

packets will be transmitted through network paths of low dropping
probability.

Best active peers set. This is the subset of peers that are likely
to provide the “best” quality to the receiver. The perceived quality
is quantified by the aggregated receiving rate. We are now ready to
state the selection problem:

Active Peers Selection Problem. Given the annotated
goodness topology T , find the set of active peers � actv ⊆
� that maximizes the expected aggregated rate at the
receiver, provided that the receiver inbound bandwidth
is not exceeded.

Mathematically, this can be phrased as: find � actv that

Maximizes E �	� p∈
 actv � pRp � (4)

Subject to Rl ≤ �
p∈
 actv Rp ≤ Ru, (5)

where � p and Rp are the goodness and offered rate of peer p, re-
spectively, and Rl, Ru are the lower and upper rate targets. Section
4 shows how Rl, Ru are determined.

Selection algorithm. Given the problem formulation above, find-
ing the best active set �� actv is straightforward. Figure 6 describes
an algorithm to determine �� actv given the goodness topology T .
The algorithm determines the expected aggregated rate for all pos-
sible active sets and selects the one with the highest rate. There are
several code optimization possibilities which are not discussed for
the sake of clarity.

Complexity. The selection algorithm enumerates all possible sets
that satisfy the constraints in (5). However, the input (the candidate
set) to the algorithm is fairly small (10 to 25 peers from which we
choose 3 to 5 active peers). Checking the constraints in (5) is a
matter of adding a few numbers and comparing with the bounds.
Many sets will be disqualified by the constraint. For the remaining
qualified sets, selecting the best among them is also a simple com-
putation. In addition, the selection algorithm is invoked only a few
times: at the beginning of the session and when a peer switching
is needed. In our implementation, PROMISE calls the selection
algorithm no more than five times during a 60-minute streaming
session, and each call takes a few tens of milliseconds on a rea-
sonable PC. Therefore, although designing more efficient selection
algorithms is possible, we believe that the payoff will not be signif-
icant.

Complete example. This examples shows the details of selecting
the best peers in the topology shown in Figure 4. To simplify the
discussion, we set Rl = Ru = R0 and the loss rate in all path
segments to 0, that is, � i→j = 1, ∀i, j. The playback rate R0 is 1
Mb/s. The possible active sets that satisfy the constraints in 5 are:
{P4, P6}, {P3, P5, P6}, {P2, P5, P6}, {P1, P5, P6}, {P3, P4, P5},
{P2, P4, P5}, {P1, P4, P5}, {P1, P3, P4}, {P2, P3, P4}, {P2, P3,
P6}, {P1, P3, P6}, {P1, P2, P4}, {P1, P2, P6}, and {P1, P2, P3,
P5}. The expected aggregated rate is then computed for every
set. For instance, the expected aggregated rate for {P3, P5, P6}
is 1× .8 + 1× .8 + .25/.50× .9 = 2.05. P5 and P6 have a shared
segment (5 → 3) of bandwidth .5. If we assign w

(P5)
5→3 = 1 (be-

cause the available bandwidth on the path is greater than P5’s of-
fered rate), P6 will get a left-over bandwidth of 0.25, which makes
the weight w

(P6)
5→3 = 0.25/0.50. If we assign the w

(P6)
5→3 = 1, P5

gets a weight of 0 because no bandwidth is left for this peer on the
shared segment. We consider all combinations of ordered peers in
a particular peer set to maximize the expected rate. The expected
rate of all possible sets are 1.4, 2.05, 1.95, 1.45, 1.85, 2.0, 1.5, 1.75,
1.25, 2.4, 1.9, 1.2, 1.6, and 2.3, respectively. The highest aggregate
rate comes from the set {P2, P3, P6}.

Selection Algorithm
1. Enumerate all possible sets that satisfy
constraints in (5): � 1, � 2, . . . , � M.
2. �� actv = null; maxE = 0
3. for each � m, 1 ≤ m ≤M do
4. Set difi→j = bi→j , ∀i→ j ∈ T
5. E = 0
6. for each p ∈ � m do
7. Gp =

�
p

8. for each segment i→ j ∈ p � r do
9. Gp = Gp ×min(1, � i→j × difi→j/Rp)
10. difi→j = max(0, difi→j −Rp)
11. endfor
12. E = E + Gp

13. endfor
14. if E < maxE then
15. maxE = E
16. �� actv = � m

17. endfor
18. return �� actv

Figure 6: Pseudo code for selecting the best active peers set.

3.2 End-to-End Selection
Instead of building the underlying topology, the end-to-end tech-

nique uses the end-to-end path bandwidth and loss rate in addi-
tion to peer availability. It exploits no information about the path
segments shared among peers and therefore imposes less overhead
than the topology-aware selection. However, as our evaluation shows
(Section 6), while better than random selection, it does not perform
as well as the topology-aware selection. We can formulate the end-
to-end selection as a special case of the topology-aware selection
as follows. Instead of writing the peer goodness as in Equation (3),
we write it as: � p =

�
pwp � r � p � r, where wp � r is the path

weight and � p � r is the binary random variable that depends on the
end-to-end path loss rate. The mean of � is: � p = 1− � p � r, where� p � r is the average end-to-end path loss rate. Computing the path
weight is much easier in this case and is given by:

wp � r = � 1, Rp ≤ bp � r
Rp−bp � r

Rp
, otherwise (6)

Using this formulation, the expected rate maximization problem
can be solved in a way similar to the one in Section 3.1.

Example. The parameters in this example are the same as in
the example in Section 3.1. Thus, the possible active sets are also
the same. The end-to-end selection utilizes the availability of peers
and the path available bandwidth to calculate the expected rate. For
example, the expected rate of the set {P3, P5, P6} is 1 × .8 + 1×
.8 + 1× .9 = 2.5. The corresponding expected rate of all possible
sets are 1.4, 2.5, 2.4, 1.9, 2.1, 2.0, 1.5, 2.0, 1.5, 2.4, 1.9, 1.4, 1.8,
and 2.5, respectively. The maximum expected rate is 2.5, which is
supplied by peer sets {P3, P5, P6} and {P1, P2, P3, P5}. Either of
them can be taken, but we prefer the set with fewer peers to reduce
the overhead of maintaining multiple concurrent connections.

3.3 Topology Inference
In this section, we describe our approach to inferring an approx-

imate topology just sufficient for peer selection. Discovering the
interior characteristics of the network by probing only from its end
points is called network tomography [11]. Our approach is a mix of
a number of modified versions of known techniques. Our modifica-
tions significantly reduce the overhead and lead to a much shorter

convergence time. We first construct the logical topology, and then
we annotate it with the available bandwidth and loss rate. More
details can be found in [15].

Building the logical topology. This is a straightforward step in
which a tool like traceroute is used to build the physical topology.
Traceroute is performed in parallel from all the candidate peers to
the receiver. Then, consecutive links with no branching points are
merged together into one segment, resulting in the logical topology.
We note that some routers do not support traceroute. This, however,
does not severely harm the technique because we are not interested
in the exact topology, but in the shared segments among peers.

Annotating the topology with available bandwidth. Let us first
precisely define the end-to-end available bandwidth of a path. As
spelled out by [16], it is the maximum rate that the path can provide
to a flow, without reducing the rate of other traffic. The link with
the minimum available bandwidth (i.e., the tight link) determines
the path available bandwidth. Measuring the path available band-
width is costly: one should keep increasing the probing traffic rate
till at least it reaches (probably exceeds) the available bandwidth
on the tight link. Measuring the available bandwidth on individual
path segments is even more costly. Our approach trades-off the un-
necessary accuracy of available bandwidth for far less overhead. It
accomplishes this through three ways: (1) instead of measuring the
path available bandwidth, we test whether a path can accommodate
the aggregated rate from peers sharing this path. This rate is at most
R0. R0 is typically less than 1 Mb/s, (2) we conservatively label
all segments of a path with the value of its tightest segment, and
(3) we construct the probing packets from the actual data (i.e., data
from the media file that will be sent anyway).

Jain and Dovrolis [16] show that the one-way delay differences
of a periodic packet stream is a good indication of the available
path bandwidth between two nodes. The idea is that if the stream-
ing rate is higher than the available bandwidth, the one-way delay
difference will show a trend of increase. This is because packets
will be queued at the tight link. On the other hand, if the streaming
rate is lower than the available bandwidth, the one-way delay dif-
ference will be zero. Then, to measure the bandwidth, the sender
sends a stream of packets with a specific rate. The receiver mea-
sures the trend in the delay difference and decides whether the next
stream rate should be increased or decreased by a factor of 2. The
procedure continues till the available bandwidth is estimated within
the desired range of accuracy. We make two adaptations to the ba-
sic procedure. First, we set the initial stream rate as the minimum
possible offered rate (Rmin

p) from a peer. And we terminate when-
ever the stream rate reaches the minimum of R0 and the aggregate
rate from peers sharing the path. Second, since one peer may not
be able to send at rate R0, we coordinate the probing from multiple
peers to get the same effect as probing from one sender.

Annotating the topology with loss rate. Instead of explicitly
probing for segment-wise loss rates, we leverage the information
obtained during available bandwidth measurements. The receiver
assigns the sending rate to each of the sending peers. It also deter-
mines which data packets should be sent by each peer. Therefore,
it is easy to determine the loss rates on individual end-to-end paths.
To compute the segment-wise loss rates, we use the recently pro-
posed Bayesian inference using Gibbs sampling method [21]. The
method models the network tomography (for segment-wise loss
rates) as a Bayesian inference problem. Then, using the measured
data and an assumed initial distribution for the segment losses, the
method iteratively computes the posterior distribution of the seg-
ment losses [21].

Overhead estimation. We consider two types of overhead: pro-
cessing and communication. The communication overhead is due

to the probing packets. However, as noted above, we send actual
data packets as probes. Thus, effectively, we do not introduce com-
munication overhead. The receiver, though, needs a larger buffer
(in the order of seconds) to store these data packets for later use.
The processing overhead is mainly due to topology inference and
peer selection. This is not much of a concern, given that the topol-
ogy will typically be very small (10 to 20 nodes). Finally, we note
that building the topology and determining the best active set will
increase the start up delay, which is the initial time before start-
ing playing back the media file. However, it is still in the order of
seconds.

Discussion. Ideally, CollectCast will leverage some public In-
ternet measurement facilities, if they are widely deployed. Collect-
Cast can query the measurement facility about the network condi-
tions of the paths connecting the candidate peers with the receiver.
The measurement facility will be utilized by many users and appli-
cations. Therefore, more accurate measurements can be performed
and the overhead will be amortized over all applications. Recently,
Internet measurement facilities have started to appear in the litera-
ture, see for example [30, 18].

4. RATE AND DATA ASSIGNMENT
In this section, we first explain the role of FEC in our system.

Then, we describe how the rate and data are assigned to each peer
in the active set.

Forward Error Correction (FEC) in PROMISE. We use erasure
codes (also known as FEC in the network community) to tolerate
packet losses due to network fluctuations and limited peers reliabil-
ity. The media file is divided into equal-length data segments. Each
segment has a size of ∆ original packets and is protected using
FEC separately. Several FEC techniques such as Reed-Solomon
codes and Tornado codes [4] can be used. We use Tornado codes
because they are faster to encode/decode, albeit with little decod-
ing inefficiency [4]. We use the notation FEC(α) to indicate that
the system can tolerate up to (α − 1)% packet loss rate. For in-
stance, FEC(1.25) means that a data segment will be successfully
reconstructed even if 25% of the sent packets were lost. α is the
parameter that defines the current (packet) loss tolerance level in
the system. α has two bounds: αu, αl, which are the maximum
and minimum loss tolerance levels, respectively. These bounds im-
pact the selection of active peers determined by solving the maxi-
mization problem (Section 3.1) because the bounds (Rl, Ru) in the
constraints (5) are computed as: Ru = αuR0 and Rl = αlR0.

Data segments stored at peers are pre-encoded using FEC(αu).
A segment of ∆ packets is encoded into ∆/(2 − αu) packets. For
instance, FEC(1.25) on a segment of size 120 packets results in
a 160 encoded packets, from which any 120 can reconstruct the
original segment. Even though data segments are pre-encoded with
αu, we do not send at aggregated streaming rate of αuR0 all the
time. Rather, we send at αR0, αl ≤ α ≤ αu. α is estimated based
on the current expected aggregated loss rate ��� using:

α = max(αl, 1 + min(αu, 1 + � �)). (7)� � is determined as � � = �
p∈
 actv � p � rRp/ �

p∈
 actv Rp,

where � p � r is the expected loss rate on the path p � r.
Rate assignment. After computing the appropriate aggregate rate

(αR0), each peer p is assigned an actual sending rate �Rp propor-
tional to its offered rate:

�Rp =
αR0� x∈
 actv Rx

Rp. (8)

Data assignment. The active peers collectively send the media
file segment by segment: they all cooperate in sending the first
segment, then the second one, and so on. Note that, since the active
peers send at rate αR0, they send only ∆/(2 − α) packets out of
the stored ∆/(2 − αu) packets. Each peer p is assigned a number
of packets Dp to send in proportion to its actual streaming rate:

Dp =

�
∆

(2− α)

�Rp

αR0 � . (9)

Example. Let αl = 1.0625, and αu = 1.25. Assume that the
media file is divided into segments each with 120 packets. En-
coding with FEC(αu = 1.25), each encoded segment will have
160 packets. Suppose that the current active set has three peers
P1, P2, P3 with offered rates RP1

= R0/2, RP2
= R0/4, RP3

=
R0/2, respectively. Assume that the current estimated α is 1.125.
Therefore, the assigned rates are: �RP1

= 0.45, �RP2
= 0.225, �RP3

=
0.45. The number of packets that need to be sent is 138, and the
data assignment is: DP1

= 55, DP2
= 28, DP1

= 55. Peer P1

sends packets with sequence numbers from 1 to 55, peer P2 from
56 to 83, and peer P3 from 84 to 138.

Discussion. Packet losses in the Internet is known to be bursty,
which has a negative effect on the FEC techniques: during a loss
burst, the number of lost packets may exceed what FEC can re-
cover. However, authors of [20] have shown that streaming from
multiple senders, as in our case, alleviates the effect of loss burst-
ness on FEC. In our usage of FEC, the number of redundant pack-
ets sent is proportional to the current loss rate. If loss rate is low
(which is a typical case), only a small number of extra packets will
be sent, saving network bandwidth. Finally, we note that the data is
pre-encoded. Therefore, senders will not have to encode them on
the fly. The receiver decodes them on the fly. Tornado codes are
quite fast (order of millisecond for decoding), especially when the
segment size is small.

5. DYNAMIC SWITCHING
During a long streaming session the environment may change:

peers may fail or network paths may become congested. To main-
tain good streaming quality on the receiver side, we need to adapt
to these changes. During the session, the receiver collects statistics
on the loss rate and streaming rate contributed from each sending
peer. These statistics are used to update the goodness topology,
which is then used to adjust the active set.

Peer failure. A peer failure is detected in two ways: (1) from the
TCP control channel established between the receiver and each of
the sending peer (e.g., connection reset), and (2) if the rate coming
from this peer is degraded. Once a failure is detected, the active
set is adjusted by replacing the failed peer with new one(s). We
choose the replacement peers using the topology-aware selection
(Section 3.1), provided that the currently good peers are part of
the new active set. This may not yield a globally optimal solution,
but it is more practical for two reasons. First, the newly chosen
set can be totally different from the old one, which will require
tearing down all of the old connections and establishing new ones.
Second, notice that the topology is partially updated, since for the
standby peers, we use the information gathered at the beginning of
the streaming session. Thus, it is better to keep peers that are cur-
rently doing well. After determining the new active set, the receiver
sends a control packet to each peer in the set. The control pack-
ets contain the rate and data assignment, computed as explained in
Section 4, for each peer.

Network fluctuations. The receiver procedure (Figure 2) makes a
switching decision after receiving each segment of the media file. A

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 500 1000 1500 2000 2500 3000 3500

 P
ac

ke
t l

os
s

ra
te

Time (sec)

Topology-aware
End-to-end

Random

Figure 7: Aggregated loss rate perceived by the receiver: no
peer failures.

0.8

0.85

0.9

0.95

1

1.05

0 500 1000 1500 2000 2500 3000 3500

A
gg

re
ga

te
d

st
re

am
in

g
ra

te
 a

t r
ec

ei
ve

r
(M

b/
s)

Time (sec)

Topology-aware
End-to-end

Random

Figure 8: Aggregated streaming rate at the receiver: no peer
failures.

segment is in the order of few seconds. Switching means one of two
actions: (1) assigning new rates for the currently active peer set,
or (2) adjusting the active set by adding or replacing peers. After
receiving a segment, the receiver computes γ = (R � − R0)/R0,
where R � is the aggregate rate measured during the last segment.
A value of γ < 0 means that the network is dropping more than
the current loss tolerance level α allows. In this case, the receiver
tries to increase α to reach the desired R0. It computes a new value
for α using the updated topology. If the new α exceeds the upper
bound αu, a new active set is selected using the topology-aware
selection. Otherwise, a new rate and data assignment is computed
using the new α. If γ is positive but less than a threshold (e.g., 0.1),
we do nothing: the current setting is good to achieve the target rate
with a reasonable FEC overhead. If γ is larger than the threshold,
a decrease in α is appropriate. A new smaller α is computed and
used to assign rate and data to peers.

6. EVALUATION
In this section, we evaluate the performance of PROMISE us-

ing extensive simulations. Results from Internet experiments are
presented in Section 7.

6.1 Simulation Setup
Hierarchical topology. The topology used in the simulation has

three levels. The highest level is composed of transit domains,
which represent large Internet Service Providers (ISPs). Stub do-
mains; which represent small ISPs, campus networks, moderate-
size enterprise networks, and similar networks; are attached to the
transit domains on the second level. Some links may exist among
stub domains. At the lowest level, the end hosts (peers) are con-
nected to stub routers. The first two levels are generated using

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000 2500 3000 3500

 P
ac

ke
t l

os
s

ra
te

Time (sec)

Topology-aware
End-to-end

Random

Figure 9: Aggregated loss rate perceived by the receiver: with
peer failures.

0.8

0.85

0.9

0.95

1

1.05

0 500 1000 1500 2000 2500 3000 3500

A
gg

re
ga

te
d

st
re

am
in

g
ra

te
 a

t r
ec

ei
ve

r
(M

b/
s)

Time (sec)

Topology-aware
End-to-end

Random

Figure 10: Aggregated streaming rate at the receiver: with peer
failures.

the GT-ITM tool [5]. We then, probabilistically add hosts to stub
routers. Each experiment was run on several different topologies.
The topologies used in the experiments have, on average, 600 routers
and 1,000 hosts (peers).

Simulation parameters. Imposing cross traffic over such a large
topology is not feasible. Instead, we approximate the effect of
cross traffic by: (1) attaching a stochastic loss model to the links,
and (2) randomly setting the links bandwidth to capture the avail-
able bandwidth on them. We use the two-state Markov loss model
(aka Gilbert model), which was shown to model the Internet packet
losses with a reasonable accuracy [34, 17]. In this model, the loss
process is modeled as a Markov chain with two states: good and
bad. In the good state, the probability of losing a packet is very
small and typically assumed to be zero. In the bad state, the prob-
ability of losing packets is assumed to be 1.0. The model has two
parameters, which are the transition probabilities between the good
and bad states.

The available bandwidth on each link is chosen uniformly at ran-
dom in the range [0.25R0, 1.5R0]. Peers’ parameters are chosen
to reflect the diversity in the P2P community [29]. The availabil-
ity of peers (

�
p) is distributed uniformly in the range [0.1, 0.9].

The offered rate (Rp) is also distributed uniformly in the range
[0.125R0 , 0.5R0]. No peer can support more the R0/2 and many
of them provide a small fraction of R0. The streaming session lasts
for 60 minutes and the streaming rate R0 is 1 Mb/s. Every exper-
iment is performed 100 times with different seeds, and the results
are averaged over all runs.

6.2 Performance of the Topology-Aware Selec-
tion

A streaming session is simulated as follows. First, we randomly

select a number of candidate peers (e.g., 20 peers) and a receiver
from the the 1,000-peer community. Then, we select the active peer
set using either the random, end-to-end, or topology-aware selec-
tion (Section 3). Each session is run three times with the same pa-
rameters, albeit each run with a different peer selection algorithm.
Peers in the active set start streaming till a switching is needed. The
loss tolerance level αu is set to 1.2. We are interested in measuring
two metrics: the aggregated loss rate and the aggregated streaming
rate perceived by the receiving peer. These two metrics are impor-
tant since they determines the media playback quality.

Results with no peer failures. Figure 7 depicts the aggregate loss
rate seen by the receiver for the three selection techniques. The
topology-aware selection achieves lower loss rate (13%) than those
of end-to-end (17%) and random (18%) selection. The aggregated
loss rate is high in this experiment because we set the available
bandwidth on the links in the range [0.25, 1.5] Mb/s. We do that to
stress the selection techniques. The aggregated rate perceived by
the receiver is shown in Figure 8. The topology-aware technique
yields a steady aggregated rate of 1.0 Mb/s, which achieves full
playback quality. The end-to-end technique performs better than
the random technique. However, neither of them can achieve full
playback rate. This shows the importance of supplying peer selec-
tion under the same peer and network conditions. Similar results
have also been obtained under other topologies and different loss
rate and available bandwidth.

Results with peer failures. During the streaming session, a peer
may fail with a probability that is inversely proportional to its avail-
ability. We simulate peer failures as follows. We schedule a fixed
number of failure trials at random times throughout the streaming
session. At each failure trial, a peer is selected randomly from the
active set and we fail it probabilistically according to its availabil-
ity: we generate a random number between 0 and 1. If this number
is greater than the peer’s availability, the peer is failed. Otherwise,
the peer remains active and the session continues normally till the
next failure trial. The intuition behind this failing method is that if
we have many failure trials, each peer will get enough trials to be
tested. The fraction of the ‘no-failure’ trials will approximately be
its availability.

Figures 9 and 10 show the aggregated loss rate and the aggre-
gated streaming rate, respectively, in the presence of peer failures.
The topology-aware selection still performs better than the other
two techniques, achieving a lower loss rate and maintaining full
playback quality. Note that, in Figure 10, the aggregated rate is
slowly decreasing as the session progresses. This is because as the
time elapses, more peers fail and the selection technique is left with
fewer peers in the standby set to choose from. This suggests that
if we expect many peer failures, the candidate set should be large
enough in order to maintain full playback quality, and the size of
the candidate set should be chosen properly.

Size of candidate set. In this experiment, we estimate the size of
the candidate set for different values of peers availability. We vary
the average availability of peers from 0.1 to 0.9. A total of 25 fail-
ure trials are scheduled during each streaming session. If a failure
trial is successful (i.e., we fail a peer), a replacement peer (or peers)
will be chosen. We run the simulation 10 times for each value of
peer availability and count the total number of peers that are needed
to complete the session. Figure 11 shows the impact of peer avail-
ability on the size of candidate set. The figure shows the average
number of successful failure trials (out of 25) and the minimum,
mean, and maximum number of peers required in the candidate set
as the average availability grows from 0.1 to 0.9, over the 10 simu-
lation runs. For example, for an average peer availability of 0.6, we
need an average of 11 peers in the candidate set, and a maximum of

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 p

ee
rs

 r
eq

ui
re

d

Average availability

Number of peers
Average number of failures

Figure 11: Size of the candidate peers set required for different
average peer availability values. The mid-point is the mean,
the lower point is the minimum, and the top point is maximum
number of peers required in the candidate set.

14 will guarantee that we will not run of out peers in the candidate
set. Figure 11 shows that as the availability increases, the number
of peers needed in the candidate set decreases. We are deriving a
more rigorous and generic relation between the size if candidate
set and peer availability based on streaming session duration, peer
failure model, and network failure model.

7. INTERNET EXPERIMENTS
A prototype of PROMISE has been implemented and tested in

both local and wide area environments. We have modified Pastry
(code obtained from [14]) to support multiple peer lookup. PROMISE
is implemented in Java. The code runs as an agent in each partici-
pating peer.

We install several PROMISE agents on remote sites located in
North America and Europe. Due to space limitation, we present a
sample of the experimental results. Figure 12 shows an experiment
in which multiple failure-prone peers serve a streaming session.
The receiver is located at Purdue University. Six candidate peers
were chosen for this streaming session: purdue1 and purdue2 at
Purdue University but in two different subnets, uconn at University
of Connecticut, gatech at Georgia Institute of Technology, uiuc at
University of Illinois, and toronto at University of Toronto. The
active set initially has four peers: purdue1, purdue2, uconn, and
gatech. The aggregate streaming rate is 450 Kb/s. After 385 sec-
onds, we fail purdue2. PROMISE detects the failure and purdue2
is replaced by uiuc. The switching is fast and it does not affect the
aggregated rate. Another failure is scheduled at time 780. This ex-
periment, although simple, serves as a proof of concept: streaming
from multiple heterogeneous and unreliable peers is feasible and
high streaming quality can be achieved.

We are currently testing PROMISE on PlanetLab [23], a large-
scale wide area overlay infrastructure. Initial results are available
in the extended version of this paper [15].

8. RELATED WORK
In the last few years, the P2P paradigm has received tremendous

attention from researchers. Two main categories of research can be
identified: research on protocols and algorithms (such as searching
and replication), and research on building P2P systems. The first
category aims at building scalable and efficient P2P infrastructure
(substrate), which could be used for systems in the second category.
Lookup (or routing) protocols such as CAN [24], Chord [31], and
Pastry [27] guarantee locating the requested object within a loga-
rithmic number of steps, if the object exists in the system. However,

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

A
gg

re
ga

te
d

st
re

am
in

g
ra

te
 a

t r
ec

ei
ve

r
(K

b/
s)

Time (seconds)

purdue1
purdue2

uconn
gatech

uiuc
toronto

Aggregate rate

Figure 12: Streaming from multiple peers. Two supplying
peers failed at times 385 and 780. PROMISE detects and re-
places the failed peers.

network locality has not been amply exploited (except Pastry). Ex-
amples of P2P systems include CFS [12] on top of Chord [31],
and PAST [28] on top of Pastry [27]. Another example is Pixie
[26]: a P2P content exchange architecture. Pixie aggregates re-
quests from multiple peers and multicasts content to the requesting
peers. These systems do not target media streaming. Therefore,
unlike PROMISE, they do not consider real-time and sending rate
requirements for P2P data transmission.

Application level multicast (ALM) is proposed to overcome the
limited deployment of IP multicast. Each ALM-based system has
its own protocol for building and maintaining the multicast tree.
For example, both NICE [1] and Zigzag [32] adopt hierarchical
distribution trees and therefore scale to a large number of peers.
Narada [9], on the other hand, targets small scale multi-sender
multi-receiver applications. Narada maintains and optimizes a mesh
that interconnects peers. The optimized mesh yields good perfor-
mance but it imposes maintenance overhead. SpreadIt [13] con-
structs a distribution tree rooted at the sender for a live media stream-
ing session. A new receiver joins by traversing the tree starting at
the root till it reaches a node with sufficient remaining capacity.
CoopNet [22] supports both live and on-demand streaming. It em-
ploys multi-description coding and constructs multiple distribution
trees (one tree for each description) spanning all participants. Split-
Stream [7] provides a cooperative infrastructure that can be used
to distribute large files (e.g., software updates) as well as stream-
ing media. SplitStream is built on top of Scribe [8], a scalable
publish-subscribe system that employs Pastry [27] as the lookup
substrate. The content in SplitStream is divided into several stripes,
each is distributed by a separate tree. Different from these systems,
PROMISE is proposed for the streaming of media data from multi-
ple senders to one receiver. And CollectCast is another P2P service
complementing the ALM service.

Many P2P data sharing and distribution systems implicitly as-
sume that a sending peer is capable of supporting one or more re-
ceiving peers. However, it has been shown that peers are heteroge-
neous in their capability and/or willingness to contribute resources
to other peers [29]. Few systems have considered the problem of
selecting multiple supplying peers (senders) for a receiver, based
on peer heterogeneity as well as network topology and conditions.
PROMISE addresses this problem.

The distributed video streaming framework [19, 20] shows the
feasibility and benefits of streaming from multiple servers to a sin-
gle receiver. The receiver uses a rate allocation algorithm to specify
the sending rate for each server in order to minimize the total packet
loss. This specification is based on estimating the end-to-end loss
rate and available bandwidth between the receiver and each server.

However, the framework is not explicitly designed for P2P envi-
ronments. Therefore, it does not address the selection and dynamic
switching of senders.

Finally, Rodrigues and Biersack [25] show that parallel down-
load of a large file from multiple replicated servers achieves sig-
nificantly shorter download time. The subsets of a file supplied by
each server are dynamically adjusted based on the network condi-
tions and the server load. This work targets bulk file transfer, not
real-time media streaming. Moreover, it does not consider sender
selection nor does it leverage network tomography techniques.

9. CONCLUSION AND FUTURE WORK
This paper presents a novel and comprehensive P2P media stream-

ing system, PROMISE. The most salient features of PROMISE in-
clude: (1) it accounts for peer heterogeneity, reliability, and limited
capacity, (2) it matches a requesting peer with a set of supplying
peers that are likely to achieve the best streaming quality, (3) it dy-
namically adapts to network fluctuations and peer failure, and (4)
it performs (2) and (3) by inferring and leveraging the underlying
network conditions. These features are brought into PROMISE via
a new application level P2P service called CollectCast. Through
simulations and Internet experiments, we show that streaming from
multiple failure-prone peers in a dynamic P2P environment is in-
deed feasible. Specifically, we show that the full quality can be
maintained in the presence of failures and losses. Our simula-
tions demonstrate that significant gain in streaming quality can be
achieved by our topology-aware peer selection technique.

PROMISE can be extended in several directions. First, Col-
lectCast can be tuned to compete fairly with TCP traffic and re-
act to congestion in the network. Second, large-scale testing of
PROMISE will demonstrate its practicality and may hint several
refinements and adjustments of the CollectCast functions. Initial
results on these issues can be found in [15]. Finally, CollectCast
can be extended beyond the physical network characteristics and
streaming applications. For example, CollectCast may take peers’
social properties such as credibility and trustworthiness into con-
sideration. One can imagine a graph showing the topology formed
by the candidate suppliers and the receiver, but the links are labeled
with trust-related metrics. This will enable security-sensitive appli-
cations to choose the best peers that will supply the most trusted
data or service.

Acknowledgments
The authors would like to thank Dr. Ketan Mayer-Patel, our paper’s
shepherd, and the anonymous reviewers for their valuable com-
ments and suggestions. This research is sponsored in part by the
National Science Foundation grants ANI-0219110 and IIS-0209059.

10. REFERENCES
[1] S. Banerjee, B. Bhattacharjee, C. Kommareddy, and

G. Varghese. Scalable application layer multicast. In Proc. of
ACM SIGCOMM’02, pages 205–220, Pittsburgh, PA, USA,
August 2002.

[2] M. Bawa, H. Deshpande, and H. Garcia-Molina. Transience
of peers and streaming media. First Workshop on Hot Topics
in Networks (HotNets 2002), October 2002.

[3] A. Bestavros, J. Byers, and K. Harfoush. Inference and
labeling of metric-induced network topologies. In Proc. of
IEEE INFOCOM’02, New York, NY, USA, June 2002.

[4] B. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. In

Proc. ACM SIGCOMM’98, pages 56–67, Vancouver, British
Columbia, August 1998.

[5] K. Calvert, M. Doar, and E. Zegura. Modeling Internet
topology. In IEEE Communications Magazine, pages
35:160–163, 1997.

[6] K. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and S. Wen.
Concast: Design and Implementation of an Active Network
Service. IEEE Journal on Selected Area in Communications,
19(3):426–437, March 2001.

[7] M. Castro, A. Druschel, P. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-bandwidth
content distribution in a cooperative environment. In Proc. of
2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), Berkeley, CA, USA, February 2003.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in
Communication (JSAC), 20(8):1489–1499, October 2002.

[9] Y. Chu, S. Rao, S. Seshan, and H. Zhang. A case for end
system multicast. IEEE Journal on Selected Areas in
Communications (JSAC), 20(8):1456–1471, October 2002.

[10] M. Coates, R. Castro, and R. Nowak. Maximum likelihood
network topology identification from edge-based unicast
measurements. In Proc. ACM SIGMETRICS 2002, Marina
Del Rey, CA, USA, June 2002.

[11] M. Coates, R. Hero, A. Nowak, and B. Yu. Internet
tomography. IEEE Signal Processing Magazine, 19(3), 2002.

[12] F. Dabek, M. Kaashoek, D. Karger, D. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proc. of ACM
SOSP, October 2001.

[13] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming
live media over peer-to-peer network. Technical report,
Stanford University, 2001.

[14] Free pastry home page.
http://www.cs.rice.edu/CS/Systems/Pastry.

[15] M. Hefeeda, A. Habib, B. Boyan, D. Xu, and B. Bhargava.
PROMISE: peer-to-peer media streaming using CollectCast.
Technical report, CS-TR 03-016, Purdue University, August
2003. Extended version.

[16] M. Jain and C. Dovrolis. End-to-end available bandwidth:
Measurement methodology, dynamics, and relation with
TCP throughput. In Proc. of ACM SIGCOMM’02, pages
295–308, Pittsburgh, PA, USA, August 2002.

[17] V. Markovski, F. Xue, and L. Trajkovic. Simulation and
analysis of packet loss in user datagram protocol transfers.
The Journal of Supercomputing, 20(2):175–196, 2001.

[18] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for
overlay networks. In Proc. ACM SIGCOMM’03, Karlsruhe,
Germany, August 2003.

[19] T. Nguyen and A. Zakhor. Distributed video streaming over
Internet. In Proc. of Multimedia Computing and Networking
(MMCN02), San Jose, CA, USA, January 2002.

[20] T. Nguyen and A. Zakhor. Distributed video streaming with
forward error correction. In Proc. Int’l Packetvideo
Workshop (PV’02), Pittsburgh PA, USA, April 2002.

[21] V. Padmanabhan, L. Qiu, and H. Wang. Server-based
inference of Internet link lossiness. In Proc. of IEEE
INFOCOM’03, San Francisco, CA, USA, April 2003.

[22] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.
Distributing streaming media content using cooperative
networking. In Proc. of NOSSDAV’02, Miami Beach ,FL,

USA, May 2002.
[23] Planetlab home page. http://www.planet-lab.org/.
[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In Proc.
of ACM SIGCOMM’01, San Diego, CA, USA, August 2001.

[25] P. Rodriguez and E. Biersack. Dynamic parallel access to
replicated content in the Internet. IEEE Transactions on
Networking, 10(4):455–465, August 2002.

[26] S. Rollins and K. Almeroth. Pixie: A jukebox architecture to
support efficient peer content exchange. In Proc. of ACM
Multimedia, Juan Les Pins, France, December 2002.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In Proc. of 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware
2001), Heidelberg, Germany, November 2001.

[28] A. Rowstron and P. Druschel. Storage management in past, a
large-scale, persistent peer-to-peer storage utility. In Proc. of
18th ACM Symposium on Operating Systems Principles
(SOSP’01), Chateau Lake Louise, Banff, Canada, October
2001.

[29] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of
Multimedia Computing and Networking (MMCN02), San
Jose, CA, USA, January 2002.

[30] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
public Internet measurement facility. In Proc. 4th USENIX
Symposium on Internet Technologies and Systems
(USITS’03), Seattle, Washington, USA, March 2003.

[31] I. Stoica, R. Morris, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. of ACM SIGCOMM’01, San Diego,
CA, USA, August 2001.

[32] D. Tran, K. Hua, and T. Do. Zigzag: An efficient
peer-to-peer scheme for media streaming. In Proc. of IEEE
INFOCOM’03, San Francisco, CA, USA, April 2003.

[33] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On
peer-to-peer media streaming. In Proc. of IEEE ICDCS’02,
Vienna, Austria, July 2002.

[34] M. Yajnik, S. Moon, J. Kurose, and D. Towsley.
Measurement and modeling of the temporal dependence in
packet loss. In Proc. of IEEE INFOCOM’99, pages 345–352,
York, NY, USA, March 1999.

[35] Y. Zhang, N. Duffield, V. Paxon, and S. Shenker. On the
constancy of Internet path properties. In Proc. of ACM
SIGCOMM Internet Measurement Workshop, San Francisco,
CA, USA, November 2001.

