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ABSTRACT

�e PageRank model helps evaluate the relative importance of nodes in a
large graph, such as the graph of links on the world wide web. An important
piece of the PageRankmodel is the teleportation parameter α. We explore the
interaction between α and PageRank through the lens of sensitivity analysis.
Writing the PageRank vector as a function of α allows us to take a derivative,
which is a simple sensitivity measure. As an alternative approach, we apply
techniques from the �eld of uncertainty quanti�cation. Regarding α as a ran-
dom variable produces a new PageRankmodel in which each PageRank value
is a random variable. We explore the standard deviation of these variables
to get another measure of PageRank sensitivity. One interpretation of this
new model shows that it corrects a small oversight in the original PageRank
formulation.
Both of the above techniques require solving multiple PageRank problems,

and thus a robust PageRank solver is needed. We discuss an inner-outer
iteration for this purpose. �e method is low-memory, simple to implement,
and has excellent performance for a range of teleportation parameters.
We show empirical results with these techniques on graphs with over 2

billion edges.
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PREFACE

For a fun preface to this document, I decided to re�ect back on the �rst
PageRank code I ever wrote. Program 1 is a poor implementation of PageRank
for all the following reasons:

it uses an ugly ; to �nish end commands;
it uses a terribly ine�cient construction to normalize A;
it has poor documentation of the parameter e;
it doesn’t use compensated summation;
it doesn’t include a teleportation parameter; and
it doesn’t compute PageRank.

�ese elements constitute a terribly inauspicious start to my work with Page-
Rank. I can only hope I’ve learned since writing this �rst code.

Program 1 – An incorrect PageRank implementation.�e �rst PageRank program I wrote, trivially
altered to �t on this page. It’s incorrect. See program 2 for a working version.

1 function pgv = pagerank(g, e)
2 % PAGERANK Compute pagerank for graph g.
3 % pgv = pagerank(g) returns the pagerank vector for graph g with default parameters
4 % pgv = pagerank(g, e) returns the pagerank vector for graph g with epsilon = e
5 n = get(g, ’size’);
6 A = g.adj;
7 % normalize A by the degrees of each node
8 degs = degree(g);
9 [i j v] = find(A);
10 for ii = 1:length(i)
11 A(i(ii), j(ii)) = v(ii)./degs(i(ii));
12 end;
13 init = 1/n*ones(n, 1);
14 pgv = init;
15 delta = Inf;
16 while (delta > e)
17 pgvn = A*pgv;
18 d = norm(pgv, 1) - norm(pgvn, 1);
19 pgvn = pgvn + d*init;
20 delta = norm(pgvn - pgv);
21 pgv = pgvn;
22 end;
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I think this is the beginning
of a beautiful friendship.

—Rick from Casablanca

1 INTRODUCT ION

Page et al. [1999] is a technical report about a newway to identify important
web pages. �e system is known as PageRank™ and models a way to take
advantage of how people might browse the web. Let us leave the technical
details of PageRank until chapter 2 and explore the setting and application
background for this thesis in this chapter. For those familiar with PageRank,
please proceed to section 1.5.

1.1 pagerank and web search

�e PageRank system [Page et al., 1999] is widely viewed as a critical
reason for the success of the Google™ search engine [Langville and Meyer,
2006a]. To understandwhere PageRank �ts within web search, let’s examine a
rather high-level view of a search engine. �is description is meant to convey
useful knowledge of how web search might work, and we fully admit that
many details are highly simpli�ed. Good references for more information
are Witten et al. [1999]; Baeza-Yates and Ribeiro-Neto [1999]; Manning et al.
[2008].

crawling Before any search engine can return search results, it must have
a set of potential results. �e process of identifying all web pages is
known as crawling by analogy to the way a spider “crawls” around a
web by supporting itself on “edges” or “links.” On the web, hyperlinks
connect pages, and crawlers discover new pages via these links. �is
process may continue inde�nitely as pages constantly change and new
pages spring to life. Nevertheless, the set of pages for a web search
engine is almost entirely determined by its crawlers.1 1 In a recent lecture, a Google engineer

reported that their crawling operation
can o�en detect changes on some pages,
and update the search engine, within
minutes [Dean, 2009].

text analysis To retrieve results, the engine must “understand” the text
on a page. Text analysis or term indexing produces a database listing
every single page containing a term.2 �ese databases are huge and

2 As of early May 2009, claims to know
about 22,450,000,000 pages that contain
the word “a” and 26,350,000,000 pages
that contain the digit “1.”

contain more than just individual words. Phrases, such as “new york,”
are also indexed. One way to think about these databases is like a huge
index at the back of a truly huge book.

link analysis In addition to textual analysis of each web page, search en-
gines examine the hyperlinks, more o�en just called links, between the
pages to extract information about the quality of the page. PageRank
is one such measure. It identi�es pages that have a large number of
votes from pages that also have a large number of votes. We’ll see more
about PageRank in a moment. Link analysis also includes measures
that examine how much a web page looks like a genuine web page

1



2 1 ⋅ introduction

instead of a potential “spam” webpage.�e contributions of this thesis
fall into the category of new link analysis algorithms and metrics.

ranking regression �e text and link analyses are used in a ranking
function that determines the �nal order of the results. �is function is
o�en generated by a machine learning approach, which selects features
that produce rankings corresponding to the pages people think are
most important. �e details of these ranking functions are not readily
available: they are the real trade secrets of the search engines.

produce rankings Of course, “the last step” is to integrate all the pre-
vious analyses on a set of documents that contain the words in the
query—and to produce this list in milliseconds.

PageRank, then, is one of a series of link analysis algorithms employed by a
search algorithm to help with a single component of the search engine.3 3 As a personal aside, I hope this setup

properly contextualizes my research
for those who ask if my plan is to “start
the next Google” once I tell them I’m
working on PageRank. I’m not.

It is time to de�ne PageRank informally. Consider someone browsing the
web. At every page, the surfer either follows a link on the page to another
page or does something else.4 When following a link, without any other

4Modern web-browsers open the pos-
sibility of doing both of these activities
through the use of tabbed browsing.

information, the surfer picks a link from the page at random and follows
that one. When “doing something else,” the surfer moves to a random page
on the web and restarts the sur�ng. A technical term for “doing something
else” is teleporting or resetting by analogy with teleporting to a location a�er
entering a url or resetting the browser by closing and opening it. To generate
a simple model, we assume both of these behaviors even though they may
seem ridiculous. When stated mathematically, this random surfer model is
called aMarkov chain because the behavior of the surfer only depends upon
the current page and not the history of previous pages.
Let α be the probability that the surfer follows a link; then 1 − α is the

probability that the surfer “does something else.” Pictorially, the model is
illustrated by �gure 1.1, where the big black circle represents the current page.

Figure 1.1 – A pictorial illustration of the PageRank model.

With probability α the surfer follows one of the three links, represented as
arrows, to the bottom three pages, represented as circles. With probability
1 − α the surfer moves to one of the pages in the blob.5 Jumping into the

5 For those deeply familiar with the
PageRank model, this explanation
is slightly inaccurate but it contains
the essential pieces. We will formalize
everything in due course.

blob is also known as teleporting or resetting because it can move the surfer
anywhere in the web.



1.1 ⋅ pagerank and web search 3

Now imagine that we let the surfer run for a long time. �e PageRank of a
page is the probability of �nding the surfer at that page as the sur�ng time
becomes in�nite. A key assumption behind PageRank is that pages where we
are more likely to �nd the random surfer are more important pages and thus
we can view the PageRank as a measure of the page’s importance. In reality,
the PageRank problem is expressed as amathematical equation that generates
a number between 0 and 1 for each page. We’ll delve into the mathematics of
PageRank in chapter 2.
�e focus of my thesis is investigating what happens when varying the α

parameter.
For a preview, let’s look only at the pages in Wikipedia [Various, 2009b].

In this case, the surfer ignores all the links to the actual source material
outside of theWikipedia system. Table 1.1 shows the titles of the 10 pages with
highest PageRank in Wikipedia. A few things change with the α parameter.
When α is 0.5, the pages are focused on countries, whereas when α is 0.99,
the pages are focused on the encyclopedia infrastructure. For example, the
page “Category:Wikipedia administration” describes the administration of
the encyclopedia itself.

α = 0.50

United States
C:Living people
France
Germany
England
United Kingdom
Canada
Japan
Poland
Australia

α = 0.85

United States
C:Main topic classif.
C:Contents
C:Living people
C:Ctgs. by country
United Kingdom
C:Fundamental
C:Ctgs. by topic
C:Wikipedia admin.
France

α = 0.99

C:Contents
C:Main topic classif.
C:Fundamental
United States
C:Wikipedia admin.
P:List of portals
P:Contents/Portals
C:Portals
C:Society
C:Ctgs. by topic

Table 1.1 – Highest PageRank pages in
Wikipedia.�e set of pages in Wikipedia
with the highest PageRank scores for
three values of the parameter α. �e
pre�x “C:” denotes a category page and
any term with a period is abbreviated.

http://en.wikipedia.org/wiki/Category:Wikipedia_administration


4 1 ⋅ introduction

1.2 pagerank on a graph

Although PageRankmodels a random surfer on the web and computes the
probability of �nding this surfer at any given page, the output of PageRank is
a number for each page on the web related to its importance. In the previous
section, we explained PageRank where a surfer sits at a current page in the
web. �e proper mathematical abstraction of the linked nature of the web is a
graph. A graph is a set of nodes and connections. For the web, the nodes are
web pages and the connections are the links. Figure 1.2 shows this relationship
pictorially on a small subset of Wikipedia. �is mathematical abstraction is
relevant because it means that PageRank exists for any graph and not just
the web graph. PageRank on a graph produces an importance score for
each node, and this places PageRank amongst a class of network analysis
techniques [Brandes and Erlebach, 2005] known as centrality measures or
indices [Koschützki et al., 2005].
Instead of looking at a “random surfer” on the web, the non-web PageRank

models a random walk on the graph. �e behavior of the walk is the same
as the random surfer: with probability α the walk continues along an edge
of the graph and with probability 1 − α the walk jumps to a random node in
the graph. Random walks are a common technique to analyze graphs, with a
rich history predating PageRank.
Because they apply when looking at PageRank on a general graph, the

results of this thesis are not limited to web search. See section 4.8.3 for one
example, but do read the background material �rst.

1.3 variations on the pagerank theme

PageRank is a simple model for the random surfer. A�er hearing about
this model, someone invariably approaches and asks: “Why doesn’t the surfer
do . . . , instead?” Sometimes, the answer is: “So-and-so looked at that already,
they found . . . ” O�en, it’s: “�at’s a great idea! It hasn’t been looked at yet.”
�e key thing to remember is that PageRank is just a model. Of course there
are potential improvements to themodel and there have beenmany proposed
extensions to the model. We cover some of them in the next chapter. An
important extension is the personalized PageRankmodel, in which the surfer
does not randomly restart browsing anywhere on the web a�er choosing
not to follow a link. Rather, the surfer in this new model restarts at one
of only a few pages. If the pages relate to one person, then the resulting
PageRank vector is called a personalized PageRank vector. If the pages are
topically related, then the vector may be called a topic-speci�c PageRank
vector. In either case, what the surfer does when not following links on a
page determines the type of pages that are important.
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(a)Webpages fromWikipedia

Gleich’s syndrome

Eosinophilia

Hypereosinophilic syndrome

(b) A labeled graph

1
2

3

(c) A graph

Figure 1.2 – Relationships between web pages and graphs.�e linking relationships between
web pages de�ne a mathematical object called a graph. Mostly, we’ll look at what happens
with structures like �gure (c), where the information about the pages is abstracted to a unique
number that identi�es the page. In this case, 1 identi�es the page “Gleich’s syndrome” on
Wikipedia.
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�e random surfer model is but one interpretation of the PageRankmodel.
In Higham [2005], it is shown that PageRank is related to playing pinball.
Place a ball at a page on the web. Suppose that the ball moves according on
these rules:

with probability β, it stays put;

with probability γ, it moves to a page that links to the current page;
and

with probability 1 − β − γ, the game ends.

Although this model does not use α, the probabilities β and γ are de�ned
from the PageRank parameters. See the paper for the de�nitions, as they are
needlessly tangential. �e average length of time that this game lasts is the
PageRank of that page.
Another view of PageRank is as “Google Juice.”6 Consider pages with 6We feel obliged to document this

term. Please see http://c2.com/cgi/
wiki?GoogleJuice for a corroborating
de�nition.

high PageRank values. �is means that a random surfer is quite likely to be
on these pages. Why? �ere are two possibilities: either many pages link to
them, or a few high PageRank pages—where the surfer is already likely to
be found—link to them. It is this latter case that gives rise to the notion of
“Google Juice.” If a page already has a high PageRank value, it can contribute
its in�uence to another page. �us, another interpretation of PageRank is a
system where importance “�ows” along links between pages.
We hope that these alternate views of the PageRankmodel provide further

intuition for the PageRankmethod. Havingmultiple viewpoints on a problem
is an important aspect of any numerical research. What is obvious or trivial
from one perspective is o�en di�cult to perceive from another. In some
cases, these viewpoints provide the intuition necessary to close important
open problems.

1.4 other uses for pagerank

So far, we’ve seen that PageRank on the web models where we �nd a
random surfer, that this process generalizes to a centrality measure on an
arbitrary graph, and that there are many ways to change and interpret the
PageRank model. �ere are still other uses for PageRank.

clustering �e problem of clustering is to �ndways to divide a graph into
pieces by separating the nodes into cohesive groups. One approach is to
�nd a set of strongly related nodes, call that a group, remove it from the
graph, and repeat until the graph is empty. PageRank helps �nd a group
of strongly related nodes, as Andersen et al. [2006] demonstrate. �ey
show that a modi�ed personalized PageRank, where the surfer only
resets to a single page ( called the target), produces a group of pages near
the target. Further, they show that they can use a customized PageRank
algorithm to compute these groups of nodes extremely quickly.

sports ranking PageRank also helps to rank sports teams. In two recent
contributions, both Langville [2009] and Govan et al. [2008] extend

http://c2.com/cgi/wiki?GoogleJuice
http://c2.com/cgi/wiki?GoogleJuice
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ideas originating from Keener [1993] by using PageRank to compute
a ranking of sports teams. Instead of a random surfer, they posit a
“fair-weather fan” who picks favorites between teams based on some set
of statistics. A simple case is to use the win and loss records between
teams to create a graphwhere two teams are connected from the loser to
the winner. �e PageRank vector of that graph gives a useful ordering
of the teams.

bioinformatics �e GeneRank method by Morrison et al. [2005] pro-
duces lists of genes that may be relevant to a microarray experiment.
Because some of the entries in the microarray data are noisy, the exper-
iment may not reveal all of the interesting genes activated in di�erent
conditions. GeneRank uses a surfer over known relationships between
genes, where the surfer “restarts” with probability proportional to the
activation level of the genes in the experiment. Its output is a set of
genes “near” the genes with high activation levels. �e goal of the
method is to aid researchers working with microarray datasets to see
which other genes are nearby using known relationships.
Freschi [2007] uses a similar idea, which they call ProteinRank, to
predict protein functions. �e nodes of the relevant graph are proteins,
and two proteins are connected if they physically interact, which yields
a protein-protein interaction (PPI) network. Instead of gene annota-
tions from a microarray experiment driving the random surfer behav-
ior in the reset step, the ProteinRank algorithm uses known functional
behaviors to direct the surfer to the relevant portion of the graph.

network alignment Singh et al. [2007] introduce the IsoRank algo-
rithm7 to identify functionally similar nodes between two di�erent 7�ere is another algorithm called

IsoRank based on isotonic regression
[Zheng et al., 2008].

graphs. �e random surfer analogy does not directly apply in this case,
and the “Google Juice” formulation is more appropriate. Instead of
working on the graphs in the original problem, IsoRank uses a com-
bined graph based on all pairs of vertices. �e PageRank of this new
graph helps identify which nodes are potential mates. Section 5.6.5
discusses this application further.

1.5 contributions

At this point, we have motivated the PageRank problem from its original
use as a description of a random web surfer and shown how the same model
yields many di�erent applications. �e aspect of PageRank we address in this
thesis is the sensitivity of the PageRank vector with respect to the parameter
α.
Some aspects of the sensitivity of PageRank were previously understood.

For example, as the value α gets close to 1, the random surfer is typically
following links in the graph. �e impact of the graph is exaggerated in this
case. Also, as α gets close to 1, the vector may change rapidly. We’ll review
the relevant background material for sensitivity in chapter 2.
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A simple approach to investigating the sensitivity of the PageRank vector
is to look at the derivative with respect to α, which we explore in chapter 3.8

8 Although PageRank was described as a
random surfer model, it also has a nice
expression as a function of the parameter
α. Our investigation is of the derivative
of this function with respect to α.

Algorithms to compute the derivative of PageRank were already known, but
we propose a new algorithm that can use any existing PageRank solverwithout
modi�cation. �e results from our algorithm (algorithm 1) on the pages from
Wikipedia are shown in table 1.2.

α = 0.50

United States
C:Living people
United Kingdom
Race in the US. Census
C:Ctgs. by country
France
England
Canada
Germany
World War II
List of sovereign states

α = 0.85

C:Main topic classif.
C:Contents
C:Fundamental
C:Wikipedia admin.
C:Ctgs. by topic
C:Society
Por:List of portals
C:Articles
Por:Contents/Portals
C:Ctgs. by location
C:Categories

α = 0.99

C:Main topic classif.
C:Contents
C:Fundamental
C:Wikipedia admin.
C:Ctgs. by topic
C:Society
Por:List of portals
C:Articles
Por:Contents/Portals
C:Ctgs. by location
C:Ctgs. by country

Table 1.2 – Pages in Wikipedia with the
largest derivative. Pages in Wikipedia
with the largest derivative, by value, not
by magnitude.

A�er investigating the derivative, we develop a newmodel for PageRank in
chapter 4 alongwith a signi�cant new approach to sensitivity analysis. Instead
of using a derivative, which just measures the e�ect of small change in α, this
new model examines an approach based on the variance of the PageRank
vector as a function of its parameter over a wide range of values of α. Another
interpretation shows that this sensitivity measure corresponds to replacing α
in PageRank with a random variable and studying the standard deviation of
a set of random PageRank variables. Hence, we call our new method RAPr—
Random Alpha Pagerank. Figure 1.3 illustrates how sensitivity works in our
new model. Our best-performing algorithm on this problem only involves
computing PageRank vectors.

x
1

x
2

x
3

x
4

x
5

x
6

0 0.5

Figure 1.3 – PageRank with a random vari-
able as the teleportation parameter.�is
plot shows how likely each PageRank
value between 0 and 0.5 is when the
constant parameter α is replaced with a
random variable. Rather than computing
the value of PageRank at the circle stem
points, we look at the entire range of
values it might take. �e width of the
major portion of the curves is the new
sensitivity parameter. See chapter 4 for
more information about this plot and the
details of the model.
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In both of the previous contributions (the derivative and the standard de-
viation), the key algorithmic step is a method to compute a PageRank vector.
In chapter 2, we review existing algorithms to compute PageRank. For many
of the experiments, we used an inner-outer algorithm from Gray et al. [2007].
�e performance of this algorithm is excellent and the algorithm is reliable;
see �gure 1.4. Subsequently, we developed a parallel implementation of this
inner-outer iteration for the PageRank problem along with extensions of the
idea to other PageRank solvers and new convergence analysis (chapter 5).
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Figure 1.4 – Performance of the PageRank algorithm. �e inner-outer method clearly outper-
forms the power method on wb-edu with α = 0.85 on the le� and α = 0.99 on the right. �e
small inner �gure shows the convergence in the �rst few iterations. See chapter 5 for details on
the inner-outer method, and table 2.2 for information about the wb-edu graph.

1.5.1 Publications

My original paper on the sensitivity analysis arising from the derivative
of PageRank was written up in the proceedings from a Dagstuhl workshop
[Gleich et al., 2007]. I still intend to submit these results to a journal, perhaps
in combination with a few other ideas.
A preliminary version of the random α PageRank idea was presented at the

2007 Workshop on Algorithms for the Web Graph [Constantine and Gleich,
2007]. We extended that manuscript to a journal-length article, which we
plan to submit this summer.
Although the inner-outer algorithmwas originally proposed in [Gray et al.,

2007], those authors graciously included my contributions into the current
journal manuscript, which will be published in the SIAM Journal of Scienti�c
Computing.9 9 A dra� is available from www.cs.ubc.

ca/~greif/Papers/gggl2009.pdf.

www.cs.ubc.ca/~greif/Papers/gggl2009.pdf
www.cs.ubc.ca/~greif/Papers/gggl2009.pdf
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summary

In the remainder of this thesis, each chapter ends with a short summary
of the major contributions. �ese discussions are intended to aid the brows-
ability of the thesis. Reading only the introduction and summary of a chapter
gives a �avor for the contributions. Readers should be able to determine if a
chapter is worth their time from these.
In this chapter, PageRank and this thesis are presented informally through

the random surfer model. From this model, we discuss a few other ways of
viewing PageRank and a few other ways of using PageRank. �e random
surfermodel posits a surfer thatmoves to a linked page with probability α and
“does something else” with probability 1 − α. �is thesis focuses on the e�ect
of the α parameter and investigates sensitivity with respect to that parameter.



In the dim background of mind,
we know what we ought to be doing,

but somehow we cannot start.
—William James

2 PAGERANK BACKGROUND

PageRank literature exploded between 2004 and 2005.

2008

2760

2007

3160

2006

3150

2005

2900

2004

1980

2003

975

2002

1120

2001

980

2000

719

1999

421

1998

365

1997

294

Year

Figure 2.1 – PageRank papers by year.
�e number of Google Scholar results
from the search “pagerank” listed by year.
�ese counts are not accurate publication
counts, but should correctly represent
the publication trend.

Covering all the literature and background here is impossible. �us, we focus
on the relevant introduction for this thesis. Such a restriction is only partially
helpful. PageRank is deceptively complicated and the details matter. It is
worth noting that Langville and Meyer [2006a], besides being an excellent
reference text for PageRank, has a reasonably comprehensive summary of
the literature until 2005.
A big issue with the PageRank literature is that many communities write

about the problem and its applications. Among them are numerical ana-
lysts [Serra-Capizzano, 2005], theoretical computer scientists [Andersen et al.,
2006], information retrieval scientists [Gyöngyi et al., 2004], and even biolo-
gists [Morrison et al., 2005] and physicists [Shepelyansky and Zhirov, 2009]!
Standard introductions to PageRank involve the following idea: important
web pages link to other important web pages [Page et al., 1999; Langville and
Meyer, 2006a]. Let s i be the importance of a page indexed by i. �is idea
suggests the de�nition

s i = ∑
j links to i

s j
total links from j

.

�us page j distributes a fraction of its importance to page i when j links to
i. �is de�nition is subsequently adjusted to account for a few di�culties
that immediately arise. �e prior de�nition, which is o�en given as the
de�nition of PageRank, lacks the most distinguishing feature of PageRank: the
adjustments themselves. It is the adjustments that de�ne PageRank, and not
the �ow of importance. Certainly, the �ow of importance is an important
aspect of PageRank, but not its de�ning feature. Establishing this de�ning
feature is where we begin.

11
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2.1 matrix computation preliminaries

Before getting to PageRank, we need some notation for operations involv-
ing matrices and vectors. Unless otherwise noted, the following conventions
hold:

bold capital letter A,G,P for matrices,
bold lower case letters b, v, x for vectors,
lower case Greek letters α, β, γ for scalars,
subscripted capital letters A i j ,G i j , Pi j for matrix elements,

subscripted lower case letters b i , v i , x i for vector elements, and
calligraphic capital letters G, S for graphs and sets,

which is a variation on Householder notation used in a few recent text-
books [Meyer, 2000; Trefethen and Embree, 2005]. �e following symbols
represent standard matrix or vector operations:

AT , xT is the transpose of a matrix or vector,
A+ is the pseudo-inverse of a matrix,
e is the vector of all ones of appropriate length,

∥⋅∥ is the 1-norm of a matrix or vector,
A⊗ B for the Kronecker product between matrices or vectors, and
A ● B for the Hadamard, or elementwise, product between matrices

or vectors.

Horn and Johnson [1991] have a nice background on the Kronecker and
Hadamard products. �ese are less well known than the standard product
operations between matrices and have a few fascinating properties.
�roughout this thesis, P represents a square, column stochastic matrix.

Formally, column stochastic implies Pi j ≥ 0 and eTP = eT . Taking P as
column stochastic is contrary to the notation in probability, where P is a row
stochasticmatrix. �ematrix P̄ is a column sub-stochasticmatrix (henceforth
called a sub-stochastic matrix) where

(eT P̄) j =
⎧⎪⎪
⎨
⎪⎪⎩

0 P̄i j = 0 for all i
1 P̄i j /= 0 for some i .

(2.1)

We use two de�nitions consistently in the remainder of the text, except where
explicitly noted. One common exception is that emay also denote an error
vector when we discuss approximations to exact solutions.



2.2 ⋅ the pagerank problem 13

Algorithms

Strongly preferential
PageRank PseudoRank

Graph or
Web graph

Substochastic
matrix

Weakly preferential
PageRank PageRank

Sink preferential
PageRank

Eigensystems

Linear systems

Theory

Other transformations

Figure 2.2 – Overview of PageRank formulations.Most derivations of PageRank begin with a
graph and proceed through a sub-stochastic matrix and a PageRank variant before getting to
the PageRank problem. Instead, starting with the PageRank problem yields a mathematically
pure look at the problem. Algorithms and implementations for PageRank o�en need to take
advantage of the graph structure and begin with a graph or sub-stochastic matrix. �e bold
path illustrates the most common PageRank formulation.

2.2 the pagerank problem

Discussing PageRank from both a theoretical and a practical view is hard.
�ere are many slight variants of the PageRank problem, and this section
enumerates three of them a�er introducing the core PageRank problem. �e
distinctions among the variants are important, although this core formulation
of the PageRank problem masks them. Hiding the distinctions is mathemati-
cally advantageous asmost properties of the PageRank problem are preserved
for all variants and thus it simpli�es analysis.
Figure 2.2 provides guidance for the discussion of the next few sections.

�is section introduces the mathematical PageRank formulations. �e sub-
sections describe the variations.
Without further ado, what distinguishes PageRank? PageRank begins with

any idea that de�nes a stochastic matrix P. Ideally, the importance of items
is proportional to the dominant eigenvector

Px = x

of the stochastic matrix, but this may not be unique. (We’ll see that x is
not unique for the “importance” model given in the introduction.) Given
any stochastic matrix P, PageRank modi�es it to produce a new problem
with a unique answer. �ese modi�cations, then, de�ne PageRank and not
the starting stochastic matrix. In a slightly hyperbolic sense, PageRank is a
technique to take any cockamamied idea and �x it.
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�e data for the PageRank problem are

P a column stochastic matrix that de�nes the transitions of a Markov
chain;

α a teleportation parameter or damping parameter, 0 ≤ α < 1; and
v a teleportation distribution, where v i ≥ 0 and eTv = 1, also known as
the preference vector.

To �x the scheme, PageRank modi�es it so that it does something predictable
from v. �e parameter α controls the trade-o� between P and v. Transitions
of the PageRank process are given by a modi�ed Markov matrix

M = α P
®

follow transitions

+(1 − α) veT
°
reset

=M(α,P, v). (2.2)

Subsequently, we will omit the explicit dependence on the parameters when
they are clear from context. Interpreted as a Markov chain, PageRank is a
process that follows transitions in the original process P with probability α
or resets according to a known distribution over the states with probability
(1 − α).
In contrastwithP, the dominant eigenvectorMx = x is always unique. �is

x is the PageRank vector (with a slight detail addressed below). Uniqueness of
the eigenvector is trivial when v i > 0 and follows from the Perron-Frobenius
theorem because α < 1 implies that M i j > 0. A detail o�en swept under
the rug is what happens when v i ≥ 0. Without a completely positive v, M
is no longer irreducible and the simple theorems for a unique eigenvector
do not apply. �at said, the eigenvector is still unique because M has only
a single ergodic class over the set of states reachable from the support of v.
Berman and Plemmons [1994, theorem 3.23] justi�es this statement with the
more general result that all unit eigenvectors of a stochastic matrix are convex
combinations of unit eigenvectors of the ergodic classes extended to all states
with 0 probability.1 1 A special case is also not di�cult to

see. When v i ≥ 0 thenM can be sym-
metrically permuted and partitioned so
thatM = [ M1

M12 M2
], where the spectral

radius ofM1 < 1 andM2 is stochastic
and irreducible. �e rows and columns
inM2 correspond to all states reach-
able from the support of v. Solutions
to [ M1

M12 M2
] [ x1

x2 ] = [ x1
x2 ] are unique

because ρ(M1) < 1 implies that x1 = 0
and also stochasticity and irreducibility
ofM2 implies that x2 is unique.

PageRank values are also the stationary distribution probabilities for the
modi�ed Markov chain, namely the PageRank vector x is the stationary dis-
tribution vector. For this reason, the PageRank vector is a probability distri-
bution vector and has the natural normalization

x i ≥ 0, eTx = 1.

�e discussion thus far is the eigenvector de�nition of PageRank:

Mx = x and eTx = 1. (2.3)

As a probability distribution, the PageRank vector is also the solution of the
linear system

(I − αP)x = (1 − α)v, (2.4)

which follows from eTx = 1 andMx = αPx + (1 − α)v = x. �is system is
non-singular for all α < 1, and (I − αP) is an M-matrix. We could hardly
ask to be luckier! Note that there is no di�culty with non-negative v for the
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linear system. Both representations yield quite a bit of �exibility in working
with the problem.
We summarize this section with the following de�nition.

Problem 1 (PageRank). Given a column stochastic P, 0 ≤ α < 1, and a distri-
bution vector v, setM = αP + (1 − α)veT . Solving PageRank is computing or
approximating the unique vector x in

Mx = x and eTx = 1 or (I − αP)x = (1 − α)v. (2.5)

All the relevant pieces of the PageRank problem are present in this statement.
Anything that calls itself PageRank will compute a vector that satis�es this
property for some α, P, and v. Hence, this problem is the core PageRank
problem at the heart of �gure 2.2.

2.2.1 PageRank variations

An alternative starting point for PageRank is to begin with a sub-stochastic
matrix P̄. As discussed in the next section, sub-stochastic matrices o�en arise
from random walk or in�uence propagation de�nitions on graphs. For such
P̄, there are two established formulations of the PageRank problem: strongly
preferential PageRank and weakly preferential PageRank [Boldi et al., 2007].
We also formalize a sink preferential PageRankmodel below. Each formulation
corresponds to a di�erent way of converting P̄ into a stochastic matrix and
focuses on the columns of the matrix P̄ that are completely 0. �e dangling
indicator vector d is 1 for such columns and 0 for columns where P̄ is not
completely zero. Formally,

dT
= eT − eT P̄, d j =

⎧⎪⎪
⎨
⎪⎪⎩

1 P i j = 0 for all i
0 P i j /= 0 for some i .

(2.6)

�e strongly preferential PageRank problem uses the fully stochastic ma-
trix

Pv = P̄ + vdT , (2.7)

where v is the same vector as in the PageRank problem (2.3) or (2.4). To
convince ourselves it is a column stochastic matrix, note that dT is positive
only in the columns that caused P̄ to fail to be stochastic, and so the matrix
Pv will be the matrix P̄ where each 0 column is replaced by v.
Weakly preferential PageRank replaces each 0 column of P̄ with a di�erent

distribution vector u, and uses the stochastic matrix

Pu = P̄ + udT , (2.8)

where u is an arbitrary distribution vector with u i ≥ 0, eTu = 1, and u /= v.
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Instead of replacing 0 columns of P̄ with a distribution, sink preferential
PageRank inserts a 1 into the diagonal for each of these columns, which
corresponds to using the stochastic matrix

Pd = P̄ +Diag[d], (2.9)

where Diag[d] is a diagonal matrix with the entries of d along the diagonal.

nota bene Unless otherwise noted, we use the strongly preferential Page-
Rank formulation of the problem when P̄ is sub-stochastic. �is choice is
made in most of the literature.

pseudorank Recall that we de�ned a PageRank vector with eTx = 1.
Relaxing that requirement on the strongly preferential PageRank problem
yields a vector called PseudoRank [Boldi et al., 2007].

Problem 2 (PseudoRank). A PseudoRank vector y satis�es

(I − αP̄)y = σv (2.10)

for σ = n, 1, or (1 − α).

PageRank and PseudoRank are related by x = y/eTy. Proving it requires
simple substitution. Note that σ = eTy − αeT P̄y. Consider

(I − αP) y
eTy

=
(I − αP̄)y − αvdTy

eTy
=

σ − αdTy
eTy

v (2.11)

=
(eTy − αeT P̄y) − α(eTy − eT P̄y)

eTy
v (2.12)

= (1 − α)v. (2.13)

Many authors de�ne PageRank as PseudoRank [McSherry, 2005; Gyöngyi
et al., 2004]. While they share some equivalence, there is an important distinc-
tion with regard to the limit when α → 1, and that’s discussed in section 2.7.

2.2.2 PageRank on a graph

Most derivations of PageRank begin with PageRank on a graph, and most
o�en it is the web graph. For an arbitrary directed graph G with adjacency
matrix A (A i j = 1 if node i has a directed edge to node j, and A i j = 0 if there
is no edge), the PageRank vector is commonly de�ned by applying one of the
sub-stochastic algorithms to the matrix

P̄ = ATD+ , (2.14)
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where D is a diagonal matrix with diagonal entries D i i = (Ae)i = outdegree
of node i, andD+ is the pseudo-inverse [Golub and van Loan, 1996], another
diagonal matrix with

(D+
)i i =

⎧⎪⎪
⎨
⎪⎪⎩

1/D i i D i i /= 0
0 D i i = 0.

(2.15)

In the context of web search, each web page corresponds to a node in G, and
nodes u and v are connected with a directed edge if the page corresponding
to node u links to the page corresponding to node v.
Despite appearances, the setup P̄ = ATD+ does not appear out of thin air.

We’ve seen it before. From the introduction to the chapter: important web
pages link to important web pages and their scores

s i = ∑
j links to i

s j
total links from j

.

In matrix form,
s = P̄s.

We could immediately apply the ideas of section 2.2 except that they require
a stochastic matrix. �ankfully, section 2.2.1 tells us how to convert P̄ to P
for PageRank.
But why do we need any of these ideas? Let’s work through an example in

some detail. For

the graph G =

1

2

3

4 5

6

and the matrix P̄ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1/2 0 0 0 0
0 0 0 1/3 0 0
0 1/2 0 1/3 0 0
0 0 0 0 0 0
0 0 1 1/3 0 1
0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

there is a single dangling column, so d = [1 0 0 0 0 0]T . �e only
eigenvector P̄x = x is x = [0 0 0 0 1/2 1/2]T . And so x is unique,
but not that useful. Suppose that v = [1/6 1/6 1/6 1/6 1/6 1/6]T

and α = 5/6. Using the strongly preferential PageRank model yields the
PageRank vector

x = [0.049 0.041 0.059 0.032 0.425 0.394]T

a�er rounding. It is the same two nodes that are the most important, but
node 5 is more important than node 6. Also we learn that node 3 is the most
important among the rest.
Even with all of these choices, there are still details le�. Should self-loops in

G be retained? Should multiple-links between pages be respected? At some
point, we need to end the enumeration of PageRank variants. �e answers to
these questions ultimately depend upon the application.
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2.2.3 Other variants

Our list here is not exhaustive. Langville and Meyer [2006a, section 8.4]
de�ne a bounce-back stochastic matrix from any sub-stochastic matrix where
each edge into a 0 column produces a new vertex to return the Markov chain
to the previous state. Another correction addresses a theoretical concern with
the limit as α → 1 [Vigna, 2005]. Each variant yields a PageRank problem
described completely by problem 1. It is for these reasons that the PageRank
problem really is

(I − αP)x = (1 − α)v.

2.2.4 Historical note

Astonishingly, an early paper on ranking the nodes of a social network
proposed a method with surprising similarities to PageRank [Katz, 1953].
A�er renormalization and notation adjustment, the Katz model is

(I − αWT
)x = αWTe (2.16)

with α = 0.5.

2.2.5 Summary of important properties

We conclude our discussion of the PageRank problem with a summary of
properties, not all of which have been explicitly mentioned so far:

the PageRank problem is problem 1 (page 15);
the PageRank vector x has unit sum (eTx = 1);
the PageRank linear system is (I − αP)x = (1 − α)v;
the PageRank eigensystem isMx = x whereM = αP + (1 − α)veT ;
the matrix (I − αP) is a nonsingular M-matrix;
the PageRank variants are strongly preferential, weakly preferential,
and sink preferential;
the PageRank vector x can be de�ned via aNeumann series when α < 1,
x = ∑∞n=0(αP)nv;
the maximum eigenvalue ofM is 1 and it has a unique eigenvector x;
and
the second largest eigenvalue ofM is no larger than α [Eldén, 2004].

See Langville and Meyer [2006a] for formal derivations of these results.
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2.3 connections with langville and meyer’s notation

Langville and Meyer [2006a] established a di�erent set of notation for the
PageRank problem. �ere are many relationships between our notations, but
we prefer to separate PageRank from a web-ranking context.

�e biggest di�erence between our notations is the column vs. row orien-
tation of the matrices. Langville and Meyer use row stochastic matrices and
then write the PageRank equations as

πT
(αS + (1 − α)E) = πT .

Such notation closely follows standard probability and Markov chain theory,
althoughmost of that literature also utilizes row vectors instead of the column
vector, which would make it

π(αS + (1 − α)E) = π.

Instead, our notation is designed to avoid unnecessary transpose symbols
and retain column vectors. �us we write

(αP + (1 − α)veT)x = x.

Table 2.1 summarizes the symbol relationships between our symbols.

Table 2.1 – Relationship to Langville and Meyer’s PageRank notation. A Rosetta stone to translate
my notation for readers familiar with Langville and Meyer’s popular book Google’s PageRank
and Beyond.

�eir symbol Our symbol Discussion

a d Our initiation to PageRank was through Kamvar’s papers in which d
is the dangling node vector.

E evT We always make the matrix E explicit to emphasize its rank-1 struc-
ture.

G MT Here the G stands for the Google matrix. We use the application
neutralM for the PageRankmodi�edmatrix.

H P̄T Langville and Meyer use the symbolH to suggest the hyperlink
matrix without any sort of correction. We use P̄ to suggest “P−” and
that P̄ needs an eventual correction to a stochastic matrix.

L A Using A follows common notation in graph theory where A is the
adjacency matrix; L hints at the link matrix.

π x To keep consistent with solving linear systems (Ax = b) and eigen-
value problems (Ax = λx), we use x to denote the unknown Page-
Rank variables in the problem.

S PT �e symbol S suggests stochastic, whereas we use P to denote a
standard Markov chain transition matrix.
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2.4 algorithms

So far, we have seen how PageRank is formulated as the linear equation

(I − αP)x = (1 − α)v

or the eigensystem
Mx = x.

Both of these formulations correspond to extremely well studied problems:
solving linear systems and computing eigenvectors, respectively [Golub and
van Loan, 1996]. So why do we need to write about algorithms for PageRank?
�e property that makes PageRank an interesting problem is that thematrices
are HUGE! Recent reports about the size of the web establish that there
are over one trillion (1,000,000,000,000) pages [Alpert and Hajaj, 2008]—
although many are duplicates—and at least one search engine has crawled
over 180 billion pages [Cuil, 2009]. Algorithms to compute PageRank, then,
must cope with matrices derived from such graphs. In this case, classic iter-
ative algorithms for linear systems and eigenvectors actually perform well,
partly because they use only one or two working vectors. In order to take
advantage of additional structure in the strongly personalized PageRank prob-
lem, we derive all the algorithms for a sub-stochastic matrix P̄ and a graph. In
terms of �gure 2.2, this structure is why algorithms lie before the theory. To
discuss specializations of these algorithms on the PageRank problem properly,
we need one surprising preliminary discussion.

2.4.1 Important implementation details

Let’s begin with a silly question: given a list of positive numbers, how
should we compute their sum? Given this task, most people would produce
a simple code that resembles the following four lines of Matlab.

sumx = 0;

for i=1:numel(x)

sumx = sumx + x(i);

end

�is routine correctly sums the numbers in exact arithmetic. When computed
in �oating-point arithmetic, every individual sum contributes an error of at
most ε because

�(sumx + x(i)) = (1 + δ)(sumx + x(i)), ∣δ∣ ≤ ε

for somemachine ε. A�er n of these sums, the output sumx has error bounded
by nε where n is the number of summands [Higham, 2002]. For a large
PageRank problem n ∼ 109 and for double precision arithmetic ε = 2.2 ⋅10−16,
in which case nε is not small. Computing sums is a common operation in
PageRank algorithms. We need a better algorithm.
Nearly since the dawn of computation, this problem has been studied

[Higham, 2002]. (In fact, the reference for the remainder of this section is
Higham [2002], which contains an exhaustive treatment of the problem.) �e
proposed solutions range from phenomenally complicated to subtly simple,
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and it is the latter approach that is most appropriate for the PageRank context.
One of the simplest techniques is called compensated summation.

�e compensated summation algorithm requires storing one extra �oating-
point value to accumulate an approximation of the error in the current sum-
mation. As given in Higham [2002, section 4.3], the following algorithm is
due to Kahan.

sumx = 0; err = 0;

for i=1:numel(x)

temp = sumx; % save the current sum

y = x(i) + err; % add the error to the summand

sumx = temp + y; % increase the sum by the summand and the error

err = (temp - sumx); % compute the exact difference after adding y

err = err + y; % err should be -y, add y to find the true error

end

Instead of nε error, this computation has error 2ε +O(nε2). For most con-
ceivable PageRank problems, this accuracy should be su�cient.

�is di�erence is not academic. If we call the simple summation algorithm
ssum and the compensated summation algorithm csum then the di�erence
appears even for 107 summands.

rand(’state’,1); x = rand(1e7,1); % ensure repeatable results

y = x./ssum(x); z = x./csum(x); % normalize for comparison

ssum(y) % 1.0000000000000302

csum(y) % 0.9999999999999633

ssum(z) % 1.0000000000000664

csum(z) % 1.0000000000000000

�e problem with ssum is that it cannot reproduce its own normalization!
Normalization is an important part of a PageRank code (as we’ll see in a mo-
ment). We therefore need compensated summation for these computations.
Wills and Ipsen [2009] originally highlighted the need for compensated

summation in their discussion of the stability of the power method for Page-
Rank. �e law codes for PageRank [Vigna et al., 2008] implement this feature
as well. We have not checked for any further history on this aspect of Page-
Rank computation. Quite amazingly, the problem of accurate summation is
still studied [Zhu and Hayes, 2009].

2.4.2 �e power method

For an eigenvalue problem Ax = λx, the power method is a classic al-
gorithm to compute the eigenvector with largest eigenvalue (in magnitude)
[Golub and van Loan, 1996]. Given an almost arbitrary x(0)2, then 2�eory requires us to state that x(0)

must not be orthogonal to the desired
eigenvector. Experience with �oating
point approximations tells us exact
orthogonality is not required. �is is one
of the rare cases when round-o� actually
helps. An exactly orthogonal vector
quickly loses its orthogonality during the
�oating-point computation. A�er that
happens, the power method succeeds.

x(k+1) = ρ(k+1)Ax(k) ρ(k+1) = 1/ ∥Ax(k)∥ (2.17)

converges to the eigenvector with maximum eigenvalue when the largest
eigenvalue (in magnitude) of A is unique and real. �e scalar quantities ρ
normalize the iterates so that they do not grow arbitrarily large.
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Consider the power method on the PageRank eigensystemMx = x. �e
largest eigenvalue is unique and equal to 1. Normalization at each step is not
required because the largest eigenvalue ofM is 1. Eliminating that step and
expandingM (with (2.2)) yields the iteration

x(k+1) = αPx(k) + (1 − α)veTx(k) . (2.18)

Recall that eTx = 1. A quick computation shows that when eTx(0) = 1, then
eTx(k) = 1 for all iterations and thus

x(k+1) = αPx(k) + (1 − α)v. (2.19)

For strongly preferential PageRank on P̄, a further optimization is

y(k+1) = αP̄x(k)

x(k+1) = y(k) + (1 − eTy(k+1))v.
(2.20)

�is optimization follows from P = P̄ + vdT and dT
= eT − eT P̄ and is the

iteration given in many PageRank papers [Page et al., 1999; Kamvar et al.,
2003]. We regard (2.20) as the standard iteration, but prefer (2.19) for analysis
purposes. As an algorithm, the power method continues this iteration until
∥x(k+1) − x(k)∥ ≤ τ for a user-provided tolerance τ.
Deciding how to begin the power method is easy: follow the advice below.

nota bene �e power method always starts with x(0) = v.

No one has suggested a better starting vector for the power method for
PageRank than the vector v.

the richardson iteration Surprisingly, the power method for the
PageRank eigensystem is completely equivalent to the Richardson iteration
[Varga, 1962] on the linear system (I − αP)v = (1 − α)v. �e Richardson
iteration for Ax = b is

x(k+1) = x(k) + ω(b −Ax(k)), (2.21)

and equivalence with (2.19) follows a�er substituting A = (I − αP), b =

(1 − α)v, and ω = 1.3 3�ose familiar with the Richardson
method are likely wondering if ω = 1 is
optimal. Good question. We cannot say
and believe it to be an open problem.error analysis All error analysis below uses the 1-norm and examines

the di�erence ∥x(k) − x∥ for the exact solution x and the current approxima-
tion x(k).

Lemma 3. Let x be the exact PageRank vector satisfying (I−αP)x = (1−α)v.
When computing PageRank, the power method ((2.19) or (2.20)) satis�es

∥x(k+1) − x∥ ≤ α ∥x(k) − x∥ .
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Proof. If we expand both x = αPx+(1−α)v and x(k+1) = αPx(k+1)+(1−α)v
and then take the di�erence:

∥x(k+1) − x∥ = ∥αP(x(k) − x)∥ ≤ α ∥x(k) − x∥ .

�us, using the power method (or Richardson iteration) on PageRank con-
verges linearly (or geometrically) with rate α.

matlab O�en, program code is the best way of understanding an algo-
rithm and program 2 shows a completeMatlab implementation of the power
method for the strongly preferential PageRank model. In this program, P
= P̄T for e�ciency. (Matlab stores sparse matrices by columns, and so P’*x
is faster than P*x.) Following Wills and Ipsen [2009], this implementation
includes the additional normalization step in the power method that we said
was not required.

Program 2 – The PageRank Power Method. PageRank (with the strongly preferential correction
section 2.2.1) on a sub-stochastic matrix P is just a few lines of Matlab, even with optimiza-
tions for a constant v. �e function csum computes a compensated sum of a vector with the
algorithm from section 2.4.1, and the normdiff function computes ∥x − y∥1 without comput-
ing the di�erence as a separate vector.

1 function [x flag reshist]=powerpr(P,a,v,tol,maxit,verbose)
2 % POWERPR Solve a PageRank system using the power method
3 %
4 % x=powerpr(P) solve a PageRank system with the row (sub-)stochastic matrix
5 % P with alpha=0.85 and uniform teleportation (in a strongly preferential
6 % sense) to an accuracy of 1e-12.
7 %
8 % If d = ones(n,1) - P*ones(n,1), then the output x satisifes
9 % ||x - alpha*(P + dv’)’*x + (1-alpha)*v||_1 ≤ 2*tol
10 % or (for small tol)
11 % x = alpha*(P + dv’)*x + (1-alpha)*v.
12 %
13 % [x flag reshist]=powerpr(P,a,v,tol,maxit) provides extra output and options
14 % for the value of alpha, the teleportation distribution vector v, the
15 % tolerance, and the maximum number of iterations. The output flag is 0 if
16 % the system converged and 1 otherwise. reshist is the vector of
17 % residuals from each iteration.
18 %
19 % Example:
20 % x=powerpr(P);
21
22 n=size(P,1);
23 if ~exist(’a’,’var’) || isempty(a), a=0.85; end
24 if ~exist(’v’,’var’) || isempty(v), v=1./n; end
25 if ~exist(’tol’,’var’) || isempty(tol), tol=1e-12; end
26 if ~exist(’maxit’,’var’) || isempty(maxit), maxit=10000; end
27 if ~exist(’verbose’,’var’) || isempty(verbose), verbose=0; end
28 x=zeros(n,1)+v; flag=0; delta=2; iter=0; reshist=zeros(maxit,1);
29 if verbose, dp=delta; end
30 while iter<maxit && delta>tol
31 y=a*(P’*x); w = 1-csum(y); y = y + w*v;
32 delta=normdiff(x,y); reshist(iter+1)=delta; iter=iter+1; x=y./csum(y);
33 if verbose, fprintf(’power: m=%7i d=%8e r=%8e\n’,iter,delta,delta/dp); dp=delta;
34 end
35 end
36 flag=delta>tol; reshist=reshist(1:iter);
37 if flag, s=’finished’; else s=’solved’; end
38 fprintf(’%8s %10s(a=%6.4f) in %5i multiplies to %8e tolerance\n’, ...
39 s, mfilename, a, iter, delta);
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on a graph Further optimizations of the power method are possible
on standard graph data structures in other languages. First, constructing
the sub-stochastic matrix explicitly is not required on most graph structures.
Implicitly using the degree normalization saves memory. Second, in pro-
gram 2, the quantity delta is computed a�er y is completely updated. In-
stead, the program could accumulate this quantity while updating the vector
y. Section 6.5.2 provides an optimized iteration on a compressed web graph
structure.

2.4.3 Gauss-Seidel

For the PageRank linear system (I−αP)v = (1−α)v, an extremely simple
linear solver is the Jacobi method. It is nearly the same as the Richardson
iteration, but a few subtle di�erences confuse the two. (Looking at these
di�erences is a fun exercise that won’t be covered here.) A close cousin of the
Jacobi method is the Gauss-Seidel iteration, which is asymptotically faster
[Varga, 1962]. See [Arasu et al., 2002; Del Corso et al., 2005] for comprehen-
sive evaluations of the performance of Gauss-Seidel. It is fast and o�en takes
only half the iterations of the power method with exactly the same work per
iteration (or nearly so).
�e easiest way to understand the Gauss-Seidel iteration is to imagine

a particular programming error in the Jacobi iteration. �us there is no
avoiding the Jacobi iteration, and we begin by describing it. For Ax = b, split
A = DA − NA into its diagonal and negated o�-diagonal components and
then iterate:

x(k+1) = DA
−1

(b +NAx(k)).

If A is stored by rows, then a simple implementation is

x(k+1)i =
⎛

⎝
b i −

n
∑
j/=i

A i jx(k)j
⎞

⎠
/A i i i = 1, . . . , n.

Under well studied conditions, this iteration converges. Implementing this
iteration requires allocating both x(k) and x(k+1). Gauss-Seidel follows by
“forgetting” to allocate x(k+1) and updating x(k) in place, that is

x(k)i ←
⎛

⎝
b i −

n
∑
j/=i

A i jx(k)j
⎞

⎠
/A i i i = 1, . . . , n. (2.22)

�is change is reasonable and corresponds to using the most recent values of
all the variables while solving the equations.
To solve the PageRank linear system, do not compute A = (I − αP) and

apply the iteration. Instead, proceed implicitly, just like for the powermethod.
With just P̄, working implicitly is easy; with P, it is hard. �e law codes for
PageRank [Vigna et al., 2008] describe the implicit implementation in some
detail. In is implemented in the not-quite-complete program 3. Arguably
the key step is separately accumulating dTx on the current iterate (dsum)
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and the updated entries (dsumn). Beyond that detail, the implementation is
straightforwardly an implicit version of (2.22).
But let’s outline the update at each iteration anyway! For Gauss-Seidel,

there is no large bene�t to working with strongly vs. weakly preferential
PageRank and so the following iteration actually computes the update for the
weakly preferential PageRank formulation. �at is,

A = (I − αP̄ − αudT
).

Suppose that θ = dTx before any changes to x, and that θ̄ = dTx a�er we
change an element of x. Let x̄ i be a temporary update value and d i = 1 if page
i is dangling. To update x i , the steps follow.

1. Compute τ = ∑ j/=i P̄i jx j .

2. Add (θ + θ̄)u i to τ but subtract u i if page i is a dangling page.

3. Finalize the value of x̄ i = ατ+(1−α)v i
1−αP̄i i−αu id i

.

4. If page i is dangling, subtract x i from θ and add x̄ i to θ̄.
5. Accumulate the di�erence between x i and x̄ i .
6. Set x i = x̄ i .

�ese steps correspond to the labeled steps in the Gauss-Seidel sweep func-
tion.
Gauss-Seidel has a few subtleties. Suppose P has no diagonal entries, then

the power method, Richardson, and Jacobi iterations all coincide. Although
the asymptotic performance of Gauss-Seidel is better than that of the Jacobi
method, a simple test shows that this need not hold for the average perfor-
mance.

n = 10000; rand(’state’,0); % setup a 10000x10000 graph with adjacency matrix A

A = sprand(n,n,10/n); A = spones(A); A = A - diag(diag(A));

P = normout(A); % normalize the out-degrees

alpha = 0.99; % exacerbate the issue.

[xp,flag,histp] = powerpr(P,alpha);

[xp,flag,histgs] = gspr(P,alpha);

fprintf(’power method takes %i iterations\n’, length(hist));

fprintf(’gauss seidel takes %i iterations\n’, length(histgs));

�e results are startling:
power method takes 25 iterations

gauss seidel takes 304 iterations

Such results, however, are not common. Figure 2.3 shows typical behavior on
web graphs.
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Figure 2.3 – Gauss-Seidel vs. the power
method. On the ubc-cs graph with α =
0.85, the Gauss-Seidel method handily
beats the power method.

the problem Gauss-Seidel is a fast algorithm for PageRank. Its fatal
�aw is that it requires access to P̄ by rows, but standard data structures provide
access to P̄ by columns. While transposing a matrix in Matlab is as easy as
Pt = P’, for a gigantic matrix it is not as easy. So Gauss-Seidel imposes
some restrictions on the data structures. Another problem with Gauss-Seidel
is that it cannot be parallelized e�ectively. Parallel variants of Gauss-Seidel
exist [Saad, 2003] but they require a goodmulticoloring of the graph structure
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underlying the matrix to be e�ective. �us it is not an appropriate algorithm
for really large-scale problems. Nonetheless, it is o�en the best-performing
serial algorithm. Use it when possible.

2.4.4 Summary

Gauss-Seidel concludes our discussion of classic algorithms for PageRank.
Algorithms for PageRank do not live with the problem (I − αP)x = (1 − α)v
but at the higher level of a weakly or strongly preferential framework. Some
algorithms even operate at the graph level. �e PageRank problem requires
these optimizations.
See the discussion in section 5.1 for more about new algorithms developed

for PageRank. As explained there, unfortunately, these new algorithms have
little to recommend them over the classic power method and Gauss-Seidel
iterations.

2.5 pagerank parameters

Recall that the data for PageRank (problem 1) are P, v, and α. Varying
these parameters o�en has a large e�ect on the PageRank vector x. Many of
these e�ects are well understood.
For example, when P comes from a graph in the strongly personalized

PageRank model, then adding a new edge from node i to node j increases
x i [Chien et al., 2004].4 Other results o�en focus on applications of link 4�e result in the article is slightly

more general, but this statement is the
motivation.

manipulation to increase PageRank values [Zhang et al., 2004; de Kerchove
et al., 2008]. In terms of pure PageRank theory, a clear statement about the
e�ect of P follows.

�eorem 4 (Bianchini et al. [2005], theorem 5.3). Suppose P and P̂ are two
stochastic matrices of the same size. Given �xed α and v, the PageRank vectors
for P and P̂ are x and x̂. Let U be the set of columns where P and P̂ di�er. �en

∥x − x̂∥ ≤
2α
1 − α ∑i∈U

x i .

Although the proof of this result is not long, it’s a diversion from the topic of
this thesis.5 5 Although Gleich and Polito [2007] use

this theorem with considerable bravura.�e gist is that what happens with P is relatively well studied. �e same
holds for v and even in the original PageRank paper, the impact of v is clear
[Page et al., 1999]. Page et al. [1999] de�ned E = v and wrote:

However, aside from solving the problem of rank sinks, E turns
out to be a powerful parameter to adjust the page ranks. Intu-
itively the E vector corresponds to the distribution of web pages
that a random surfer periodically jumps to. As we see below,
it can be used to give broad general views of the Web or views
which are focussed [sic] and personalized to a particular indi-
vidual.
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Program 3 – Gauss-Seidel PageRank.�is highly compressed implementation of Gauss-Seidel
on a sub-stochastic matrix P = P̄T shows all steps necessary to compute (2.22) implicitly for
the strongly or weakly preferential PageRank problem. It omits a few lines and is not “cut-and-
paste” ready, but it retains the details in the essential pieces. See section 6.6 for information on
where to get a complete implementation.

(a) Gauss-Seidel iteration

1 function [x flag reshist] = gspr(P,a,v,tol,maxit,verbose,u)
2 % GSPR Compute PageRank with the Gauss Seidel algorithm
3 % P: a row substochastic matrix; a=alpha; v=teleportation vector;
4 % tol=stopping tolerance; maxit=max iterations; u=weakly personalized vector
5
6 n = size(P,1); Ps=P; % make a copy so that gssweeppr computes extra info once
7 x=zeros(n,1)+v; normed=true; extra=0; flag=0; delta=2; iter=0;
8 reshist=zeros(maxit,1); t=0; z=0; dsum=[];
9 while iter<maxit && delta>tol
10 [x rdiff dsum Ps]=gssweeppr(x,Ps,v,a,(1-a),dsum,u); % rdiff is the difference
11 if normed, nx = csum(x); x=x./nx; dsum = dsum./nx; end
12 % evaluate the residual to make sure we are correctly converged
13 if rdiff < tol, delta = prresid(x,P,a,v,dsum,u); extra = extra + 1; end
14 if verbose, fprintf(’gs : m=%7i nm=%7i d=%8e c=%8e\n’, iter, ...
15 iter+extra, delta, rdiff);
16 end
17 reshist(iter+1)=rdiff; iter=iter+1;
18 end
19 flag=delta>tol; reshist=reshist(1:iter);
20
21 function delta=prresid(x,P,a,v,dsum,u) % compute the residual (I-aP)x - (1-a)v
22 h = a*(P’*x); h = h + a*dsum*u + ((1-a)*csum(x))*v; delta = normdiff(h,x);

(b) Gauss-Seidel sweep

1 function [x ndiff dsumn Ps] = gssweeppr(x,P,v,a,g,dsum,u)
2 if isstruct(P), n=P.n; ri=P.ri; cp=P.cp; id=P.id; Ps=P; else [cp ri]=sparse_to_csc(P);
3 n=length(cp)-1; d=zeros(n,1); % compute CSC/inv degs
4 for i=1:length(ri), d(ri(i))=d(ri(i))+1; end, d(d>0)=1./d(d>0); id=d;
5 Ps = struct(’n’,n,’cp’,cp,’ri’,ri,’id’,id); % save for next iteration
6 end
7 if isscalar(u), uscalar=true; else uscalar=false; end
8 if isscalar(v), vscalar=true; else vscalar=false; end
9 dsumn1=0; dsumn2=0; ndiff1=0; ndiff2=0; vals=false; dsum1=dsum; dsum2=0;
10 if isempty(dsum), dsum1=0; dsum2=0; % compute initial dangling sum
11 for i=1:n, if id(i)==0, t=dsum1; z=x(i)+dsum2; dsum1=t+z; dsum2=(t-dsum1)+z; end,end
12 end
13 for i=1:n
14 xn=0; pii=0;
15 for cpi=cp(i):cp(i+1)-1 % Step 1 handle Pbar
16 j=ri(cpi);
17 if vals, pji = ai(cpi); else pji=id(j); end
18 if i==j, pii = pji; continue; end
19 xn=xn+x(j)*pji;
20 end
21 dsums = (dsumn1+dsumn2+dsum1+dsum2); % Step 2, u*d’
22 if uscalar, xn=xn+dsums*u; ucurr=u; else xn=xn+dsums*u(i); ucurr=u(i); end
23 if id(i)==0, xn = xn - x(i)*ucurr; pii = pii + ucurr; end % page i is dangling
24 if vscalar, vi = v; else vi=v(i); end % Step 3 update x
25 xn=(a*xn+g*vi)/(1-a*pii);
26 if id(i)==0 % Step 4 update dsum
27 t=dsum1; z=-x(i)+dsum2; dsum1=t+z; dsum2=(t-dsum1)+z;
28 t=dsumn1; z=xn+dsumn2; dsumn1=t+z; dsumn2=(t-dsumn1)+z;
29 end
30 xi=x(i); % Step 5 accumulate
31 if xn>xi, dxi = xn-xi; else dxi = xi-xn; end % the difference
32 t=ndiff1; z=dxi+ndiff2; ndiff1=t+z; ndiff2=(t-ndiff1)+z; % between iterations
33 x(i)=xn; % Step 6 set x
34 end
35 dsumn = dsumn1+dsumn2; ndiff = ndiff1+ndiff2; % finalize sums
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Manipulating v begets the personalized or topic speci�c PageRank variants
alluded to by chapter 1. �ese problems have been extensively studied [Haveli-
wala, 2002; Jeh and Widom, 2003] and personalized PageRank forms the
basis of novel clustering algorithms [Andersen et al., 2006] and (loosely in-
terpreted) interpolation schemes for graphs [Zhou et al., 2005].
�at leaves α, which merits its own section.

2.6 the pagerank function of the damping parameter

Much of the initial research on α is motivated by the idea expressed in the
following statement [Langville and Meyer, 2006a, page 58]:

But the larger values of α are the ones of most interest because
they give more weight to the true link structure of theWeb while
smaller values of α increase the in�uence of the arti�cial proba-
bility vector vT . Since the PageRank concept is predicated on tak-
ing advantage of the Web’s link structure, it is natural to choose
α closer to 1.

Simply put, the idea is that α < 1 is introducing a distortion into the rankings.
As we will see, this sentiment is incorrect for the web.6 6 See the last paragraph of this section

for another viewpoint. Also, we do not
mean to suggest that such ideas were
misguided. Newer research just provides
better guidance.

To look at what happens with α in PageRank, we study the implicitly
de�ned PageRank function of α,

(I − αP)x(α) = (1 − α)v, (2.23)

which people sometimes write as

x(α) = (1 − α)(I − αP)−1v.

Of course, we do not mean to suggest actually computing such functions
explicitly and analyzing their properties, although, we are going to do so for
purely expository purposes. For instance,

G =

1

2

3

4 5

6

with v = e/6, yields x(α) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
6 −

α (α+3)
3 α3+6 α2−36

2 (α−1) (α+3)
3 α3+6 α2−36

(α−1) (α+2) (α+3)
3 α3+6 α2−36

1
2 −

(α+2) (α−4)
2 α3+4 α2−24

1
6 −

α3
3 +

7 α2
6 + 5 α

3
(α+1) (α3+2 α2−12)

−
α3
6 +α2+4 α+4

(α+1) (α3+2 α2−12) −
1
6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

While this expression looks challenging to interpret, �gure 2.5 shows the
PageRank function of a single node, x1(α) on the 335-node largest strong
component of the harvard500 graph. �e expression in that �gure looks
nearly impossible to understand, and thus we need a more rational (pun fully
intended) approach to the problem. Both of these examples were computed
by the Matlab symbolic toolbox.
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A few groups started studying the e�ect of α around the same time. One
of the �rst was Boldi et al. [2005]. Among other observations, they noted that
x(α) is a rational vector function of α. Rational functions are ratios of poly-
nomials. In �gure 2.5 the caption notes that x1(α) = (−23/6030) f (α)/д(α).
Carefully examining the functions f (α) and д(α) shows that they are indeed
polynomials.
It is not di�cult to see why PageRank is a rational function. Consider

Cramer’s rule [Meyer, 2000, page 476] for the solution of Ax = b:

x i =
det(Ai)

det(A)
,

where Ai = A with the ith column replaced by b. So each component of
the solution of a linear system is a ratio of determinants. It so happens that
the determinant is a polynomial in the matrix entries. When each entry in
the matrix depends on a single parameter, say α as in (I − αP), then the
determinant is going to be a polynomial in α. Replacing a column with
b = (1 − α)v does not change the story for Ai and hence, each entry in the
PageRank vector is a rational function of α.
�e second property that results from studying the function is that as α

gets closer to 1, the PageRank vector becomes useless [Boldi et al., 2005].
Precisely, the web graph has a single large connected component and many
terminal components. If any terminal components have size larger than 1—
an example is nodes 5 and 6 in the graph above—then the PageRank values in
the largest strong component are 0 when α = 1. �e largest strong component
is roughly 25% of the web and includes most of the interesting pages. �ese
pages include important things like yahoo.com, microsoft.com, and many
popular blogs. As α gets closer to 1, then, the PageRank vector degrades the
PageRank value of these important pages, which renders it useless.
Later, Avrachenkov et al. [2007] explored what α should be in light of

this behavior. Using a theoretical model, they argue that α should be 1/2,
and no larger. A cartoon version of the argument is that α = 0 produces
the trivial ranking v and α = 1 produces a useless ranking. A good ranking
should be far from both of these locations, and hence α = 1/2. To illustrate
their point, they plot the PageRank mass, the sum of PageRank values at a
subset of states, in the largest strong component as a function of α. In their
theory, the mass in the largest strong component ought to begin decreasing
around α = 1/2. �ese plots disagree and show that α can be larger than
1/2 before this happens. �e plots themselves show interesting phenomena.
In �gure 2.4, we see that the strongly preferential PageRank model admits a
larger α before signi�cantly shedding mass in the largest strong component. 0 0.2 0.4 0.6 0.8 1
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Figure 2.4 – Strong component PageRank
mass. For values of α between 0 and 1,
this plots the sum of PageRank values
inside the largest strong component of
wb.cs-stan. �e results di�er for the
strongly preferential model and show
that it allows a larger value of α before
the strong component starts losing mass.

Separately, Langville and Meyer included ideas in their book about the
sensitivitywith respect to α. A key tool in their analysis is x′(α), the derivative
of the PageRank function. We return to a discussion of the derivative in
chapter 3. Based on the derivative, their summary was that as α gets closer
to 1, the PageRank vector becomes sensitive to small changes. Golub and
Greif [2006] looked at computing the derivative to get a cheap sensitivity
result about PageRank but found that it was just as expensive as computing

yahoo.com
microsoft.com
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PageRank and therefore not cheap. Also Boldi et al. [2005] explored using
the derivatives to extrapolate the PageRank vector to values of α close to 1.
Meanwhile, people continued towork onwhat happenswhen α → 1. �eir

e�orts are useful: we use their results in this thesis. Although it is wrong for
the web it is mathematically interesting and the story as α → 1 is our next
topic.

counterpoint �e preceding discussion makes simplifying assump-
tions—it is a modeling argument. From it, we conclude that taking α close
to 1 is not a good idea if the goal is to produce a useful ordering of web
pages. �ere are other goals, and we do not mean to imply that PageRank
computations with α near 1 are entirely useless. Indeed, in chapter 4, we use
computations with α close to 1 inside a variation on the PageRank model.
Furthermore, the argument gave no practical guidance about when α is too
close to 1 beyond the simple advice α = 0.5. Our point is simply that setting
α large should be considered carefully. Using a small α (0.5 − 0.9) is not a
mere matter of computational convenience, there are important reasons why
it should be so.

2.7 the limit case

For all α < 1, the PageRank vector is unique. Yet there may be many x
that satisfy Px = x (the PageRank equation when α = 1). From the previous
section, PageRank is a rational vector function of α, so what happens when
α = 1? �e limit exists! �at is,

lim
α→1

x(α)

exists and is unique.7 7 For trivial loop-only graph

1 2 3 4 5

P = I
and the PageRank vector x(α) = v for
all α < 1. �e limit vector is also v but
any vector satis�es Px = x (the PageRank
equation when α = 1).

2.7.1 �e linear system

Looking at (I−αP)x = (1−α)v is the easiest way to �nd the limit. Consider
the Jordan canonical form P = XJX−1 . Because P is a stochastic matrix, all
the eigenvalues λ that have ∣λ∣ = 1 are semisimple [Meyer, 2000, page 696]
and thus

J =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

I
D1

J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.24)
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whereD1 is a diagonal matrix for all the eigenvalues on the unit circle and J2
is a matrix of Jordan blocks for all the interior eigenvalues. Substituting the
Jordan form into the PageRank equation produces

(I − αP)x = (1 − α)v
(I − αXJX−1

)x = (1 − α)v
(I − αJ) z

®
=X−1x

= (1 − α) u
®

=X−1v

(I − α [
I
D1

J2
]) z = (1 − α)u.

�ese equations are decoupled and give

(1 − α)z0 = (1 − α)u0

(I − αD1)z1 = (1 − α)u1

(I − αJ2)z2 = (1 − α)u2 .

Both D1 and J2 have no eigenvalues equal to 1, and then as α → 1, z1 → 0
and z2 → 0; but z0 = u0 for all α /= 1 and in the limit, then, z0 is still u0.
SupposeX = [ X0 X1 X2 ] andX−1

= [
Y0
Y1
Y2

] are partitioned conformally with
J. We have now established that

lim
α→1

x(α) = X0Y0v. (2.25)

Although this technique makes it easy to see that the limit value exists,
it is not insensitive to the formulation of the problem. For PseudoRank
(problem 2) with σ = 1 the linear system

(I − αP̄)y(α) = v

has no limit for y(α) as α → 1 because the right-hand side is not normalized
to be consistent. For this reason, and others, we prefer the core PageRank
formulation (problem 1).

2.7.2 Jordan canonical form

An alternate derivation of the limit vector uses the Jordan canonical form
ofM(α) instead. Serra-Capizzano [2005] proposed this idea and we repeat
that derivation here to elucidate the Jordan form ofM and the eigenvalues
a�er the modi�cation. In the derivation of the Jordan form, Serra-Capizzano
used a row-stochastic P. To keep the results comparable (and to keep readers
on their toes) we revert to Langville and Meyer’s notation for this subsection
(which uses a row-stochastic S instead). At the end, we’ll double check that
the limit value is the same when derived from the eigensystem (here) and the
linear system (the last section).
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Recall that the Google matrix is

G = αS + (1 − α)evT =MT . (2.26)

Let S = VJV−1 be the Jordan canonical form of S.8 We’ll state the Jordan form 8 Serra uses X here, but we’ve replaced
it by V to avoid confusion with X in the
previous section.

without the presence of a �nal scaling matrix to transform the o�-diagonal
elements in the Jordan blocks to unit values. (Recall that the choice of o�-
diagonal values in the Jordan blocks is arbitrary.) Without further ado, set

R = I − e1wT , (2.27)

wTe1 = 0, (2.28)

wT
= (1 − α)(eT1 − vTV)(I − αJ)−1 (2.29)

and then

G = VR(αJ + (1 − α)e1eT1 )R−1V−1 . (2.30)

Stated as such, this result is somewhat opaque. �e derivation is straightfor-
ward, but needs a few useful facts about stochastic matrices and eigenvalues.
So let’s work through it.
From S = VJV−1, we have

V−1GV = αJ + (1 − α)V−1evTV. (2.31)

We simplify the above expression throughV−1e = e1, which follows from the
fact that S is a stochastic matrix.9 At this point, we simply guess the structure 9 To be precise, we need the property

that 1 is a non-defective eigenvalue of
a stochastic matrix and thus the Jordan
block has no o�-diagonal elements.

of the matrix that reduces the right-hand side of the previous expression to a
Jordan matrix. Let R = I + e1wT . We’ll show how to pick w so that

R−1V−1GV = (αJ + (1 − α)e1eT1 )R−1 . (2.32)

To begin, we require that eT1w = 0 so that R−1 = I − e1wT . Our expanded
equation is

(I − e1wT
)(αJ + (1 − α)e1vTV) = (αJ + (1 − α)e1eT1 )(I − e1wT

). (2.33)

A few steps of algebra using eT1w = 0 and Je1 = e1 yield the equivalent
expression

(1 − α)e1vTV − αe1wTJ = (1 − α)e1eT1 − e1wT , (2.34)

where everything shares the common e1. �is expression encodes only a
single vector

(1 − α)vTV − αwTJ = (1 − α)eT1 −wT (2.35)

or more elegantly the linear system

wT
(I − αJ) = (1 − α)(eT1 − vTV). (2.36)
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�is last step completes the derivation of the Jordan form. Note, however,
that the eigenvalues of G, which are also the eigenvalues ofM, are given by
the diagonal of αJ + (1 − α)e1eT1 . Recall that J11 = 1, which corresponds to a
semi-simple eigenvalue of S. Write J = [ 1 J1 ] so that

10 10 Note that J1 is di�erent from J2 in the
previous section.

αJ + (1 − α)e1eT1 = [
1

αJ1
] .

�is analysis con�rms the following theorem.
�is result is a corollary of the old theo-
rem from Brauer about eigenvalues of
combinations of matrices. Elden’s proof
is speci�c to the PageRank case and
more modern.

�eorem 5 (Eldén [2004]; Brauer [1952] theorem 29). If the eigenvalues of
P are 1, λ2 , . . . , λn then the eigenvalues ofM(α) are 1, αλ2 , . . . , αλn .

finding the limit With the Jordan form from eqs. (2.27) to (2.30) we
can work out the PageRank vector x(1) in the limit sense.11 For α < 1, the 11 In the remainder of the document,

x(1)means this limiting value.PageRank vector π(α) satis�es

π(α)T = π(α)TG, (2.37)

= π(α)TVR(α)(αJ + (1 − α)e1eT1 )R(α)−1V−1 , (2.38)

which implies

π(α)T = eT1 R(α)−1V−1 , (2.39)

= eT1V
−1
−w(α)TV−1 . (2.40)

�e only dependence on α is in w(α). �is fact appears unfortunate because
w(α) solves the system w(α)T(I − αJ) = (1 − α)(eT1 − vTV), but J has
structure that makes the solution obvious. An additional concern is that
π(α)T includes the �rst row of V−1, a vector that may be arbitrary!
Let’s resolve these concerns.
We can decompose12 12 You might think this next step is

incorrect because it asserts a form on J
that possibly requires reordering V. �e
algebra, however, still works if we assert
this form on step 1.J =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I
D1

J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.41)

whereD1 is a diagonal matrix of all eigenvalues on the unit circle not equal
to 1 and J2 is a Jordan matrix with all eigenvalues on the interior of the unit
circle. If we conformally partition w(α)T = (w0(α)T w1(α)T w2(α)T)
and V = (V0 V1 V2) 13 then 13 Remember that X and V are going to

slightly di�erent because they are Jordan
forms of transposed matrices.w0(α)T = e1 − vTV0 , (2.42)

w1(α)T = −(1 − α)vTV1(I − αD1)−1 , and (2.43)

w2(α)T = −(1 − α)vTV2(I − αJ2)−1 . (2.44)

Both of the linear systems forw1(α) andw2(α) are non-singular for 0 ≤ α ≤ 1
and w0(α) is a constant function!
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�e solution of w(α)T also resolves our second concern, the eT1V−1 factor
in π(α)T . A�er partitioning

V−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Z0
Z1
Z2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.45)

we have

π(α)T = vTV0Z0 +(1−α)vTV1(I−αD1)−1Z1 +(1−α)vTV2(I−αJ2)−1Z2 ,
(2.46)

which is valid for all 0 ≤ α ≤ 1 and actually all α other than the set α = 1
λ i

where λ i is an eigenvalue of S and λ i /= 0.

checking back From the linear system, we found that x(1) = X0Y0v
and from the eigensystem, we found π(1)T = vTV0Z0. In the former,

P = [ X0 X1 X2 ] [
I
D1

J2
] [

Y0
Y1
Y2

] ,

and the latter,
S = [ V0 V1 V2 ] [

I
D1

J2
] [

Z0
Z1
Z2

] .

�e relationship is P = ST , so that

X0 = Z0
T and Y0 = V0

T .

�us we �nd the same limit vectors in each formulation.

2.8 pagerank datasets

Most of this chapter has discussed the theory of PageRank. But a large
portion of this thesis involves actually computing PageRank. �us, we need
data to compute PageRank, and in this case: bigger really is better. Table 2.2
shows a series of properties for the datasets used in the forthcoming exper-
iments. Each dataset is a directed graph G = (V , E). I either collected the
dataset myself or took it from a publicly available source.
�e graphs aa-stan, ee-stan, and cs-stan correspond to the web graphs

for the hosts aa.stanford.edu, ee.stanford.edu, and cs.stanford.edu,
respectively. �ese graphs were formed as a subset of the Webbase 2001
crawl [Hirai et al., 2000] compressed with the Webgraph framework [Boldi
and Vigna, 2005]. �e graph cnr-2000 is the result of an Ubicrawler crawl
[Boldi et al., 2004].

aa.stanford.edu
ee.stanford.edu
cs.stanford.edu
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2.8.1 Wikipedia matrices

Wikipedia provides access to copies of its English page database collected
at almost-periodic intervals. We downloaded a series of these database dumps
from 2005 until 2009. From each database we formed an article-article link
graph, where an article is

a page in the main Wikipedia namespace, for example
http://en.wikipedia.org/wiki/PageRank;

a category page, for example
http://en.wikipedia.org/wiki/Category:Matrix_theory; or

a portal page, for example
http://en.wikipedia.org/wiki/Portal:Mathematics.

We removed all other pages and links.

2.8.2 Flickr crawl

Using the techniques in Gleich and Polito [2007], we built a snapshot of
the �ickr social network starting from a particular node and crawling until
the PageRank on the boundary was less than 0.0001. �ese techniques are
related to the RankMass crawler from Cho and Schonfeld [2007].

http://en.wikipedia.org/wiki/PageRank
http://en.wikipedia.org/wiki/Category:Matrix_theory
http://en.wikipedia.org/wiki/Portal:Mathematics
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f (α) = 1724683103168320512000α102 − 351689859974563275916800α101 + 1046657678560756011923040α100

+332821515558986503317268308α99 + 202994690094545539249274953458α98 + 701216550622104187641429941160α97
+38942435173273232195508862504752α96 − 5204876256969489587508598423780757α95 − 53419116345848724180375395029139614α94

+1621997105501543781796265745838677670α93 + 17992097277595516775992937444966323725α92
−228388738389199148614341585444680228464α91 − 2572935401339464873388154472765864295466α90

−18662047188535851000868073690251020472621α89 − 155192964832717622674637679380949267008397α88
+13633798075806927018912795365187923947976816α87 + 153692481592717017931843564092779914769739855α86

−2424702525231324896856434133527720085459106818α85 − 34112664906875644324640001664890877920583430935α84
+222921632950502905446093540571509314548545319158α83 + 4458381340774458139955262362762709170337141183042α82

−9722398912749159172830586061232227612575398195577α81 − 402863595222192101330043246404750577170418624210463α80
−241296146875962767748365749082981265577900593669099α79 + 26884891161116233003550134767867058390000240645389885α78

+75002935639704657680175868562515328344632861061620026α77 − 1355245718493528694128677343628002432897202221776993666α76
−6666337432948865424681896342751813538288258918631143898α75 + 50876562123828411130342908134923596879946044492587906688α74

+385972738637461890892793659070699381929652086327544953064α73 − 1324370012053495348856190918458325441254102678707139546912α72
−16416792980158036153780188009203628703318521649963318398744α71 + 17510197624369310054645143199845105805941154913191274775360α70

+533320137070985354296793454864336229974212018883255863520736α69 + 275502212308122569075672900514808641788656066608417565862128α68
−13429082722840051523544458153489421210623008268881676515202688α67
−23110058843365910555627839838104471746030299594537756688223008α66
+262081257818502675810469542460738736851208401216965512926700160α65
+729407390179003876249104385055674850942454472967192021090685376α64
−3847937179452929633833233710422322341537775007885518269634539392α63
−15488141989129507247130473020571135237573107436265881323677072000α62
+36050325771659567239591241663693950811960305821938730156334667776α61
+246707867322513330007744656494007568641366676837744833157870986240α60
+66698815198854350338382524697115939758820557665663603703007667712α59

−2959446110396107328472639479854607457433633185566140760490226286592α58
−12528512804728910558071029225789548204605758683928995029146000314368α57
+19985525277247932558760938212461479524515746377831707793868714172416α56
+343866190600408921247069416527135879796528858737524668958998645633024α55
+237159992339459130849980507259488489676582642639199883151854812422144α54
−6150352682504179603648657901968989091083378789857325448622418220859392α53
−12507084588874068660420542622454441021005365876210831205762085535989760α52
+76052343558405304817491728967709919562879906814237879556140479278219264α51
+281657470545819893901842735393494111347269819443029672934492155921629184α50
−524010169549932716315240835391286383538294517356494888193446880264060928α49
−4283228548253488673520351046009849054273946705738400536855052450584985600α48
−2155194129185085332436034710334032595487897368550943059587873095183237120α47
+44942983365390912258646063248936155917171235534162037124027584790839951360α46
+123764976043225311633569878034493895722302903722502785220748272524591104000α45
−263604612819883334094471942440378055857630908721587551326277602165812887552α44
−2043045823645899057845901056050369454115577248500633141166053687383937777664α43
−883572534249006235663814128436259426227447113734226469390794110452279279616α42

+22029266389692672474905374638580604237511322238870051881693348503640495620096α41
+45203159614332573226167349621344476004471313288020398240113991699259941978112α40
−168198634626680009003513480377236264968641977685259854545270514440488513175552α39
−668594708420193863217346925249650551196858552245852383052928679191604052885504α38
+829995196451920004299651167659513171123326408698056871202815263749436350660608α37
+6805400890411122172338081288981379379115027947251954438964848554500327026458624α36
−839859147076619012613401783607878586283917926703478867476334483102478263910400α35

−54336251411672379109173054554388944990018972031681985156883655345205770838867968α34
−31763834543511199735483407052389951464492348704450435677017768682913434678853632α33
+357712343186400835247921272739995225258056636329416844164038875886993432486346752α32
+394894109850616441422196163643656479874423531345017994904270039571808903743143936α31
−1993929054800515710688917066299914269693286626662952457319746685784090804001701888α30
−3002267549064744794430368624087097289757148076091004127530245571997364275264880640α29
+9573037450950832796546125489519791559144293205440801001596502044790259906531819520α28
+17344649689902103638748302705765490194768583990372876266091126135709005379492904960α27
−40109860118705371377719161262775470420310263138301806878152530252877875499258347520α26
−81164940713776050502710413692301000793918577563223455903690236298808582388129464320α25
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−2484655700299390942962097170834933290427413703835951243538833117682860032000000000000α4
−4413329047578208225715144832646023361841607400402542869168917500552806400000000000000α3
+2487780731058996453939104246064539866264498778933228932687035282279628800000000000000α2
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−5203808713264169193283107063136995887025759130647063545708229427200000000000000000

Figure 2.5 – A PageRank function. x1(α) = (−23/6030) f (α)/д(α), see section 2.6
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д(α) = 21252680112847680000α102

−3542775096896042918400α101 − 377301357230918051819160α100 + 62030166204003769204027938α99 + 301903572553392042618587937α98
−27515144995670593102754792187α97 − 1391342388530090922919905979557α96 − 11397010225845179645798293856049α95
+487046819801240647260974920877667α94 + 8641748415645906110710596472701695α93 − 14615573868254463557271968794871527α92
−1455304405730842808585234463006780870α91 − 16140532952116322684344866986683755014α90
−107685923577790689207116358432796101348α89 + 3574857500140390342079726927167132783327α88
+76245995916566900197088870723441134067760α87 − 320477613697118756563592647774688786780579α86
−14315018719450474212530996756919665488506623α85 − 12271042346558183829899943919127664848771235α84
+1538719934896052457300693234469902122130588440α83 + 7259823837632938466306787148779956756499503259α82
−91383277962053778179963631846131934198363974003α81 − 912158632690159715631486922494993985581191177254α80
+1124589169570249225316595386438810701468062018941α79 − 55599491760340084897708205765116975153096053881206α78
+254197028878341726795811304127085084201803714274594α77 − 1155102780712932745491921904562487673324953687625090α76
−19623309116424352882311523132748440745863270150867432α75 − 72367264828688457023192884699324797029606326773402260α74
+510591330662979105902331311824358111451756310585317896α73 + 6560635654785580651459993551515346226540950556472012168α72
+11841946546859350197679256661965428675545845230913012752α71 − 222422692257166102165445803087102201095333519552710152624α70
−1447290325427425453794609658098719385231428839474861685840α69 + 2125011726240928873652963898522501443619028980101705108896α68
+56163879158282775333105949842095267377034088228166264755488α67 + 133653341840138472687713523321901358136789047544268798190144α66
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+40165478772124194334610082404062794103423683134161618111009172215000203264α43
−11270446090439842262616868429380066718469755470664378191173671836048162816α42
−431725269187383778295706776607285692623377582173153891079752971949306806272α41
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−53681346508826005770227174053581590059283954164048929404839105532796000534528α36
+159792483519832871643195761447614587325418857137220582772566606510963040452608α35
+447775073289651418862702364745936934030540232799739862181009845955145918054400α34
−716151822637851063198942928932119452580573299424788537816341142171636199325696α33
−2933014614963404405624949533910517712184375976693976408790612422895031925342208α32
+2123830137329614973540541687269913350581043300869459472923500012177964595675136α31
+15491595398748844916213727820453788960246908641990943232584972825253134896988160α30
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+49868638731749836953497035941697409493586060953068752243112234044096512000000000000α5
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+65704820370519415064487362188463863760063365628098565999947778359296000000000000000α3
+49648864534173955171275387887713942931184684832027306458656054181888000000000000000α2
−35756856984770583727093678769849105127720172150476292008503798661120000000000000000α
+6649311133615327302528414580675050300088470000271247863960515379200000000000000000

Figure 2.5 (continued).
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summary

�is chapter is long. It coversmassive detail about PageRank. It is, however,
necessary: subsequent chapters use almost every property mentioned. To be
precise,

Chapter 3 weakly and strongly preferential PageRank for-
mulations, PageRank algorithms;

Chapter 4 PageRank at α = 1, sensitivity to α, PageRank
function of α;

Chapter 5 PageRank algorithms and PseudoRank; and

Chapter 6 implementation details and PageRank optimized
on a graph.

All subsequent chapters rely heavily on the notation established here.



�ere is nothing wrong with change,
if it is in the right direction.

—Winston Churchhill

3 THE PAGERANK DER IVAT IVE

�e aim of this thesis is to study the sensitivity of PageRank with respect to
the damping parameter α. Sensitivity, thoughmore general, is o�en examined
via perturbation. And perturbation theory, applied to PageRank, attacks the
question: will a small change in α produce a large change in the PageRank
vector? For a su�ciently small change, it is the derivative that determines the
behavior of any smooth function,1 and the examination begins there. 1�is follows from the Taylor series

f (x) = f (x0) + (x − x0) f ′(x) +
(1/2)(x − x0)2 f ′′(x) + . . . when x − x0
is small. In such a case (x − x0)2 is
minuscule and f ′(x) determines the
behavior.

Using the derivative is a �ne starting point, provided it exists. Does it?
As discussed in the previous chapter (sections 2.6 and 2.7), PageRank is a
rational function of α for all 0 ≤ α ≤ 1. �us, the derivative exists. It even
exists for complex α where ∣α∣ < 1, though that is not an important fact for
this thesis.
Existence sets the stage for the exploration in this chapter. Because the

derivative exists, section 3.1 evaluates di�erent algebraic formulations for
the derivative vector. With an algebraic expression in hand, section 3.2 next
demonstrates a few ways to compute the derivative. PageRank derivatives are
remarkably close problems to PageRank and the best algorithm involves only
computing PageRank, using any algorithm, and computing a second strongly
personalized PageRank vector, again using any algorithm.
Algorithms, especially e�cient ones, enable experiments. Sometimes, ex-

periments even expose theory. �e experiments with the PageRank derivative
in section 3.3 follow this trajectory and expose a nice property of a Taylor
step along the PageRank derivative. �eory, of course, is not everything and
the �nal section investigates the predictive power of the PageRank derivative.
Studying the derivative began independently around 2004 in three papers.

First, Golub and Greif [2006] mentioned it in a 2004 preprint. Second, Boldi
et al. [2005] included the derivative for an extrapolation technique. �ird,
and �nally, Berkhin [2005] includes methods to compute the derivative of
PageRank.2 2 Although two of these are 2005 publica-

tions, most would have been submitted
in 2004.

�roughout the chapter, we freely inject discussions of related background
material, though the algorithm to compute the derivative is novel, as are pieces
of the theoretical discussion. A lackluster conclusion is that the derivative
seems too correlated with PageRank, and does not appear to provide any suf-
�cient guidance with regard to appropriate value of α; although, experiments
with web spam in the next chapter (section 4.8.4) show that the derivative
does have some useful properties.

41



42 3 ⋅ the pagerank derivative

3.1 formulations

Given that the introduction to the chapter mentions that the derivative of
the PageRank vector exists, we �rst address the burning question: what is it?
Remember �gure 2.2 and all the di�erent ways of looking at the PageRank

problem from the previous chapter?
Algorithms

Strongly preferential
PageRank PseudoRank

Graph or
Web graph

Substochastic
matrix

Weakly preferential
PageRank

PageRank

Sink preferential
PageRank

Eigensystems

Linear systems

Theory

Other transformations

Must we compute a derivative for all of these formulations? As hinted by
the top of the �gure, only a few formulations are theoretically relevant. �e
di�erence between strongly, weakly, and sink preferential are irrelevant for
the derivative: all that matters is P.3 With P from any of these variations, 3�ematrix P is the fully column

stochastic matrix in the de�nition of
PageRank.

the derivative vector satis�es the same formulation in terms of P.4 �us, it
4�is statement should not be surprising.
All the variations converted P̄ to P and
did not involve α. �e conversion has no
e�ect on di�erentiating with respect to
α.

su�ces to look at the derivative of the core PageRank problem alone. �e
core problem is still either a linear system or an eigensystem, and thus the
di�erence between that choice may matter. �ough, as shown shortly, it does
not.

�e core PageRank problem has enough structure to support the following
lemma. It is important to have this lemma about the derivative, because it
uses only properties of the PageRank problem—nothing else. It could tell us
if a formulation were wrong, for instance.

Lemma 6. Let x(α) be the solution of a PageRank problem (problem 1) for
P, v, and α. �en the derivative of PageRank with respect to α, denoted x′(α),
sums to 0.

Proof. By de�nition,

x′(α) = lim
ω→0

x(α + ω) − x(α)
ω

.

Because the limit of each component exists, we can move the summation
inside the limit operation:

eTx′(α) = lim
ω→0

eT
x(α + ω) − x(α)

ω
.

But x(α + ω) and x(α) are both distribution vectors, which implies eTx(α +
ω) = eTx(α) = 1. �e di�erence of these scalars eT(x(α + ω) − x(α)) = 0.
Consequently, the derivative sums to 0.
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Whether or not this result merits the full formal lemma-and-proof treat-
ment is debatable.5 In the ensuing discussion of the derivative, it is used 5 Langville and Meyer [2006a] mention it

incidentally, for example.repeatedly and thus deserves more than passing attention.
Finally, let’s see an equation for the derivative.

3.1.1 �e linear system

�e PageRank derivative is easy to determine from the linear system. Re-
call the system (I − αP)x = (1 − α)v from (2.4). Let’s make the dependence
on α explicit:

(I − αP)x(α) = (1 − α)v.

Separating the le�-hand side shows that, implicitly,

x(α) = αPx(α) + (1 − α)v.

Standard rules of matrix calculus give x′(α) = αPx′(α)+Px(α)−v, or more
conveniently,

(I − αP)x′(α) = Px(α) − v. (3.1)

�e PageRank derivative is extraordinarily close to a PageRank system! It is
not a PageRank system because Px(α) − v has some components less than 0
and eTPx(α) − eTv = 0. �at is good though. If it were a PageRank problem
then eTx′(α) would be 1, but we know it’s zero (lemma 6). Indeed, (3.1)
satis�es the property that eTx′(α) = 0 because it implies eTx′(α) = αeTx′(α).
Only one solution is possible for α < 1 : eTx′(α) = 0.
Langville and Meyer [2006a] write the derivative ex nihilo as

x′(α) = (I − αP)−2(P − I)v.

Our preference is to emphasize the PageRank-like structure of the derivative
in (3.1). As we shall see a�er getting around to algorithms, looking at the
problem in this manner is highly suggestive of algorithms.
Next, we see what di�ers for the eigensystem formulation of the PageRank

problem.
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3.1.2 �e eigensystem

Golub and Greif [2006] originally derived a formula for the derivative
vector from the eigensystem formulation (2.3) of PageRank, namely

Mx(α) = x(α),

where M = αP + (1 − α)veT . Di�erentiating with respect to α yields the
singular linear system

(I −M)x′(α) = Px(α) − v. (3.2)

We ought to be alarmed. Does this mean the eigensystem formulation admits
multiple PageRank derivatives? In particular, given any solution x′(α) to
(3.2), then x′(α) + θx(α) is also a solution.6 6 Remember thatMx(α) = x(α) and so

x(α) is exactly the nullspace of (I−M)—
which is of dimension 1 because the
PageRank vector is unique.

Lemma 6 saves the day. �e problem with the eigensystem formulation is
that the algebraic eigenvector x(α) has no imposed norm. In the above anal-
ysis, we di�erentiated the problem independently of the imposed norm and
thus we need to use it somehow. Remember that the proof of lemma 6 used
the normalization of x(α) extensively. �us, not all solutions x′(α) + θx(α)
are derivatives. Only the vector with θ∗ such that eTx′(α) + θ∗eTx(α) = 0 is
a PageRank derivative.
Finally, then, impose the property eTx′(α) = 0 and the right-hand sides

of both (3.2) and (3.1) become identical:

(I −M)x′(α) = (I − αP − (1 − α)veT)x′(α) = (I − αP)x′(α).

And thus, as we have seen a few times now,7 it does not matter whether we 7�e �rst example was the limiting
vector in section 2.7.work with the eigensystem or the linear system. �ough the linear system

o�en tends to be less complicated.

3.1.3 PseudoRank

In the previous chapter, we introduced PseudoRank and mentioned that it
is loosely equivalent to PageRank.8 PageRank and PseudoRank are di�erent— 8 A normalized PseudoRank and Page-

Rank vector are identical for the strongly
preferential PageRank problem.

and importantly so with regard to the derivative. �e PseudoRank system
((2.10)) is

(I − αP̄)y = σv,

where σ may or may not depend on α. Most o�en, it does not [Gleich and
Zhukov, 2005; McSherry, 2005; Langville and Meyer, 2006a]. When Pseudo-
Rank is constructed with σ independent of α, then its derivative satis�es

(I − αP̄)y′(α) = P̄y(α).

�is system has two important properties. First, while the PageRank deriva-
tive satis�es eTx′(α) = 0, this PseudoRank derivative has

y′(α) ≥ 0,
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which follows because (I− αP̄) is an M-matrix (with a non-negative inverse)
and P̄y(α) is positive. Second, PseudoRank has the property that the deriva-
tive of PseudoRank is another PseudoRank system, albeit for a possibility
di�erent value of θ.9 9 If P̄ is taken to be a stochastic matrix

instead, then θ does not change.�is second property is exploitable and is a component in an algorithm to
compute the PageRank derivative given in the next section.

3.2 algorithms

So far, PageRank has been di�erentiated to construct the PageRank deriva-
tive algebraically. �e next step is to analyze these derivatives, but experimen-
tation is a powerful technique to suggest analysis. To experiment with the
derivative requires computing a derivative—that is, an algorithm. Although
the derivative vector in (3.1) is the solution of a linear system, can we solve
the system more e�ciently than a standard problem?
It seems likely. A�er all, PageRank solves

(I − αP)x(α) = (1 − α)v,

whereas the derivative solves (3.1)

(I − αP)x′(α) = Px(α) − v.

�ese systems di�er only in the right-hand side. Surely something e�cient
must be possible.
It is. As shown towards the end of this section, a strongly personalized

PageRank solver su�ces to compute the derivative. Despite the similarities
of (3.1) to PageRank, an algorithm with this property is not entirely trivial,
unless the goal is merely to approximate the PageRank derivative, in which
case consider the following.

a trivial idea A �rst idea for computing the derivative vector is a
central �nite di�erence method,

x′(α) ≈ 1
2ε

(x(α + ε) − x(α − ε))

for small ε. While attractive for its simplicity, thismethod requires computing
a PageRank vector for a value of α larger than the value of α at the derivative.
Additionally, it yields only an approximation to the derivative vector. A �rst
order backward �nite di�erence formula

x′(α) ≈ x(α) − x(α − ε)
ε

avoids computing PageRank at a larger value of α, but is less accurate—and
dangerously so—when using inexact solutions x(α). Rather simple analysis
shows that using the �rst order di�erence is unwise unless the PageRank
problems are solved accurately.10

10 If the PageRank problems are solved
to a tolerance of γ, then each computed
vector is roughly x(α) + γe for an error
vector e. Both the central and backwards
di�erences yield an error of γ/ε, and
this suggests using a large ε. To get an
accurate solution with a large ε requires
central di�erencing.
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a big linear system From equation (3.1) we can express both the
PageRank vector and its derivative vector in the solution to a single linear
system. By solving:

[
I − αP 0
−P I − αP] [

x(α)
x′(α)] = [

(1 − α)v
−v ] (3.3)

we simultaneously compute the solution vector for both PageRank and its
derivative. Boldi et al. [2005] proposed computing the derivative in this
manner by solving this linear systemwith a hybrid-Jacobi/block Gauss-Seidel
procedure. One issue with this approach is that it requires solving a linear
system twice the size of the PageRank system. Additionally, the linear system
does not correspond to a PageRank problem, and it requires a general linear
system solver.

two smaller systems We could also, of course, solve the block-tri-
angular linear system (3.3) by �rst solving (I− αP)x(α) = (1− α)v and then
solving (I − αP)x′(α) = Px(α) − v. But that algorithm is just solving the
derivative linear system (3.1) directly.11

11 Techniques for multiple right-hand
sides do not help in this case. �e sys-
tems are generally too big for any factor-
izations, and other approaches are also
inappropriate.

Instead of using these approaches, we devise a method to compute the
PageRank vector analytically by solving two PageRank problems. �e key to
this result is an observation by Golub and Greif [2006]:

Px(α) − v =
1
α
(x(α) − v). (3.4)

We use this result to rewrite equation (3.1) as

(I − αP)x′(α) = 1
α
(x(α) − v). (3.5)

�e vector x′(α) then decomposes into a linear combination of two PageRank
vectors:

x′(α) = βz(α) − βx(α), (3.6)

where (I − αP)z(α) = (1 − α)x(α) and β = 1
α(1−α) . �is idea yields an

algorithm for computing the PageRank derivative as the solution of two
PageRank systems with di�erent teleportation distribution vectors but the
same value of α. Berkhin [2005] also made this observation.

�is reduction is progress. It takes advantage of the structure of the deriva-
tive to express it as a combination of PageRank solutions. Recall, however,
that e�cient algorithms for PageRank operate at the level of PageRank vari-
ants. One concern with the previous approach is that it requires computing
PageRank for a column stochastic matrix P. As discussed in section 2.2.2,
many codes for PageRank choose to work with the column sub-stochastic ma-
trix P̄ and use the strongly preferential PageRank model with P = P̄ + vdT .12

12 A column sub-stochastic matrix satis-
�es

(eT P̄)i =
⎧⎪⎪⎨⎪⎪⎩

1 Pi , j > 0 for any i
0 Pi , j = 0 for all i.

To maximize our computational advantage, we want to solve only strongly-
preferential PageRank problems when starting with a strongly-preferential
PageRank problem.13 Virtually all PageRank solvers work with P̄ and implic- 13 For general problems, it will be hard

to do better than using the reduction to
problems with P.

itly use the strongly preferential framework, whereas relatively few work with
P or the weakly preferential framework.
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To be explicit, in the strongly-preferential case the PageRank vector satis�es

(I − αP̄ − αvdT
)x(α) = (1 − α)x(α)

and its derivative satis�es14 14�is derivative is just the same as
(I − αP)x′(α) with P = P̄ + vdT , which
supports working with P for PageRank
theory.(I − αP̄ − αvdT

)x′(α) = 1
α
(x(α) − v).

Simply using strongly preferential solves does not work because the PageRank
system for z(α) from (3.6) is

(I − αP̄ − αvdT
)z(α) = (1 − α)x(α),

which is a weakly preferential PageRank system.
At this point, Boldi et al. [2007] provide a solution for a related problem

�ey formalize that the strongly andweakly preferential PageRank systems are
related by a rank-one change. Applying the Sherman-Morrison-Woodbury
formula and an extra PageRank solve transitions between these formulations.
For the derivative, applying this technique, however, then requires three Page-
Rank solves. �e extra solve is not necessary because a bit of algebra �xes
the situation entirely, and there is no need for an explicit application of the
Sherman-Morrison-Woodbury formula. Notice that

(I − αP̄)x′(α) = 1
α
x(α) + (αdTx′(α) − 1/α)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δ

v,

(I − αP̄)x(α) = (1 − α + αdTx(α))v, and

(I − αP̄)z(α) = (1 − α + αdTz(α))x(α).

Consequently, x′(α) is still a linear combination of z(α) and x(α) where
each is a strongly preferential PageRank vector. �e coe�cient for z(α) is
available, so

x′(α) = 1
α(1 − α + αdTz(α))

z(α) + ηx(α).

We now exploit eTx′(α) = 0 to compute η and present algorithm 1 to compute
the derivative.

Algorithm 1 – Compute the derivative of PageRank.

1. Compute x(α) as the solution to the original strongly preferential
PageRank problem, (I − αP̄ − αvdT

)x(α) = (1 − α)v.
2. Compute z(α) as the solution to the strongly preferential Page-
Rank problem with teleportation distribution x(α), (I − αP̄ −

αx(α)dT
)x(α) = (1 − α)x(α).

3. Set z̃ = 1
α(1−α+αdT z(α))z(α).

4. Compute η = −eT z̃
eTx(α) .

5. Return x′(α) = z̃ + ηx(α).
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No algorithm in this thesis is missingMatlab code, and program 4 shows
a simple implementation of this algorithm.

Program 4 – Strongly-preferential PageRank derivatives. Our PageRank codes for Matlab use row
sub-stochasticmatrices P.

1 function xp = derivpr(P,alpha,x,z)
2 % DERIVPR Compute the derivative of PageRank
3 % Given a PageRank vector x(alpha) and a PageRank vector y(alpha) that
4 % satisfy
5 % (I - alpha P’)x = (1-alpha)v
6 % (I - alpha P’)z = (1-alpha)x
7 % we produce the derivative of PageRank at alpha.
8 d = 1 - full(sum(P,2)); d = round(d); % compute the dangling vector
9 zt = z./(alpha*(1-alpha+alpha*d’*z));
10 g = -csum(zt)/csum(x);
11 xp = zt + g*x;

A full investigation of algorithms for PageRank derivatives ought to in-
clude a discussion about the stability of the algorithms. Such a discussion is a
glaring omission of this chapter as the vectors x and z in algorithm 1 will not
be accurately computed. As an ode to the missing analysis, let us note that
algorithm 1 produces a derivative vector that satis�es eTx′(α) = 0 to machine
precision. �is property should be useful for a backward stability analysis.
Such analyses are usually di�cult to conduct and we do not expect this case
to be an exception.
It is now time to address other properties of the derivative.

3.3 analysis

Studying algorithm 1 from the previous section to investigate the deriva-
tives reveals a few interesting properties. �e investigation begins with taking
a Taylor step along the derivative.

3.3.1 Taylor steps

Akey property of the PageRank vector is that it is a probability distribution.
�us, eTx(α) = 1 and x(α)i ≥ 0. Consider approximations of PageRank
vectors using the derivative

y(γ) = x(α) + γx′(α). (3.7)

�is equation is just a �rst order Taylor approximation of the function x(α+γ)
around α. When is y(γ) also a probability distribution? �e answer to this
question reveals when y(γ) should not be used as an approximate PageRank
vector.
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Figure 3.1 – Valid Taylor steps.�emaxi-
mum values of γ until y(γ) loses positiv-
ity are nearly linear at 1 − α. �is �gure
inspired theorem 7.

Figure 3.1 shows that γ ≈ 1 − α is the largest positive step until any com-
ponent of y(γ) dips below 0 or exceeds 1. �e minimum values of γ until
y(γ) is no longer a probability distribution are always less than 0 but are not
nearly as structured as the permissible positive set.
�is experiment inspired the following theorem.
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�eorem 7. Fix P, v, and α and let x(α) and x′(α) be the PageRank vector
and derivative with respect to α. �en y(γ) = x(α) + γx′(α) is a PageRank
vector for 0 ≤ γ < 1−α with teleportation distribution vector w(γ) = 1

1−α ((1−
α − γ)v + γPx(α)).

Proof. �e proof is straightforward and follows by computing

(I − αP)y(γ) = (I − αP)x(α) + γ(I − αP)x′(α)
= (1 − α)v + γ(Px(α) − v)
= (1 − α)w(γ).

First, notice that eTw(γ) = 1. To verify w(γ)i ≥ 0 it su�ces to show (1− α −
γ)v i + γ[Px(α)]i ≥ 0. From v i ≥ 0, we have x(α)i ≥ 0 and then γ[Px(α)]i ≥
follows. From 0 ≤ γ < 1 − α, we have (1 − α − γ)v i ≥ 0 and then w(γ)i is the
sum of two positive quantities.

Showing non-negativity, and thus con�rming �gure 3.1, was the point
of this theorem. It accomplishes this goal. For any γ < 1 − α, y(γ) is a
non-negative probability distribution vector. It is, however, more than just
any positive vector, it’s a PageRank vector with the same α, just a di�erent
teleportation distribution.
To con�rm theorem 7, we examine the di�erence between the approxi-

mation y(γ) and the PageRank vector with teleportation distribution w(γ),
denoted x(w(γ), α). Note that x(w(γ), α) is not a strongly preferential Page-
Rank vector. �e norm of the di�erences are listed in table 3.1 for a few graphs
and values of γ. �ese norms are quite small, demonstrating experimental
evidence for the theorem.

Graph γ = 0.001 γ = 0.01 γ = 0.1

aa-stan 1.72 × 10−10 1.72 × 10−9 4.30 × 10−8
ee-stan 5.62 × 10−11 5.62 × 10−10 5.62 × 10−9
cs-stan 5.31 × 10−11 5.31 × 10−10 2.90 × 10−10
cnr-2000 1.79 × 10−10 1.79 × 10−9 5.35 × 10−9

Table 3.1 – Experimental validation of
theorem 7.�e table entries show the
value of ∥y(γ) − x(w(γ), α)∥2 using the
notation from section 3.3.1 with α = 0.85.

3.3.2 Bounds

An immediate implication of the previous theorem is that

x′(α)i <
1
1 − α

.

Otherwise y(1 − α − ε)i > 1 for some small but positive ε.15 �e same idea 15 In a less succinct statement, the idea
is to assume that x(α)i = 0 and use
γ = 1 − α to bound the maximum of
x′(α)i so that y(γ)i < 1.

works to show that x′(α)i > − 1
1−α , because otherwise y(1 − α − ε) < 0 for

some small ε. �us
∣x′(α)∣ ≤ 1

1 − α
.

Using rather di�erent techniques, Langville andMeyer [2006a, p.66] establish
this same fact.
As α → 1, these bounds becomemeaningless. What actually happens with

the derivative at α = 1 is discussed next.
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3.3.3 Limiting derivatives

Previously, section 2.7 established the PageRank vector when α = 1. Now,
we di�erentiate the explicit PageRank function to establish the PageRank
derivative when α = 1. Given P = XJX−1 with J = [ I

J1 ],
16 X = [ X0 X1 ], and 16 In the last chapter, J = [

I
D1

J2
] for

a diagonalD1 with all simple eigen-
values of ∣λ∣ = 1 and J2 with all other
eigenvalues. �us, J1 = [ D1

J2 ].

X−1
= [ Y0 Y1 ]

T , then we have

x(α) = X0Y0v + (1 − α)X1(I − αJ1)−1Y1v

and

x′(α) = (α − 1)X1(I − αJ1)−1J1(I − αJ1)−1Y1 −X1(I − αJ1)−1Y1v.

�is result matches Langville and Meyer [2006a, theorem 6.1.3], but with an
explicit form for the group inverse of (I − P) using the Jordan form of P.

3.4 experiments

Finally, we study the predictive power of the PageRank derivative.

3.4.1 Does a negative derivative justify a change in ranking?

One of the most promising uses of the derivative vector is to evaluate what
happens in the PageRank vector at di�erent values of α. Table 3.2 shows some
results on this idea where we look at the fraction of pages with negative deriva-
tive that actually decrease in rank when α increases by a value γ. �e fraction
predicted by the derivative is higher than the average fraction predicted by
a random vector. We do not consider the magnitude of the derivative with
these predictions.
�ese results are mixed. For large values of γ, cnr-2000 shows a marked

increase in predictive power using the derivative over a random vector. On
theWikipedia graphs, in contrast, there is almost no di�erence between using
a random vector and the derivative.

Table 3.2 – Prediction of rank change with the derivative.�e x′ entries show the fraction of pages
with negative derivative that decreased in rank when α is increased by the value of γ in the
table heading. �ese values are compared with the r entries, which show the average fraction
over 50 trials in which the derivative is replaced by a random vector generated with randn in
Matlab. For aa-stan, the ranking did not change and thus all predictions were incorrect.

Graph γ = 0.001 γ = 0.01 γ = 0.1
x′ r x′ r x′ r

aa-stan 0.000 0.000 0.000 0.000 0.000 0.000
ee-stan 0.079 0.078 0.286 0.266 0.478 0.453
cs-stan 0.257 0.237 0.441 0.372 0.505 0.432
cnr-2000 0.557 0.477 0.621 0.527 0.641 0.553
wiki-2006-09 0.385 0.362 0.385 0.362 0.361 0.342
wiki-2006-11 0.385 0.361 0.383 0.360 0.360 0.341
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3.4.2 What are the pages with the largest derivative?

For the largest strongly connected component of wiki-2006-11, table 3.3
lists the top 20 pages with largest derivative for a few values of α. Most of
the pages that appear in the top 20 list are also highly ranked according
to the PageRank value. Additionally, pages in the “category” namespace in
Wikipedia are highly ranked by both PageRank and its derivative for the two
largest values of α evaluated.

Table 3.3 – Pages in Wikipedia with the largest derivative.�e columns show the top 20 pages
with largest derivative for three values of α computed on the largest strongly connected
component in wiki-20061104. �e pages are presented in order of the derivative, so “United
States” has the largest derivative at α = 0.50 and its rank according to PageRank is 1. Pages
in the category namespace are abbreviated “C:” instead of the full “Category:”. �e page
“Category:Main topic classi�cation” is abbreviated “C:Main topic classif.” Likewise “List of
academic disciplines” is abbreviated “List of acad. disciplines.”

α = 0.5
Page Rank

United States 1
Race (US Census) 6
C:Categories by country 23
United Kingdom 4
2006 3
England 5
Canada 7
2005 8
France 10
C:Society 108
C:People 63
C:Living people 2
Germany 12
Australia 11
2004 9
World War II 18
C:Political geography 188
Japan 14
Europe 32

α = 0.85
Page Rank

Portal:List 6
C:Main topic classif. 4
C:Society 3
C:Political geography 10
Wikipedia 24
C:Fundamental 22
C:Geography 25
C:Social sciences 29
C:Politics 27
C:Science 49
C:Human geography 41
C:Countries 28
Human 36
C:Business 45
C:People 16
C:Academic disciplines 98
C:Nature 94
C:Categories by country 5
C:Geography by place 38

α = 0.95
Page Rank

Portal:List 2
C:Main topic classif. 3
C:Society 4
Wikipedia 8
C:Fundamental 9
C:Science 21
C:Social sciences 12
C:Geography 10
Portal:Browse 83
C:Portals 79
C:Academic disciplines 36
C:Political geography 5
C:Politics 16
C:Nature 40
List of acad. disciplines 63
Human 25
C:Humans 41
Academia 75
Philosophy 64
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3.4.3 Is the derivative related to PageRank?

In the last table, many of the pages with large derivatives also had large
PageRank values. �e �nal experiment compares PageRank and its derivative
to address whether x′(α)i is proportional to x(α)i . �e next two �gures
(�gures 3.2 and 3.3) show the magnitude of the PageRank derivative as a
function of the PageRank value.
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Figure 3.2 – PageRank derivative magni-
tude. For both of these graphs, PageRank
and the magnitude of its derivative are
roughly proportional. �e red line shows
the equality relationship. Unfortunately,
this scatter plot does not show the den-
sity of points inside the inner area.
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Figure 3.3 – Relative magnitude of the PageRank derivative. �e dots are values of ∣x′(α)i/x(α)i ∣
with height x(α)i , the red line is a histogram of the horizontal density, and the black line is
the cumulative histogram. For this plot, the three lines share the same vertical axis, which is
either a PageRank value, the fraction of total points in a histogram bin, or the total fraction of
all points in a cumulative histogram. Note the log-scale on both axes. �is �gure implies that
between 5 and 10% of the density of a linear �t is accounted for by a single relationship between
PageRank and its derivative. Each vertical line is at the position 1/(1 − α).

�ese �gures strongly support the idea that PageRank and its derivative are
nearly proportional. Such a relationship is not entirely surprising. Pages with
large PageRank may be more sensitive to changes in α because they depend
on the PageRank values of all incoming links. Also, the PageRank derivative
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is a linear combination with the PageRank vector itself. Nevertheless, such a
�nding is disappointing.

3.5 discussion

�ese results are mixed. For some graphs, the derivative is successful at
predicting rank changes; and for others, it is not. Considering the magnitude
of the derivative along with its sign could improve these results.
For two graphs, the magnitude of PageRank and its derivative appear

strongly correlated. Whether this result holds for a large set of graphs is
not addressed, but our tacit experience from working with the codes and
algorithms indicates that it does. �e derivative, then, does not seem to be
helpful as an additional ranking vector. But, there may be other uses for it.
In the next chapter, we see that using information from the derivative helps a
web spam identi�cation task (section 4.8.4), and in the future work discussion
(section 7.2), we propose using it to accelerate a computation from the next
chapter.



54 3 ⋅ the pagerank derivative

summary

Computing the derivative of PageRank is not a problem. Algorithm 1
handily accomplishes this task. Given that algorithm, the derivative only
helps us con�rm that the PageRank vector is sensitive to α and does not help
pick a value for α. Experiments with the derivative demonstrate variable
accuracy at predicting rank decreases, and that the magnitude of derivative
appears to be proportional to the PageRank value for many components.



Numquam ponenda est
pluralitas sine necessitate.

—William of Ockham

4 RANDOM ALPHA PAGERANK

�us far in the thesis, all the PageRank computations used a particular
value of α. Sometimes it was 0.85, sometimes 0.75 or 0.95. We even studied
a range of values at one point (�gure 2.4). �ese choices were arbitrary and
largely motivated by the “standard” choice of α, namely, 0.85. �is chapter
begins by asking, what should α be?
Recall that the PageRank modi�cation for a Markov chain transforms

any input Markov chain into an irreducible, aperiodic chain with a unique
stationary distribution. Elements of this unique stationary distribution give
the importance of the nodes in the state space of the inputMarkov chain. Brin
and Page proposed the PageRank method to measure the global importance
of web pages under the behavior of a random surfer, which can be interpreted
as a Markov chain on the web graph [Page et al., 1999]. We now focus on this
random surfermodel and show that it contains a slight error when interpreted
over a set of “surfers.”
Let us begin by revisiting the putative random surfer. With probability

α, the surfer follows the links of a web page uniformly at random. With
probability 1 − α, the surfer jumps to a di�erent page according to a given
probability distribution over web pages. Because of its in�uence on these
random jumps, the value α is o�en called the teleportation parameter.

�us, the PageRank value for a web graph depends on two quantities: the
parameter α and the given distribution over the pages. �e e�ect of both of
these quantities on the mathematics of the PageRank vector are fairly well
understood, but the choice of α is not well justi�ed in the context of the
random surfer model. Existing PageRank calculations use a single value of α
and two choices stand out in the literature: α = 0.5 [Katz, 1953; Avrachenkov
et al., 2007; Chen et al., 2007] and α = 0.85 [Page et al., 1999; Najork et al.,
2007]. �ese choices are discussed in section 4.3.1.
Rather than trying and testing arbitrary values of α, suppose we pick α to

make the random surfer model more accurate. Because α really ought to be
the probability of following a link on a web page, let’s make it so.
Empirically measured browsing patterns on the web show that individual

users, unsurprisingly, have di�erent browsing behavior [Huberman et al.,
1998; White and Drucker, 2007]. We also con�rm this result in section 4.5.
If we assume that all users have their own probability α i of teleporting, then
the PageRank model suggests we should set α = 1

N ∑
N
i=1 α i , i.e. the mean of

these values. More generally, if A is a random variable with a density function

55
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encoding the distribution of teleportation parameters amongst multiple (per-
haps in�nite) surfers, then the PageRank model suggests α = E [A], where
E [⋅] is the expectation operator.

�e �aw in PageRank is that using α = E [A] still does not yield the correct
PageRank vector in light of the surfer values α i . We will justify this statement
shortly; intuitively it arises because a single value of α condenses all surfers
into a single über-surfer. Instead, we propose to give a small vote to the
PageRank vector x(α i) corresponding to each random surfer and create a
global metric that amalgamates this information. In other words, we want
to examine the random surfer model with “α = A,” where A is a random
variable modeling the users’ individual behaviors. Figure 4.1 gives a pictorial
view of this change. If A is a random variable, then the PageRank vector
x(A) is a random vector, and we can synthesize a new ranking measure from
its statistics. We call this measure Random Alpha Pagerank (RAPr), it is
pronounced “wrapper.”

→ x(E [A])

(a)�e PageRank Model

⋯

→ E [x(A)]

(b) Our random α PageRank model

Figure 4.1 – Differences between PageRank
and the Random Alpha PageRank model.
�e PageRank model assumes a single
random surfer representing an expected
user. Our model assumes that each
surfer is unique with a di�erent value
of α, which we represent as a random
variable A. If the function x(⋅) gives the
PageRank vector for a deterministic or
random α or A, respectively, we then
compute the expected PageRank given
the distribution for A.

An earlier work, Constantine and Gleich [2007], introduced a means of
handling multiple surfers in PageRank. �is chapter extends those ideas by
clarifying the presentation, expanding the computational algorithms, and
compiling additional results. In particular, the previous paper used the poly-
nomial chaos approach to investigate the behavior of multiple surfers algo-
rithmically. In Constantine et al. [2009], we showed that the polynomial
chaos and quadrature methods are equivalent in the case of PageRank. �e
presentation in this thesis eliminates the discussion of polynomial chaos be-
yond this paragraph. Finally, Constantine [2009] explores the general setting
of parameterized matrix equations with one or many parameters.
In what follows, we explain and analyze the RAPr model. �is model

has strong connections with other path damping approaches to PageRank
computation, which we show in sections 4.3.3 and 4.4.3. For the interested
reader, we present our algorithms with actual Matlab code from our RAPr
suite of codes.
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4.1 notation

For this chapter, we’ll need to introduce additional notation to handle the
concepts from probability. See table 4.1 for a summary. Random variables
are denoted by capital, non-subscribed, roman letters. Only A, the random
α, is used frequently.
Another small change from the standard notation is that lower case roman

letters a, b, l , r denote scalar parameters or bounded intervals.1�ese will be 1 In the notation de�ned in section 2.1,
scalars were Greek symbols. Switching
to roman for a few scalars helps inter-
pretability for this chapter.

clear from context. For instance, they are used in the example below.
�ere are two other novelties: the expectation operator E [⋅] and the stan-

dard deviation operator Std [⋅]. Given a continuous random variable2 Awith 2 Such random variables are quite special,
but they su�ce for this chapter.a density function ρ(x) on the interval [l , r], then we de�ne

E [A] = ∫ r

l
ρ(x) dx . (4.1)

Evaluating the expectation of a function corresponds to

E [ f (A)] = ∫ r

l
f (x)ρ(x) dx . (4.2)

�e standard deviation operator is de�ned in terms of the expectation opera-
tor

Std [A] =
√
E [(A− E [A])2]. (4.3)

A good background on probability is Grinstead and Snell [1997].

Symbol Meaning

A a random variable for α
Beta(a, b, [l , r]) the Beta distribution, see section 4.4.1
Beta(⋅, ⋅) the Beta function

δ i j the Kronecker delta
E [⋅] the expectation operator
Std [⋅] the standard deviation operator

Table 4.1 – Additional notation for the
random alpha PageRank model. Capital
roman letters, such as A, denote random
variables in this chapter.
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Figure 4.2 – An example of the Random Alpha PageRank model. A simple web graph and approx-
imate probability density functions of the corresponding PageRank random variables. �is
shows that pages 5 and 6 have the highest variance (widest density function). �ese pages
are traps from which the random surfer cannot leave. In this plot, A ∼ Beta(2, 16, [0, 1]). In
�gure 4.2b, the circle stems show the PageRank value for α = E [A] = 0.85, whereas the star
stems show the expectation according to the PageRank density.

4.2 vision

�e PageRank vector x(E [A]) does not incorporate the sur�ng behavior
of all users; we propose to use E [x(A)] instead. Because the PageRank vector
is a nonlinear function of α, we do not expect E [x(A)] = x(E [A]), and
section 4.4 gives a formal counterexample. For reasonable distributions of A,
however, we expect

x(E [A]) ≈ E [x(A)] . (4.4)

Despite this similarity, moving from the deterministic x(α) to the random
x(A) yields more information. For a given page, its “PageRank” is now a
random variable. Figure 4.2 shows the probability density functions for the
PageRank random variables on a small graph.
We can use the standard deviation of the randomvariables to help “quantify

the uncertainty” in the PageRank value. �e standard deviation is a measure
of the variability in the PageRank induced by the variability in A. For the
graph in �gure 4.2, the standard deviation vector is

Std [x(A)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.021 332
0.019 883
0.026 146
0.023 193
0.041 233
0.049 304

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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�is vector shows that x5 and x6 have the highest standard deviation. In a
traditional PageRank context, these pages are both in a sink-component and
accumulate rank from the largest connected component (x1 , x2 , and x4). A
high standard deviation signals that the rank of these pages is “more likely”
to change for di�erent realizations of A.
Another interesting quantity derived from our model is the correlation

coe�cient between ranks. �e correlation coe�cient between two ranks
x i and x j provides a measure of how x i will vary as x j varies with di�erent
realizations of A. If the correlation between x i and x j is positive then an
increase in x i from separate realizations of A implies that x j tends to increase
as well. If the correlation is negative, then an increase in x i implies a decrease
in x j is likely. Here, we have computed the correlation coe�cient between all
pages:3

3�is matrix is symmetric, so we could
simply present one half of it.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.000 000 0.999 996 0.998 844 0.999 211 −0.999 951 −0.999 373
0.999 996 1.000 000 0.998 764 0.999 149 −0.999 936 −0.999 313
0.998 844 0.998 764 1.000 000 0.999 963 −0.999 261 −0.999 920
0.999 211 0.999 149 0.999 963 1.000 000 −0.999 550 −0.999 989

−0.999 951 −0.999 936 −0.999 261 −0.999 550 1.000 000 0.999 667
−0.999 373 −0.999 313 −0.999 920 −0.999 989 0.999 667 1.000 000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

�e sign pattern in the correlation structure shows that there are e�ectively
two groups of pages, (x1 , x2 , x3 , x4) and (x5 , x6).

�us far, we have seen a few useful quantities that we can derive from the
RAPr model. In practice, we anticipate many problem-dependent uses for
these quantities. Our experiments show that the standard deviation vector is
uncorrelated (in a Kendall-τ sense4) with the PageRank vector itself. Because

4 Kendall’s τ di�erence in concordant and
discordant pairs between two lists relative
to an identical ordering and an inverted
ordering. �e τ value is 1 for identical
lists and −1 for inverted lists.pages with a high standard deviation have highly variable PageRank values,

the standard deviation vector could be an important input to a machine
learning framework for web search or web page categorization.
�e correlation structure between the random ranks indicates that some

of the pages form natural groups. One may explore connections between
negatively correlated ranks to glean information from the underlying graph.
We do not pursue this idea further, though it may aid in applications such as
spam detection.5 5�ere is already a paper on using a

closely related idea for spam detection.
See section 4.3.5.

Another application for these techniques is local site analysis. On awebsite
such as Wikipedia, the entire graph structure is available. Further, site usage
logs contain the information necessary to generate the vector v based on
incoming searches. �ese same logs also contain the information necessary to
estimate the distribution of A. With the RAPr formulation, extra information
is then available to help the site owner understand how people use the site.6 6 One of the most useful observations

from this model is when people use
the site in a way that is not predicted
by the random surfer model with �tted
parameters. �is indicates that random
surfer models are not appropriate and
could suggest monitoring a di�erent set
of statistics.

More generally, the PageRank model has become a key tool for network
and graph analysis. It has been used to �nd graph cuts [Andersen et al.,
2006], infer missing values on a partially labeled graph [Zhou et al., 2005],
�nd interesting genes [Morrison et al., 2005], and helpmatch graph structures
in protein networks [Singh et al., 2007].7 In all of these cases, the random

7 See section 1.4 for an informal descrip-
tion of these topics.

surfer model does not directly apply. Each paper picks a particular value
for α and computes a PageRank vector from that value. With RAPr, each
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case will have a natural random variable. For most, it may be a uniform
distribution. Rather than reporting just a single number, the algorithms could
use the standard deviation as natural error bounds representing uncertainty
or sensitivity in the resulting PageRank vector. �e sensitivity using the
standard deviation accounts for �uctuations in the function over a wider
interval than the derivative.

4.3 related work

Our ideas have strong relationships with a few other classes of literature.
Before delving into the details of the RAPr model, we’d like to discuss these
relationships.

4.3.1 Teleportation parameters in literature

Algorithmic papers on PageRank tend to investigate the behavior of Page-
Rank algorithms for multiple values of α [Kamvar et al., 2003; Golub and
Greif, 2006], whereas evaluations of the PageRank vector tend to use the
canonical value α = 0.85 [Najork et al., 2007].
Katz [1953] used α = 0.5 in a model closely related to PageRank.8 8 Katz’s model was (I − αWT)k = αWTe

for an adjacency matrixW.More recently, two papers suggested α = 0.5 for PageRank. Back in sec-
tion 2.6, we discussed Avrachenkov et al. [2007]. �ey argue that α = 1/2 is
the right choice.9 9�e authors employ graph theoretic

techniques to examine the mass of Page-
Rank in the largest strong component
of the underlying graph. As α → 1, the
mass in this strong component goes to
zero if there are other strong compo-
nents reachable from the largest strong
component. �is situation is undesirable
because many important pages exist
in the largest strong component. �ey
argue that, consequently, α should be
far from 1, and they suggest α = 1/2
because α = 0 gives an equally useless
ranking.

�e second paper applies the random surfer model to a graph of literature
citations [Chen et al., 2007]. �ey claim that citation behavior on literature
networks contain very short citation paths of average length 2 based on co-
citation analysis. �is analysis then suggests α = 0.5.

4.3.2 Usage logs and behavior analysis
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L

Figure 4.3 – Inverse Gaussian density.
�e inverse Gaussian distribution has a
probability density

ρ(L) =
√

λ
2πL3 exp [

−λ(L−µ)2

2µ2L ]
supported on L = (0,∞). �e density
plotted here uses µ = 5, λ = 10.

Huberman et al. [1998] studied the behavior of web surfers, even before
the original paper on PageRank, and suggested a Markov model for sur�ng
behavior. In contrast with the Brin and Page random surfer, Huberman et al.
[1998] empirically measure the probability that surfers follow paths of length
ℓ and then compute

nℓ = fℓPℓn0 (4.5)

for the expected number of surfers on each page a�er ℓ transitions. �ey
found that fℓ , the probability of following a path of length ℓ, is approximately
an inverse Gaussian; see �gure 4.3. �is model is strongly related to the path
damping models discussed next and in section 4.4.3. An earlier study showed
that the average path length of users visiting a site decayed quickly, but did
not match the decay to a distribution [Catledge and Pitkow, 1995]. Both of
these studies focused on the browsing behavior at a single site and not across
the web in general. Subsequently, many papers suggest measuring surfer
behavior from usage logs to improve local site search [Wang, 2002; Xue et al.,
2003; Farahat et al., 2006].
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In the context of web search, a recent study identi�ed two types of surfers:
navigators and explorers [White and Drucker, 2007]. Navigators proceed
roughly linearly whereas explorers frequently branch their browsing patterns
and revisit previous pages before going to new links. �e �rst behavior cor-
responds to a larger value of α than the latter. �is paper also contains an
extensive review of relevant literature.
None of these studies directly measures α or the distribution A.
A recent patent fromYahoo! [Berkhin et al., 2008] describes amodi�cation

of the PageRank equations to build a “user-sensitive PageRank” system by
incorporating observed page transitions and user segment modeling.10�e 10 A user segment is a group of users

related by a common factor. Age, sex,
and interests are all possibilities.

key idea in the patent is to modify the Markov chain transition probabilities
to give higher weight to transitions observed and change the teleportation
vector in light of the start points of observed transitions. �ese weights
depend on a user segment. �ey also recognize the inaccuracy of a single
teleportation coe�cient, but model separate teleportation coe�cients to and
from each page on the web. Our approach di�ers by modeling a random
Markov chain and its associated random stationary distribution. �e ideas in
the patent o�en require smoothed estimates of probabilities from observed
data. Using extensions of our ideas, we could replace some of these quantities
with stochastic parameters and then apply our algorithms to generate truly
random instances of these user-modi�ed Markov chains.

4.3.3 Path damping

While working on the mathematics of RAPr, we discovered a strong re-
lationship with path damping interpretations of the PageRank vector. Path
damping models weight each path of length ℓ in the graph with a set of
coe�cients that sum to 1. Mathematically, they compute a ranking vector

r =
∞

∑
ℓ=0

ω(ℓ)Pℓv, (4.6)

where∑∞ℓ=0 ω(ℓ) = 1 [Boldi, 2005; Baeza-Yates et al., 2006]. As we show in
section 4.4.3, the value E [x(A)] corresponds to a particular choice of ω(ℓ).

4.3.4 Personalized PageRank

A personalized PageRank vector is a PageRank vector targeted at a single
person, or group of people [Page et al., 1999;Haveliwala, 2002; Jeh andWidom,
2003]. Consequently, the choice of α and v are more obvious in this case.
Given these personalized PageRank vectors, a natural extension of our idea
is to aggregate personalized PageRank vectors. One interpretation of RAPr
is that it computes an aggregate personalized PageRank vector for all surfers.
RAPr, however, currently constrains each personalized PageRank vector to
use the same teleportation vector, v.
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4.3.5 Spam ranking

Zhang et al. [2004] investigates using the PageRank at di�erent values
of α to infer spam pages. Spam pages, they argue, ought to be sensitive to
α. �eir goal is to trap the surfer and boost their rank. �us, changing α
will reveal them. A�er computing PageRank at a few α’s, they measure the
correlation between the function 1/(1 − α) and the PageRank value on their
small set of αs. �is idea is related to the Gauss quadrature algorithm of
section 4.6.4. In RAPr, the random variable A has an associated quadrature
rule for its expectation that speci�es the αs at which to compute the function.
RAPr is also more general. It is not tied to just computing a spam correlation
but produces a correlation between any group of pages as we illustrated in
section 4.2.
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4.4 the random alpha pagerank model

So far, we have discussed our vision for RAPr and the body of literature
that surrounds our ideas. Now, RAPr is formally stated and analyzed.
Given a random variable A with �nite moments distributed within the

interval [0, 1], the random alpha PageRank is the vector x(A) that satis�es

(I − AP)x(A) = (1 − A)v (4.7)

where I, P, and v are as in (2.5).11 When we use this model, we o�en look at 11 Recall, I is the identity matrix, P is a
column stochastic matrix (eTP = eT ),
v is a non-negative probability vector
(eTv = 1).E [x(A)] and Std [x(A)] .

We address some theoretical implications of this model in the next few sec-
tions, and we defer the discussion of computation until section 4.6

Remark 8. From this de�nition, we can immediately show that our model
generalizes the TotalRank algorithm [Boldi, 2005], which produces a vector t
de�ned as

t = ∫ 10 x(α) dα.

If A ∼ U[0, 1] in RAPr, then

E [x(A)] = ∫ 10 x(α) dα = t.

A purported bene�t of the TotalRank algorithm is that it eliminated picking
an α in a PageRank computation. When compared to RAPr, however, it
corresponds to a particular choice of the random variable A.

existence It behooves us to check that the expectation of RAPr is well
de�ned. �e concern is that E [x(A)] = ∫ 10 x(α)ρ(α) dα touches the value
x(1) = 1. Looking only at the linear system (I − αP)x = (1 − α)v, we could
conclude that x(1) does not exist because the matrix is singular when α = 1.
If x(1) is not de�ned, then the expectation of RAPr will not exist. However,
readers who thought thismust have skipped a section in chapter 2. �ere is no
di�culty for our formulation of PageRank because α = 1 corresponds with a
removable singularity of the function.12�us, we can extend the de�nition of 12 Recall section 2.7. We showed that

x(1) uniquely exists and equals x(1) =
XYv for X and Y based on the Jordan
canonical form of P.

x to α = 1 with the limiting value. In contrast, the quantity ∫ 10 y(α)ρ(α) dα
does not exist for the PseudoRank vector y(α).13 �is existence result is yet

13 If the right-hand side vector in Pseudo-
Rank is (1 − α)v, then y(1) is de�ned.

another reason that we prefer the PageRank de�nition to the PseudoRank
de�nition.
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4.4.1 Choice of distribution

�e �rst order of business for RAPr is to choose the distribution of A.
While choosing a distribution seems more di�cult than picking a single
value α, the right data makes it easy. �e information for the empirical distri-
bution of A is present in the logs from the surfer behavior studies discussed
in section 4.3.2. �is point is illustrated in section 4.5 where we take browsing
logs and compute a distribution for α.
Picking A based on browsing behavior, however, is yet another choice.

It seems correct and natural for the random surfer derivation of PageRank.
When the PageRank or RAPr values are used in an application, the metrics
of the application should drive the choice of α or A. We return to this point
in section 4.8.4.
We assume that A has a continuous distribution over [l , r] with 0 ≤ l <

r ≤ 1. Two distributions with bounded, continuous support are the uniform
distribution and the Beta distribution. In fact, the uniform distribution is a
special case of the Beta distribution and consequently, our “default” choice
of A is a Beta random variable with distribution parameters a and b, and
support [l , r]. To denote this, we write A ∼ Beta(a, b, [l , r]). �e probability
density function for this random variable is

ρ(x) = 1
(r − l)a+b+1

(x − l)b(r − x)a

Beta(a + 1, b + 1)
. (4.8)

It reduces to a uniform distribution when a = b = 0. Later, we will derive
our algorithms in the most general settings possible, but all computations
are done with some version of the Beta distribution. Section 4.5 presents an
empirical distribution strikingly close to a Beta.
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Figure 4.4 – Beta distributions and Random Alpha PageRank vectors.�e four-parameter Beta
distribution is quite �exible and exhibits a range of behaviors as a function of α, β, l , and r.
�e four density plots correspond to the graph from �gure 4.2 with A drawn from the Beta
distribution in the caption. When α, β < 0, the resulting PageRank density functions are
bimodal. (PageRank densities are computed with a kernel density estimator applied to 10,000
random samples.)
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4.4.2 �eoretical properties

RAPr generalizes PageRank and all of the following theory reduces to
known results about PageRank when A is a constant. We begin to discuss the
theoretical properties of RAPr by computing a more tractable expression for
the expectation of our random PageRanks.

�eorem 9. If A ∼ Beta(a, b, [l , r]) with 0 ≤ l < r ≤ 1, then

E [x(A)] =
∞

∑
ℓ=0
E [Aℓ

− Aℓ+1]Pℓv. (4.9)

For PageRank, the theorem is the Neu-
mann expansion x(α) = ∑∞n=0(αn −
αn+1)Pnv discussed in section 2.2.5.

Proof. From (4.7) we have

x(A) = (1 − A)(I − AP)−1v. (4.10)

Because the spectral radius ρ(AP) < 1 for any value of A in [0, 1), we can
expand (I − AP)−1 with its Neumann series [Meyer, 2000, page 618]:

x(A) = (1 − A)
∞

∑
n=0

AnPnv. (4.11)

Taking the expectation and rearranging gives

E [x(A)] = E [
∞

∑
n=0

(An
− An+1

)Pnv] . (4.12)

To interchange the expectation and sum, note that 0 ≤ AnPnv ≤ 1 for all n.
Because the summands are non-negative, (1 − A)An ≥, Fubini’s theorem14 14 In general, Fubini’s theorem states

when we can exchange the order of
integration. In probability terms, it gov-
erns when we can move an expectation
operator inside an integral or in�nite
sum. For the case of an in�nite sum,
E [∑∞i=1] X i , we need to ensure that X i
is non-negative or that∑∞i=1 E [∣X i ∣] con-
verges to move the expectation inside.

justi�es this interchange.

�e previous theorem also holds when A is a constant between 0 and 1.
Using this theorem, we can formally justify the claim that the expectation of
RAPr is di�erent from the PageRank vector computed with α = E [A]. �e
following pedagogic example restricts the claim to the case when A ∼ U[0, 1].
Such a restriction allows us to use the expressions for the moments of A and
compute the in�nite sums exactly. Note that∑∞n=0 E [An − An+1] = 1 because
the sums telescope.

Example 10. Set P = [
0 1/2 1/2
0 0 1
0 0 1

], v = [ 1/3 1/3 1/3 ]
T . �en

P0v = v P1v = [0 1/6 5/6]T Pn
= [0 0 1]T , n ≥ 2. (4.13)

To apply theorem 9, we need E [An]. If A ∼ Beta(0, 0, [0, 1]), then A is uniform
over [0, 1] and E [An] = 1

n+1 . Finally,

E [x(A)] = 1
2
v +
1
2
[0 1/6 5/6]T +

∞

∑
n=2

(
1

n + 1
−

1
n + 2

) [0 0 1]T

= [1/6 7/36 23/36]T .
(4.14)



4.4 ⋅ the random alpha pagerank model 67

For x(E [A]) = x(1/2), we �nd

x(E [A]) = 1
2
v +
1
4
[0 1/6 5/6]T +

∞

∑
n=2

(
1
2n

−
1
2n+1

) [0 0 1]T

= [1/6 5/24 5/8]T .
(4.15)

�us, for this example, E [x(A)] /= x(E [A]).

For this case, the RAPr solution satis�es eT [ 1/6 7/36 23/36 ] = 1. �is prop-
erty is general and we next show that the vector E [x(A)] is always a proba-
bility distribution.

Corollary 11. If A ∼ Beta(a, b, [l , r]) with 0 ≤ l < r ≤ 1 and probability
density function ρ, then E [xi(A)] > 0 and ∥E [x(A)]∥ = 1.

PageRank is de�ned as a probability
vector, so this property does not change
for RAPr.Proof. First, E [xi(A)] ≥ 0 is because 0 ≤ A ≤ 1 and v i ≥ 0. �en, we have

∥E [x(A)]∥ = eT ∫ 10 x(α)ρ(α) dα = ∫ 10 eTx(α)ρ(α) dα = 1, (4.16)

because eTx = 1 for each α and ∫ 10 ρ(α) dα = 1.

Finally, we show that for a certain class of pages, the expectation of RAPr
is equal to PageRank with α = E [A].

�eorem 12. Let A ∼ Beta(a, b, [l , r]) with 0 ≤ l < r ≤ 1. If i is the index
for a node with no in-links, then E [xi(A)] = xi(E [A]) and Std [xi(A)] =
v i Std [A].

When a state i in P has no in-transitions
(in-links) then x i(α) = (1 − α)v i as well.

Proof. For a page with no in-links, eTi P
n
= 0, n > 0, where ei is the vector

with a 1 in the ith component. Taking the Neumann series for x(A) gives

xi(A) = eTi
∞

∑
j=0

(A j
− A j+1

)P jv = eTi (A0 − A1)v = (1 − A)v i . (4.17)

Equality of the statistics follows from the linearity of the expectation opera-
tor.

While theorem 12 yields one condition when the expectation is the same
for the random and deterministic models, the result may not be useful. Given
many of the standard corrections for dangling nodes (including the methods
used in this paper, see section 2.2.1),15 a graph with any dangling nodes will 15 In the most common case, P = P̄ +

(1/n)edT and every node has an in-link.induce an e�ective graph where all nodes have an in-link.
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4.4.3 A path damping and browse path view

Although we derived the RAPr model by replacing the deterministic co-
e�cient α with a random variable A, the resulting model has strong con-
nections with other generalizations of PageRank based on path damping
coe�cients [Baeza-Yates et al., 2006]. From the Neumann series for E [x(A)],
(4.9), the coe�cient on the jth power of P is the weight placed on a path of
length j in the Markov chain. Because these coe�cients tend to decrease as j
increases, they “damp” longer paths in the Markov chain. Figure 4.5 shows
the path damping coe�cients for the distributions from �gure 4.4.
As shown in �gure 4.5, the path damping view of RAPr provides interesting

information about the impact of di�erent distributions. For details on the
algorithmic implications of the path damping view, see section 4.6.3.
In the full generalization of the path damping model [Baeza-Yates et al.,

2006], we are free to choose the path damping coe�cients to be any non-
negative sequence with unit sum. One study suggests taking the coe�cient
on the path of length ℓ to be the empirical probability that surfers follow a
path of length ℓ, or alternatively, an approximation from an inverse Gaussian
distribution [Huberman et al., 1998]. Let’s introduce a slightly di�erent model
based on this idea and demonstrate its relationship to RAPr.
Let L be a non-negative integer random variable representing the length

of a browsing path on the web. �is L is a discrete random variable, not
a continuous random variable like A. Using L in this model requires the
probability operator, P [⋅], because the expectation of a discrete random
variable is only de�ned over the set of discrete values. For example,

E [L] =
∞

∑
ℓ=0

ℓP [L = l]

is the expected, or average, length of a browsing path. In thismodel, a random
surfer follows exactly L links on the web before stopping. Under L, surfers
stop at PL and can use E [PLv] as another ranking vector,

E [PLv] =
∞

∑
ℓ=0

P [L = ℓ]Pℓv. (4.18)

�is equation gives the direct relationship between a path damping equation
and RAPr. If we can construct A such that P [L = ℓ] = E [Aℓ] − E [Aℓ+1],
then we could establish a direct relationship between the models. �us, we
need to match moments

P [L = 0] = E [A0] − E [A1]
P [L = 1] = E [A1] − E [A2]
P [L = 2] = E [A2] − E [A3]

⋮

Ô⇒

E [A0] = 1
E [A1] = E [A0] − P [L = 0]
E [A2] = E [A1] − P [L = 1]

⋮

(4.19)

Computing such a distribution of A is a special case of theHausdor�moment
problem [Talenti, 1987], which has a known characterization for a unique
solution. We go no further than noting this equivalence.
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Figure 4.5 – Path damping coefficients for the Random Alpha PageRank model.�e �rst two
sub�gures show the path damping coe�cients for the distributions from �gure 4.4 drawn
with the same legend. �e following �gures have six lines showing E [An − An+1]Pnv for
each of the six pages in the graph from �gure 4.2. �e two lines at the right of each of these
plots correspond to pages 5 and 6. Using these plots, we see the covariance structure iden-
ti�ed in section 4.2 in a di�erent way. However, there is no hint of the bimodality for the
Beta(−0.5,−0.5, [0.2, 0.7]) distribution.
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4.5 empirical distribution

As we argued in the previous sections, the RAPr model generalizes Page-
Rank to multiple random surfers. Instead of picking a value of α to control
when the random surfer teleports, RAPr forces us to pick a distribution for
a random variable A that controls how likely surfers are to pick a value of α.
�is second task seems more problematic. For a natural choice of A, it is not.
�is natural choice is to pick A according to how surfers actually behave on
the web.
Recall that a single value of α is the probability a user clicks a link on a web

page. With a custom browser plug-in, you could compute your own value of
α. It’s a simple ratio

α ≈
number of pages viewed a�er clicking a link

total number of pages viewed
.

With more browsing, and more information, the approximation to α grows
more re�ned. If people tracked their own α, �nding the empirical distribution
for Awould be just a matter of data collection.
Loosely speaking, browser toolbars collect precisely this type of informa-

tion. �at is, the Microso�, Yahoo!, and Google browser toolbars—which
users download and install into their browsers for a few improvements—
collect this data and send it back to Microso�, Yahoo!, and Google. (Of
course, each company ensures that users provide explicit consent for trans-
mitting the data.) Toolbar logs, then, have the information to compute A.
Following our presentation on the initial RAPr model at theWorkshop on

Algorithms for the Web Graph, Abraham Flaxman and Asela Gunawardana
provided a summary of these logs. �ey reported values of α from one mil-
lion “users” on the web collected in a two hour window. From this data, the
mean value of α = 0.375. �e data shows a good �t to a Beta(1.5, 0.5, [0, 1])
distribution (�gure 4.6).
For the �gure, the analysis used a kernel density estimator [Asmussen

and Glynn, 2007] to generate an approximate probability distribution from
the raw data. �e density �t itself looks quite similar to a Beta distribution.
A nonlinear least squares �t produces a Beta(1.52, 0.53, [0, 1]) distribution.
Instead, a Beta(1.5, 0.5, [0, 1]) is more simple and matches the mean of the
data.
For the estimate displayed in the �gure, we dropped all values of α mea-

sured at 0 and 1. Both of these values are impossible and represent problems
with the sampling procedure. In an ideal case, the data would be collected
with pseudo-counts [Agresti, 2002], where we estimate

α ≈
number of pages viewed a�er clicking a link + 1

total number of pages viewed + 2
.

Pseudo-counts correct for the two known, but unobserved, future actions.
�at is, a person will always click another link, so we add 1 to both totals.
Also, a person will always visit a page without clicking a link, and so we add
another page to the total pages viewed. �is adjustment �xes an important
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Figure 4.6 – Empirically measured tele-
portation coefficients. For two hours of
toolbar logs, the black histogram repre-
sents the raw values of α recorded. �e
dashed line is a bounded kernel density
�t to the data with a kernel width of
0.1. �e blue line is a Beta density ap-
proximation to α. In the original data,
rational values of α with small denomi-
nators are likely—and cause spikes in the
histogram—because many individuals
are only brie�y observed.

problem when the only observation of a person are page views with no clicks.
�e α is 0, which is incorrect. By assumption, everyone will click on a link at
some point and the pseudo-counts adjust for these �nite size results.
Two aspects of the Beta �t are surprising. First, web surfers do not o�en

click links! �e “mean” user clicks a link once for every three pages. Such
behavior may suggest that search and bookmarks are the prevalent means of
navigating the web. Second, the distribution and its �ts extend to α = 1. In
all the nonlinear least squares variations, the right endpoint of each �t was 1.
�us, long browsing sessions are common on the web.
In closing, we repeat that A can be measured from data, and

A ∼ Beta(1.5, 0.5, [0, 1])

is a reasonable approximation. While this analysis is preliminary, it supports
a few surprising observations about random surfer browsing on the web.
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4.6 algorithms

In this section we describe and compare three methods for computing the
approximate statistics, E [x(A)] and Std [x(A)], of the RAPr model.

4.6.1 PageRank

One key component of these algorithms is a robust solver for a determin-
istic PageRank problem with α < 1. For this task, we use two solvers: a direct
method and an inner-outer method (chapter 5). �e direct method uses the
“backslash” solve in Matlab. In versions R2007a and R2007b, this command
calls the umfpack 5.0 library [Davis, 2004]. For a row sub-stochastic
matrix,16 we solve 16 For computational e�ciency, all the

Matlab programming uses row sub-
stochastic matrices; see section 2.4.2 for
more information.

(I − αPT
)y = v, x(α) = y/ ∥y∥ . (4.20)

�e inner-outer iteration requires only sub-stochastic matrix-vector prod-
ucts, which makes it a natural choice for data structure-free algorithms.17 17 Although using Gauss-Seidel iterations

or a strong-component decomposition
algorithm is typically faster, these algo-
rithms require access to the graph as a
structure and manipulate it.

Program 8 is our implementation of the inner-outer method. Using the same
code, the inoutpr function works with a native Matlab sparse matrix struc-
ture as well as a Matlab wrapper around a BVGraph data structure [Boldi
and Vigna, 2004] through a custom version of bvgraph or libbvg so�ware
(section 6.5).

4.6.2 Monte Carlo

An enticingly straightforward method to compute the expectations, stan-
dard deviations, and density functions of RAPr is to use a Monte Carlo
method. To wit, �rst generate N realizations of A from a chosen distribu-
tion, and then solve each resulting PageRank problem. With the N di�erent
realizations of x(α i), i = 1, . . . ,N , we can compute unbiased estimates for
E [x(A)] and Std [x(A)] with the formulas

E [x(A)] ≈
1
N

N
∑
i=1

x(α i) ≡ µ̂x ,

Std [x(A)] ≈

¿
Á
ÁÀ 1

N − 1

N
∑
i=1

(x(A i) − µ̂x)2

from Asmussen and Glynn [2007].
Unfortunately, as with any Monte Carlo method, these estimates con-

verge as 1/
√
N [Asmussen and Glynn, 2007], which makes this approach

prohibitively expensive for large graphs such as the web graph.
�e real advantage of the Monte Carlo method is its beautiful simplicity.

�e following short code is our entire implementation of the Monte Carlo
method, including a numerically stable method to update the running vari-
ance computation [Chan et al., 1983].



4.6 ⋅ algorithms 73

Program 5 – Computing RAPr with Monte Carlo. AMonte Carlo code in Matlab to estimate the
expectation and standard deviation of the RAPr model.

1 function [ex,stdx] = mcrapr(P,N,ba,bb,bl,br)
2 tol=1e-9; maxterms=500; n=size(P,1); v=1/n;
3 alphas = betarnd(bb+1,ba+1,N,1)*(br-bl) + bl;
4 ex=zeros(n,1); stdx=zeros(n,1);
5 for i=1:N
6 % solve the PageRank system
7 x = inoutpr(P,alphas(i),v,tol,2*ceil(log(tol)/log(alphas(i))));
8 % update the running solution sum and variance sum formulas
9 ex = ex+x; if i>1, stdx = stdx + (1./(i*(i-1))).*(i*x-ex).^2; end
10 end
11 ex = ex./N; stdx=sqrt(stdx./(N-1)); % compute the mean and std

4.6.3 Path damping

As discussed in sections 4.3.3 and 4.4.3, path damping algorithms for Page-
Rank are not novel. RAPr simply provides a large set of functions that gener-
ate the path damping coe�cients. In this section, we will discuss using these
ideas to compute E [x(A)] and Std [x(A)].
Recall the Neumann series from theorem 9,

E [x(A)] =
∞

∑
ℓ=0
E [Aℓ

− Aℓ+1]Pℓv. (4.21)

If we truncate this series to a �nite value N , then an algorithm for E [x(A)]
immediately follows:

E [x(A)] ≈ x(N) =
N
∑
ℓ=0
E [Aℓ

− Aℓ+1]Pℓv + (1 −
N
∑
ℓ=0
E [Aℓ

− Aℓ+1])PN+1 .

(4.22)
�e �nal term in this summation ensures that eTx(N) = 1 for the path damp-
ing approximation.
To compute Std [x(A)] using the path damping equations we compute

E [x(A) ● x(A)] and then compute

Std [x(A)] =
√
E [x(A) ● x(A)] − (E [x(A)] ● E [x(A)]).

Based on the Neumann expansion,

E [x(A) ● x(A)] =
∞

∑
i=0

∞

∑
j=0
E [Ai+ j

− 2Ai+ j+1
+ Ai+ j+2] (Piv) ● (P jv). (4.23)

And again, we truncate this series to a common term in both i and j:

E [x(A)2] ≈ s(N) =
N
∑
i , j
E [Ai+ j

− 2Ai+ j+1
+ Ai+ j+2] (Piv) ● (P jv). (4.24)

Note that we do not apply any correction to the sum to ensure a summation
property of the solution as in the case for E [x(A)].
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Given the moments of the distribution A,

µk(A) = E [Ak] , 0 ≤ k ≤ 2N + 2, (4.25)

the previous summation expressions become algorithms. As discussed in sec-
tion 4.4.1 we only consider A ∼ Beta(a, b, [l , r]). For A ∼ Beta(a, b, [0, 1]),
the values µk are known analytically [Zwillinger et al., 1996]:

µ0 = 1, µk =
b + k

a + b + k + 1
µk−1 =

k
∏
j=1

b + j
a + b + j + 1

, k ≥ 1. (4.26)

To handle the general case, de�ne

µ̂ j ≡ µ j(A) where A ∼ Beta(a, b, [0, 1]). (4.27)

For A ∼ Beta(a, b, [l , r]),

E [Ak] = ∫ r

l
ζ kρ(l ,r)Beta(a ,b)(ζ) dζ = ∫ 10 ((r − l)τ + l)kρ(0,1)Beta(a ,b)(τ) dτ

=
k
∑
j=0

(
k
j
)µ̂ j(r − l) j l k− j

(4.28)
and we can compute the moments of A ∼ Beta(a, b, [l , r]) by scaling and
shi�ing those of A ∼ Beta(a, b, [0, 1]). Program 6 gives a simple implementa-
tion of the path damping algorithms and an implementation of the recursion

µk(A) = µ(0,k)

µ(i , j) =
j

∑
m=i

(
j − i
m − i

)µ̂m(r − l)m−i l j−m = (r − l)µ(i , j−1) + l µ(i+1, j)
(4.29)

to compute the moments µk(A).18

18�e implementation is not straightfor-
ward, though it is correct. It follows from
organizing the moments into a matrix

⎡⎢⎢⎢⎢⎢⎣

µ(0,0) µ(0,1) . . . µ(0,k)

µ(1,1) . . . µ(1,k)
⋱ ⋮

µ(k ,k)

⎤⎥⎥⎥⎥⎥⎦
and �lling in the entries
µ(0,1) , . . . , µ(0,k) from the initially
speci�ed diagonal. At every step in the
implementation, we compute a new
diagonal.
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Program 6 – Computing RAPr with path-damping.�e �rst sub�gure presents a compact algo-
rithm to compute the moments of a Beta distribution. Next, we present our implementation of
the path damping algorithms using the moments. Just as for the PageRank case, we perform
our computations with P = PT for e�ciency.

(a) Moment computation
1 function m=beta_moments(N,a,b,l,r)
2 c = l; s = (r-l); m=zeros(N+1,1); % c is the offset, s is the scale
3 uk=1; k=0; sk=1; m(1) = uk; % uk are the Beta(a,b,0,1) moments
4 for i=1:N, k = k+1; uk=s*uk*((b+k)/(a+b+k+1)); m(i+1) = uk; end
5 % form the shifted and scaled moments % m are the Beta(a,b,l,r) moments
6 if c ≠ 0, for i=1:N, m(i+1:end) = c*m(i:(end-1)) + m((i+1):end); end, end

(b) Path damping computation
1 function [ex,stdx] = pdrapr(P,N,a,b,l,r)
2 tol=1e-9; maxterms=500; n=size(P,1); v=1/n;
3 ms = beta_moments(2*(maxterms+1),a,b,l,r); % setup the moments
4 i=0; delta=2; ex=zeros(n,1); y = zeros(n,1) + v; s=0; % setup vectors
5 while i<maxterms && ms(i+2)>tol
6 Ptiv=y; ex = ex + (ms(i+1)-ms(i+2))*Ptiv;
7 y = P’*(Ptiv); y = y + (1-norm(y,1)).*v; i=i+1; end % update P^i v
8 ex = ex + ms(i+2)*y; % adjust with the last term
9 % compute stdx with same number of terms of sequence
10 nterms=i; ex2=zeros(n,1); Ptiv = zeros(n,1); Ptiv=Ptiv+v; Ptjv=Ptiv;
11 for i=0:nterms, for j=0:nterms
12 ex2 = ex2 + (ms(i+j+1)-2*ms(i+j+2)+ms(i+j+3))*(Ptiv.*Ptjv);
13 y = P’*(Ptjv); Ptjv = y + (1-norm(y,1)).*v;
14 end % now update Ptiv and reset Ptjv
15 y = P’*(Ptiv); Ptiv = y + (1-norm(y,1)).*v; Ptjv(:)=0; Ptjv=Ptjv+v;
16 end % finish by update ex2 to be stdx
17 stdx = sqrt(ex2-ex.^2);

4.6.4 Gaussian quadrature

Integration and interpolation are the fundamental concepts behind the
class of uncertainty quanti�cation techniques known as stochastic colloca-
tion [Xiu and Hesthaven, 2005], which were originally developed in the con-
text of partial di�erential equation models with stochastic inputs. Much of
the work in this context has focused on the problem of high-dimensional pa-
rameter spaces [Nobile et al., 2008], where multi-dimensional interpolation
and integration can have a computational cost that increases exponentially
with the dimension of the parameter space; one aspect of the so-called curse
of dimensionality.
RAPr has only one random parameter A ∼ Beta(a, b, [l , r]), so we can

employ the one-dimensional interpolation and integration formulas to pro-
duce highly accurate statistics. In this section we discuss their application to
RAPr.
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For a modern reference on Gaussian quadrature, see Gautschi [2002]. In
an N-point quadrature rule, we approximate

∫ r

l
f (x) dw(x) ≈

N
∑
i=1

f (zGi )wG
i , (4.30)

where zGi are the N nodes or points of a quadrature rule and wG
i are the

corresponding weights on those points. �ese nodes and weights are chosen
to make the integration exact if f is a polynomial of degree less than 2N ,
and there are e�cient algorithms to compute these rules [Golub and Welsch,
1969]. Note that the quadrature rule changes if the integration endpoints
change, or if the weight function w changes.
With the points and weights of the Gauss quadrature formula, we �rst

solve N deterministic PageRank problems

(I − zGi P)xi = (1 − zGi )v (4.31)

using methods described in section 4.6.1. �en we can compute statistics of
RAPr with the quadrature formulas

E [x(A)] ≈
N
∑
i=1

xiwG
i , Cov[x(A)] ≈

N
∑
i=1

xixTi wG
i −(

N
∑
i=1

xiwG
i )(

N
∑
i=1

xiwG
i )

T

.

(4.32)
For the quadrature rule (4.30), the nodes zGi are known to lie on the interior

of the integration region, l < zGi < r. Furthermore, the weightswG
i are strictly

positive. �e �rst property is essential to using quadrature with PageRank
when r = 1. It states that we do not have to compute a PageRank vector
at α = 1. Many other quadrature rules, such as Clenshaw-Curtis,19 Gauss- 19 Fejér quadrature is a variant of

Clenshaw-Curtis quadrature without
the endpoints. It is less accurate than
Gauss quadrature, but has nested point
sets, which make it an attractive option
in other settings.

Radau, or Gauss-Lobatto, all utilize a function value at one or both of the
endpoints. For PageRank, computing the limit vector x(1) e�ciently is still
an open problem, and hence these alternatives are not appropriate.
As program 7 shows, implementing the Gaussian quadrature algorithm

is easy using the OPQ routines [Gautschi, 2002]. In the code, we adjust
the solution tolerance of the linear system based on the weights of the �nal
quadrature summation. We call this a weighted tolerance τ.

Program 7 –Matlab code for computing RAPr using Gaussian quadrature. Using Gautschi’s OPQ
codes, r_jacobi01.m and gauss.m, a Matlab quadrature implementation is quite easy.

1 function [ex,stdx] = gqrapr(P,N,a,b,l,r)
2 % first run these commands to get the OPQ codes
3 % urlwrite(’http://www.cs.purdue.edu/archives/2002/wxg/codes/gauss.m’,’gauss.m’)
4 % urlwrite(’http://www.cs.purdue.edu/archives/2002/wxg/codes/r_jacobi.m’,’r_jacobi.m’)
5 % urlwrite(’http://www.cs.purdue.edu/archives/2002/wxg/codes/r_jacobi01.m’,’r_jacobi01.m’)
6 tol=1e-9; maxit=1000; n=size(P,1); v=1/n;
7 ab=r_jacobi01(N,a,b); xw=gauss(N,ab); xw(:,2) = (1./beta(b+1,a+1))*xw(:,2);
8 xw(:,1) = (r-l).*xw(:,1)+l; % generate the quadrature rule by scale and shift
9 ex = zeros(n,1); stdx = zeros(n,1); % initialize running sums
10 for i=1:N
11 % solve the PageRank system
12 x = inoutpr(P,xw(i,1),v,min(tol./xw(i,2),1e-2), ... % adjust tol and maxit
13 2*ceil(log(min(tol./xw(i,2),1e-2))/log(xw(i,1))));% for mult by xw(i,2)
14 ex = ex+xw(i,2).*x; stdx = stdx+xw(i,2).*(x.^2);
15 end
16 stdx = sqrt(stdx - ex.^2); % convert to stdx
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4.7 algorithm analysis

In this section, we compare and analyze the algorithms using theoretical
and numerical techniques. As with many such comparisons, the theoretical
analysis does not treat every case, and the numerical comparisons are always
limited to the chosen experiments. Nevertheless, the combined examination
yields strong suggestions for the choice of algorithm and implementation
when applied to RAPr. For a compact summary of the properties of the
methods, see table 4.2. �e twin objectives of the analysis are work and
accuracy. Both are typically proportional to N , the number of terms used in
the approximate statistics. A description of N for the methods is in the table.

Table 4.2 – Summary of convergence results for the RAPr model. A brief summary of our results
about each method. A non-intrusive method only uses an existing PageRank solver. �e Monte
Carlo and Path Damping algorithms can be updated from N to N + 1 with no more work than
another iteration, whereas the Gaussian Quadrature routines produce di�erent instances when
N is incremented. For storage, prsolve is the storage required to solve a PageRank problem,
and P multiply is the storage required for the matrix P. �e convergence results show how the
norm of the error decays as a function of N , the intrinsic parameter of the method, and both a
and r, the parameters from the Beta distribution.

(a) Algorithm Properties

Method Non-Intrusive Update Storage

Monte Carlo + + prsolve + 2 n-vectors
Path Damping - + P multiply + 5 n-vectors
Gaussian Quadrature + - prsolve + 2 n-vectors

(b) Convergence Analysis

Method Conv. Work Required What is N?

Monte Carlo 1
√

N
N PageRank systems number of samples from A

Path Damping
(without Std [x(A)])

rN+2
N1+a N + 1 matrix-vector

products
terms of Neumann series

Gaussian Quadrature r2N N PageRank systems number of quadrature points

4.7.1 Monte Carlo

Monte Carlo is not a deterministic technique. In it, we have to solve N
PageRank systems at random values of α. �e question we address here
regards the work that this procedure requires. Each PageRank problem is
solved iteratively and matrix-vector multiples with P dominate the work. We
cannot �nd a precise number of matrix-vector multiplies because the work
varies between runs. Instead, we compute the expected (or average) number.
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We begin our formal analysis by noting that the kth iterate from the power
method on the PageRank system satis�es

∥x(k) − x⋆∥ ≤ 2ε (4.33)

when k > log(ε)/ log(α) and x⋆ is the exact solution; that is, it takes at most k
iterations (matrix multiplications) for the powermethod to get 2ε accuracy.20 20�is result follows directly from

lemma 3 with the initial error 2. Any
two stochastic vectors have a 1-norm
di�erence of at most 2, and so 2 is an
upper bound on the initial error. Empiri-
cally, the inner-outer method uses fewer
iterations than the power method, so we
use the upper bound from the latter.

Using the bound (4.33), we can estimate the expected number of iterations
in the Monte Carlo method given that we are taking N samples:

E [M] =
N
∑
i=1
E [M i] ≤ N ∫ r

l

log(ε)
log(τ)

ρ(τ) dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
expected iterations for one sample

, (4.34)

whereM is the total number ofmatrix-vectormultiplies andM i is the number
of iterations in the ith random sample.
In the case when ρ(τ) corresponds to a Beta distribution over (0, 1) with

integer a > 0, b > 0, we can solve the integral analytically. From Zwillinger
et al. [1996, p. 401],

∫ 10
x p − xq

log x
= log(p + 1) − log(q + 1), p > −1, q > −1. (4.35)

Now, recall and substitute the density function from (4.8)

E [M] = N log(ε)
Beta(a + 1, b + 1) ∫

1

0

τb(1 − τ)a

log τ
dτ. (4.36)

To compute the integral, we subtract 0 = (1 − 1) = (1 − τ0)a ,21 then expand 21 For this problem, 1 − τ0 is the right
value of 0 to subtract for an easy compu-
tation.

both (1−τ)a and (1−τ0)−1 using binomial coe�cients. �en we apply (4.35)
with p or q = 0. Formally,

∫ 10
τb(1 − τ)a

log τ
dτ = ∫ 10

τb(1 − τ)a − (1 − τ0)a

log τ
dτ

=
a
∑
k=0

(−1)k(a
k
) ∫ 10

τk+b − τ0

log τ

=
a
∑
k=0

(−1)k [(a
k
) log(k + b + 1) − log 1] .

(4.37)

All of the previous work can be summarized in the following theorem.

�eorem 13. If A ∼ Beta(a, b, [0, 1]) with integers a > 0 and b > 0, then
approximating E [x(A)] with an N-sample Monte Carlo method takes

N log ε
Beta(a + 1, b + 1)

a
∑
k=0

(−1)k(a
k
) log(b + i + 1) (4.38)

matrix multiplications.
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One problem with this theorem is that it does not handle a = 0, b = 0—the
case when A is uniformly distributed. Computing this expectation exactly
is impossible in this case because the inde�nite integral ∫ 10 log

−1
(τ) dτ does

not converge. To handle this case, we would need to quantify the convergence
of the power method when α is bigger than the second largest magnitude
eigenvalue of P. More precisely, P has many eigenvalues on the unit circle.
Let λ2 be the magnitude of the �rst eigenvalue inside the unit circle. We need
the convergence of the power method when α > λ2 and that will depend
more strongly on λ2 than on α.

4.7.2 Path damping

When A ∼ Beta(a, b, [0, r]), r ≤ 1, we can explicitly bound the conver-
gence of the path damping algorithm for E [x(A)]. Recall the path damping
approximation from (4.22):

E [x(A)] ≈ x(N) =
N
∑
ℓ=0
E [Aℓ

− Aℓ+1]Pℓv + (1 −
N
∑
ℓ=0
E [Aℓ

− Aℓ+1])PN+1v.

Note that

(1 −
N
∑
ℓ=0
E [Aℓ

− Aℓ+1]) = E [AN+1] . (4.39)

�us we have

∥x(N) − x⋆∥ = ∥E [AN+2]PN+1v −
∞

∑
ℓ=N+2

E [Aℓ
− Aℓ+1]Pℓv∥

≤ E [AN+2] + eT
∞

∑
ℓ=N+2

E [Aℓ
− Aℓ+1]Pℓv

≤ 2E [AN+2] .

We could have removed the �nal normalization term E [AN+1]PN+1v in the
summation and bounded the result by E [AN+1] instead. However, the iter-
ation we outlined in the algorithms section gives us better performance in
practice.22 22 Give it a try yourself; maybe you will

have a di�erent experience.For r ≤ 1, (4.29) gives

E [AN+2]

= rN+2 Γ(b + N + 3)Γ(a + b + 2)
Γ(b + 1)Γ(a + b + N + 4)

= rN+2 Γ(a + b + 2)
Γ(b + 1)

1
(b + N + 3)(b + N + 4)⋯(a + b + N + 3)

≤ rN+2 Γ(a + b + 2)
Γ(b + 1)

1
(b + N + 3)a+1

,

(4.40)

from which we conclude that the path damping algorithm for computing
E [x(A)] converges like rN+2

N a+1 .



80 4 ⋅ random alpha pagerank

4.7.3 Error bounds on Gaussian quadrature

Quadrature methods are extremely old tools and many excellent error
analysis techniques exist. For example, Davis and Rabinowitz [1984] devotes
an entire chapter to their study. Let xGQ(N) be the approximation to E [x(A)]
using an N-point quadrature rule. We can only achieve an error bound for
any component and thus use the upper bound

∥E [x(A)] − xGQ(N)∥ ≤ n ∣E [x i(A)] − xGQ(N)i ∣ .

�is bound is terrible for large n and we do not expect it to be tight. Instead,
we focus on the error decay—how much the error drops when N .
Computing the bound on a component is involved, as the following theo-

rem and proof demonstrate.

�eorem 14. Let A be a random variable with �nite moments and support
[0, r], where r < 1. �e error in the Gauss quadrature approximation of
E [x(A)] is bounded above by

∣E [x i(A)] − xGQ(N)i ∣ ≤
32ωr

15(1 − ρ−2)ρ2N+2
,

where N is the number of points in the Gauss quadrature rule,

ω =

√

1 + 1
r

and ρ =
1
r
+

√
1
r2
− 1.

Proof. �ere are many statements for the error in Gauss quadrature and we
begin with amodern statement fromTrefethen [2008, theorem 4.5]. Consider
I = ∫ 1−1 f (x) dx for an analytic function f . Let IN be the N-point Gauss
quadrature approximation to I. �en

∣I − IN ∣ ≤
64ω

15(1 − (ρa + ρb)−2)(ρa + ρb)2N+N
, (4.41)

where ∣ f (z)∣ ≤ ω for all z in the ellipse with foci ±1 and semi-major axis
ρa > 1 and semi-minor axis ρb . Figure 4.7 illustrates the construction.

Figure 4.7 – The framework for Gauss
quadrature error analysis.�e ellipse of
analyticity provides bounds on the error
in a Gauss quadrature rule. Roughly,
∣error∣ ≤ (ρa + ρB)2N .

Note that we are approximating the integral

E [x i(A)] = ∫ r

0
x i(α) dα

with an N-point quadrature rule. Each PageRank component is a rational
function, which is a special case of an analytic function. In the remainder
of the proof, we go through the details of applying the bound from (4.41)
precisely. First, we transform the problem to the integration region [−1, 1]
by a change of variables α to z. In this z-space, we build an ellipse in the
complex plain where x i(z) is analytic. To study the function magnitude
ω, we transform the ellipse back to α-space and examine the magnitude of
PageRank as a function of α when α is complex.
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Let
z = 2α

r
− 1 ⇐⇒ α =

r
2
(z + 1)

be the change of variables between α and z. Consider z = zR + iZ i for z in
the ellipse with foci ±1. �e ellipse satis�es

z2R
ρ2a

+
z2I
ρ2b

= 1

and the constraint on the foci implies that ρ2a = 1 + ρ2b . Both ρa and ρb live
in z-space, so for

ρa =
1
r
,

we consider an ellipse in α-space with a right end-point r/2 + 1/2—halfway
between r and 1.23�e function x i(α(z)) is analytic inside this ellipse. �e 23�is choice of ρa may not be optimal,

but other choices increase the di�culty
of the computations considerably. In par-
ticular, we tried using a right endpoint of
γr + (1 − γ), but could only compute the
upper bound ω when γ = 1/2.

right endpoint (in α-space) is less than 1 and x i(α) is analytic for all complex
α with ∣α∣ < 1. See Horn and Serra-Capizzano [2007] for the �rst study of
PageRank with complex α. �us,

ρa + ρb =
1
r
+

√
1
r2
− 1

slips into (4.41) for the PageRank case.

Figure 4.8 – The Gauss quadrature error
analysis applied to PageRank. When
integrating x i(α), we use the ellipse
given in red to bound the error in a
Gauss quadrature approximation. Note
that x i(α) is clearly analytic in this
region as it’s enclosed inside ∣α∣ < 1.

We have ρa + ρb ; let’s now �nd ω.
In α-space where α = αR + iαI , the ellipse is

(r/2 − αR)
2

(1/2)2
+

α2I
( 12

√
1 − r2)2

= 1.

�is ellipse is centered at r/2 with semi-major axis length 1/2, as illustrated
in �gure 4.8.
In (4.41), the value of ω is an upper bound on f (z) inside the ellipse. �us,

we must bound the magnitude of PageRank components for a complex α.
First,

x = αPx + (1 − α)v gives ∥x∥ ≤ ∣α∣ ∥x∥ + ∣1 − α∣.

For complex α, this bound yields

∣xi(α)∣ ≤ ∥x(α)∥ ≤ ∣1 − α∣
1 − ∣α∣

=

√
(1 − αR)2 + α2I
1 −

√
α2R + α2I

≡ F(αR , αI). (4.42)

When αI = 0, this bound respects the property that x i(α) ≤ 1 for 0 ≤ αR < 1.
When αI /= 0, the bound is considerablymore interesting. In �gure 4.9 at right,
we see that as αI increases, F increases. Analytically, we �nd that ∂F/∂αI > 0



82 4 ⋅ random alpha pagerank

for αI > 0 and ∂F/∂αI < 0 for αI < 0. Consequently, the maximum ω is going
to occur on the boundary of the ellipse. In this case,

α2I =
1
4
(1 − r2)(1 − (r/2 − αR)

2

(1/2)2
) .

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

Figure 4.9 – PageRank magnitude for a
complex damping parameter. In this
contour plot, we show an upper bound
on ∥x(α)∥ when α ∈ C. Darker red
indicates larger magnitude and white
indicates a magnitude near 0. �e magni-
tudes increase as α veers o� the real line,
or when the real component is negative.

Let FR(αR) = F(αR , αI(αR)) be the value of F on the ellipse. �e critical
points of F are

αR =
r2 − 1
2r

; r
2 − 2r − 3
2r

; r
2 + 2r − 1
2r

with values

FR(⋅) =
√

1 + 1
r
− r ; −i

√
3
r
− 1 ;

√

1 + 1
r
.

Only

αR =
r2 + 2r − 1
2r

is inside the region of integration, and thus

ω =

√

1 + 1
r
.

�ere is one more step:

∣E [x i(A)] − xGQ(N)i ∣ ≤ ∣
dα
dz

∣ ∣E [x i(z)] − xGQ(N)i ∣ .

�e initial bound (4.41) now applies to the second expression with ρa + ρb =
1
r +

√
1
r2 − 1 and ω =

√
1 + 1

r .
24 24We avoided much of the tedious alge-

bra in this proof by valiantly employing
the computer algebra packages Maple
and Mathematica.

X
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X

X
X

X

X
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X

X

Figure 4.10 – Quadrature convergence with
extreme endpoint. �is �gure illustrates
the ellipse of analyticity with semi-major
and semi-minor axis sum larger than
1 used to show that Gauss quadrature
converges. �e red x’s are singularities of
the PageRank function with ∣α∣ ≥ 1. �e
circle shows the boundary ∣α∣ = 1.

�us, the quadrature codes converge to the exact solutions as N → ∞

when r < 1. When r = 1, the story is much more complicated. Using Tre-
fethen’s bound on the convergence of quadrature, and bounds on analytic
functions in the complex plane, it su�ces to show that x(α) is analytic in an
ellipse that encloses the integration region [0, 1]. �is follows because x(α)
is analytic at α = 1 and has poles at 1λ i

where λ i is an eigenvalue of P that is
di�erent from 1. All of the other eigenvalues have ∣λ i ∣ < 1 and thus, we must
be able to �t an ellipse (potentially a small ellipse) between these eigenvalues
and the integration region [0, 1]. Figure 4.10 illustrates and shows a hypo-
thetical ellipse with semi-major and semi-minor axes that sum to more than
1. �is result gives us convergence when r = 1, but at an unknown rate.
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4.7.4 Implementation correctness and convergence

In this section, we present empirical results pertaining to the accuracy
and convergence of our implementations. �is type of analysis is important
because numerical experimentation allows us to explore broader ranges of
parameter values than may be feasible in the theoretical analysis. Addition-
ally, it provides strong evidence that we have correctly implemented all the
algorithms in this chapter. To begin, we use three experiments to verify that
our algorithms are convergent when implemented with and without approxi-
mate solutions of the linear algebra problems. Each of our algorithms has a
parameter N that controls the degree of approximation. �eoretically, all the
algorithms are convergent as N →∞.
We �rst test this convergence by comparingwith a semi-analytical solution.

Using the symbolic toolbox inside Matlab, we compute the PageRank vec-
tor as a rational function of α on the har500cc graph, a 335 node connected
component.25 Using Mathematica, we then numerically integrate (4.32) for 25�e symbolic expressions for even

a single component of the PageRank
vector as a function of α are incredible.
See �gure 2.5.

the expectation and standard deviation in 32-digit arithmetic. �is process
resolves the “exact” solution when converted to a double precision number.
Finally, we track convergence of each algorithm to these semi-analytical solu-
tions in �gure 4.11a. As the respective N increases, all methods demonstrate
convergence to the exact solution. For the same graph, we also analyze step-
wise convergence by tracking the 1-norm change when incrementing N to
N + 1 (�gure 4.11b). �ese results use a direct method to solve any linear
system that arises. Finally, we replace har500ccwith cnr-2000, a 325,557 node
graph, and use the inner-outer iteration to solve the PageRank systems with
a tolerance of 10−8. In both of these cases, the algorithms are convergent.
Our discussion continues with the �gure on the next page.
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(a) Convergence to analytical solutions (N vs. ∥y(N) − y⋆∥) on har500cc
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(b) Stepwise convergence (N vs. ∥y(N+1) − y(N)∥) with direct methods on har500cc

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

0 5 10 15 20 25 30 35 40

10
−15

10
−10

10
−5

10
0

Monte Carlo Path damping Gaussian quadrature

(c) Stepwise convergence (N vs. ∥y(N+1) − y(N)∥) with iterative methods on cnr-2000

Figure 4.11 – Convergence of algorithms for RAPr. All of our implementations converge with
iterative methods and direct methods in a stepwise sense for y(N) ≈ E [x(A)] (dotted points)
and y(N) ≈ Std [x(A)] (“+” points). Computing the standard deviation with path damping
was too ine�cient to include. �e colors correspond to distributions from �gure 4.4a.

We now make a few additional observations:

• the Monte Carlo method has similar convergence behavior for all dis-
tributions and does not achieve better than typical accuracy for all
tests;

• theBeta(2, 16, [0, 1])problem (solid light blue line) requires the largest
N for all methods except Monte Carlo;

• the accuracy of the standard deviation is less than the accuracy of the
expectation; and

• using stepwise convergence as a proxy for analytical convergence in
path damping can produce signi�cant errors.

�e last statement merits further comment. A simple calculation shows that
stepwise convergence of the path damping expression is

∥x(N)PD − x(N+1)PD ∥ = E [AN+2] ∥PN+2v − PN+1v∥ , (4.43)

which is how we compute the values for the �gures. �e theoretical bound is
much weaker with ∥PN+2

− PN+1∥ replaced by the trivial value 2. When the
vectors PNv reach a small value, stepwise convergence is no longer a good
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bound. Consequently, our �nal code for the path damping formulation uses
E [AN+2] to test convergence instead.
Next, we examine the runtime for these methods in the hard case of the

Beta(2, 16, [0, 1]) distribution.26 Figure 4.12 displays the values of �gure 4.11c 26�e case when r = 1 has the slowest
convergence for all the methods.against the time they took to compute. Again, the standard deviation was

not computed for the path damping algorithm. �ese timings include all
computations of moments and eigenvalues for path damping and Gaussian
quadrature.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

Time (sec)

 

 

Monte Carlo
Path Damping
Quadrature

Figure 4.12 – Timing for the RAPr algo-
rithms.�e time required to compute
the results from �gure 4.11c for E [x(A)],
A ∼ Beta(2, 16, [0, 1]).

Based on these experiments, we advise the following. Path damping is the
algorithm of choice when r ≪ 1 or the standard deviation is not required.
Otherwise, the best method for computing both the expectation and stan-
dard deviation for reasonably accurate (≈ 10−4–10−8) solutions is Gaussian
quadrature with about 33 points.27 27 Using 33 quadrature points may

seem like a lot to those accustomed to
integrating smooth functions. With
PageRank, there is a singularity near the
region of integration and we need to use
many points.
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4.8 applications

�us far, we have theoretically examined the RAPr model, given algo-
rithms to compute its statistics, and analyzed those algorithms; we have yet
to address applications of this model. While the expected value of the RAPr
model appears to order nodes like the deterministic PageRank vector at the
expected α, the standard deviation vector orders nodes di�erently. We �rst
demonstrate this behavior for a range of graphs and distributions of A. �en,
we show similar observations on a large web graph and discuss the inter-
section similarity of the standard deviation vector for this graph. Next, we
present an example of our model outside the web graph domain and ob-
serve that this ranking behavior of the standard deviation vector holds for a
gene ranking application. Finally, we show that using the standard deviation
information aids a spam classi�cation task.

4.8.1 PageRank

To begin our empirical analysis of RAPr, we present table 4.3. For the
four Beta distributions we have examined throughout this chapter, the table
presents the 1-norm, Kendall’s τ correlation coe�cient, and a truncated-τ
correlation coe�cient between x(E [A]), E [x(A)], and Std [x(A)]. �e 1-
norm di�erence is rescaled to be related to a correlation coe�cient when
applied to probability distribution vectors. �e truncated-τ or τε measure
removes digits less than ε before computing τ. Formally,

τε(y, z) = τ(ε round(y/ε), ε round(z/ε)), (4.44)

where the “round function” rounds to the nearest integer. �e τε measure
is motivated by inconsistencies with the τ measure and inaccurate computa-
tion [Boldi et al., 2007]. �e expectation and standard deviation were com-
puted with a 33-point quadrature rule28 and each PageRank system solved 28 See note 27 for a comment about the

number of points.to a weighted 10−9 tolerance (see section 4.6.4).
From the table, we observe:

• the PageRank vector x(E [A]) and the expected value in the random
model E [x(A)] are numerically similar and induce similar orderings
of the pages;

• the standard deviation vector Std [x(A)] is neither numerically similar
nor similar in either τ metric to x(E [A]);

• using τε can give di�erent results; and
• the behavior of the standard deviation vector is not consistent between
graphs and distributions.

�e �rst shaded column group of the table justi�es the �rst statement. �e
marked reduction in shading in the second column group explains the sec-
ond, and the seemingly random values in this column group justify the last
statement. Interestingly, four graphs behave nearly the same: uk-2006-host,
uk-2007-host, eu-2005, and us2004cc. With the exception of uk-2007-host,
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these graphs have the highest percentage of nodes in the largest strong com-
ponent.

Table 4.3 – A comparison between PageRank and Random Alpha PageRank.�e function
f (y, z) = 1 − ∥y − z∥ shi�s the di�erence in norm to [−1, 1]; τ is Kendall’s τ correlation
coe�cient; and τε is τ with y and z truncated to 8 digits. Positive values of τ are shaded red
whereas negative values of τ are shaded blue. Values near 0 have no shading and indicate places
where the vectors are uncorrelated.

Graph Beta y = x(E [A]), z = E [x(A)] y = x(E [A]), z = Std [x(A)]
a b l r f (y, z) τ(y, z) τε(y, z) f (y, z) τ(y, z) τε(y, z)

uk-2006-host 0 0 0.6 0.9 0.972 0.995 0.995 0.173 0.200 0.196
2 16 0 1 0.943 0.994 0.994 0.231 0.599 0.597
1 1 0.1 0.9 0.963 0.984 0.983 0.229 -0.421 -0.418
-0.5 -0.5 0.2 0.7 0.970 0.983 0.982 0.210 -0.457 -0.454

uk-2007-host 0 0 0.6 0.9 0.971 0.997 0.993 0.176 -0.071 -0.072
2 16 0 1 0.944 0.996 0.995 0.232 0.498 0.455
1 1 0.1 0.9 0.961 0.987 0.987 0.221 -0.578 -0.557
-0.5 -0.5 0.2 0.7 0.969 0.986 0.975 0.201 -0.586 -0.563

nz2006 0 0 0.6 0.9 0.984 0.995 0.978 0.114 -0.546 -0.333
2 16 0 1 0.976 0.996 0.966 0.135 0.027 -0.192
1 1 0.1 0.9 0.975 0.981 0.980 0.143 -0.620 -0.506
-0.5 -0.5 0.2 0.7 0.980 0.981 0.950 0.125 -0.614 -0.527

eu-2005 0 0 0.6 0.9 0.975 0.993 0.987 0.174 0.318 0.286
2 16 0 1 0.952 0.992 0.982 0.214 0.517 0.524
1 1 0.1 0.9 0.962 0.976 0.975 0.267 -0.536 -0.518
-0.5 -0.5 0.2 0.7 0.968 0.975 0.974 0.251 -0.621 -0.604

us2004cc 0 0 0.6 0.9 0.971 0.989 0.990 0.173 0.179 0.177
2 16 0 1 0.947 0.985 0.986 0.225 0.436 0.461
1 1 0.1 0.9 0.960 0.969 0.973 0.247 -0.395 -0.364
-0.5 -0.5 0.2 0.7 0.967 0.969 0.974 0.230 -0.489 -0.468

enwiki-2008 0 0 0.6 0.9 0.981 0.996 0.995 0.180 0.240 0.159
2 16 0 1 0.975 0.995 0.994 0.189 0.381 0.184
1 1 0.1 0.9 0.961 0.986 0.984 0.277 -0.444 -0.406
-0.5 -0.5 0.2 0.7 0.966 0.986 0.984 0.262 -0.578 -0.222

indochina 0 0 0.6 0.9 0.975 0.993 0.968 0.165 0.189 0.229
2 16 0 1 0.946 0.991 0.972 0.217 0.479 0.569
1 1 0.1 0.9 0.966 0.974 0.958 0.250 -0.542 -0.284
-0.5 -0.5 0.2 0.7 0.973 0.973 0.949 0.235 -0.613 -0.358

uk2005 0 0 0.6 0.9 0.985 0.997 0.903 0.110 -0.519 -0.199
2 16 0 1 0.974 0.997 0.967 0.134 0.065 -0.034
1 1 0.1 0.9 0.977 0.985 0.947 0.144 -0.596 -0.080
-0.5 -0.5 0.2 0.7 0.981 0.984 0.916 0.128 -0.598 -0.137

�e graph uk2005 demonstrates the largest discrepancy between τ and
τε . �is relatively large di�erence may signify that it di�ers characteristically
from the other graphs. However, most of its standard deviation values are
less than 10−8, so truncating the τ metric with ε = 10−8 may lose important
information. Another explanation for the discrepancy is that more than half
of the nodes in this graph have no links.
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4.8.2 PageRank on a large graph

�e graphs in the previous section are small compared with the size of
the true web graph. Now we address computing the quantities on a graph
with 78 million nodes and just under 3 billion edges: the uk-2006 web spam
test graph [Castillo et al., 2006].29 Our distributions of interest are A1 ∼ 29 Even this graph is tiny compared with

the real web graph.Beta(2, 16, [0, 1]) and A2 ∼ Beta(1, 1, [0, 1]). We chose the former because
E [A1] = 0.85, the canonical value of α, and the latter because E [A2] = 0.5,
a recently proposed alternative value of α. Both of these distributions have
small a and support that extends all the way to 1. �is makes computing
the solution with path damping a di�cult proposition, so we choose to use
Gaussian quadrature. For A1 we used a 25-point rule, and for A2 we used a 10-
point rule. �e error bounds on quadrature state that these results may have
considerable error from the quadrature approximation. But for big problems,
running hundreds of Gauss points is not feasible.30 30 In chapter 7, we discuss a few ideas to

make the codes more scalable.While the Matlab codes given throughout this chapter handle this graph
through the bvgraph package, working in Matlab is roughly half the speed
of an optimized computation. Consequently, we used a C++ implementation
of the inner-outer iteration to solve the PageRank systems and compute the
aggregated solution using a bvgraph structure to hold the graph in mem-
ory [Boldi and Vigna, 2004].
�e time required for our deterministic solves (tolerance 10−12) was

α = 0.85 204 minutes,
α = 0.5 51 minutes.

Computing the expectation and standard deviation in the RAPr model re-
quired

A1 6199 minutes,
A2 1569 minutes.

Our codes solved each PageRank vector to a weighted tolerance of 10−12.
�is accuracy is far more than required when given the intrinsic error in the
quadrature approximation mentioned above. Nevertheless, we might as well
get something accurate with these computations when we can.
To analyze the output, we use two schemes. First, we apply the truncated

τ measure to the expectation and standard deviation vectors (table 4.4). �e
comparison shows that E [x(A)] ≈ x(E [A]) in terms of ranking and that the
standard deviation vectors behave di�erently under this measure. Interest-
ingly, the standard deviation vector for A2 appears to invert the orderings of
all other measures and the magnitude of its anti-correlation is much stronger
than for A1.
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Table 4.4 – PageRank vs. random alpha PageRank sensitivity on a big graph.�e truncated τ
values (τε(y, z) with ε = 10−10) again show that the standard deviation vectors produce
di�erent rankings from the expectation vectors for the graph uk-2006 with 77 million vertices
and 2.2 billion edges. A1 is a Beta(2, 16, [0, 1]) random variable with statistics computed
using a 25-point quadrature rule, and the parameter A2 is a Beta(1, 1, [0, 1]) random variable
computed using a 10-point quadrature rule. �e coloring is the same as in table 4.3.

z

y x(0.85) x(0.95) E [x(A1)] E [x(A2)] Std [x(A1)] Std [x(A2)]
x(0.5) 0.850 0.765 0.845 0.956 0.412 -0.538
x(0.85) 0.910 0.967 0.891 0.294 -0.675
x(0.95) 0.916 0.808 0.219 -0.706
E [x(A1)] 0.892 0.287 -0.675
E [x(A2)] 0.378 -0.577
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Figure 4.13 – Intersection similarity be-
tween PageRank and the RAPr model.
�e intersection similarity metric
for the uk-2006 graph shows that the
standard deviation vector is unlike
the PageRank vector under this mea-
sure. �e computations were done
for A1 ∼ Beta(2, 16, [0, 1]) with
a 25-point quadrature rule and for
A2 ∼ Beta(1, 1, [0, 1]) with a 10-point
quadrature rule.

�e second comparison metric is the intersection similarity metric [Boldi,
2005]. Given two ordered sequences of itemsA and B, letAk (resp. Bk) be
the top k items inA (resp. B). �en

isimk(A,B) =
1
k

k
∑
j=1

∣A j∆B j ∣

2 j
, (4.45)

where ∆ is the symmetric di�erence operator between two sets. �e intersec-
tion similarity is the average of the normalized symmetric di�erences for all
top- j lists with j ≤ k. If the two orderings are identical, then isimk = 0 for
all k. If the two sequences have disjoint items, then isimk = 1. Figure 4.13
displays this value for the standard deviations vectors. For A1, the intersec-
tion similarity hovers around 0.3 with increases at 10, 1,000 and 10,000,000
pages. In contrast, Std [x(A2)] has a higher intersection similarity for the
�rst 106 pages and orders the tail quite di�erently, resulting in a peak past
106 pages. �is �nal peak is perhaps indicative of the negative τ correlation
between Std [x(A2)] and x(0.5).

�ese results support our claim that the standard deviation of RAPr reveals
characteristically new information for the underlying graph.
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r

l 0.2 0.4 0.6 0.8 1.0

0.0 0.999 0.996 0.988 0.973 0.935
0.2 0.999 0.994 0.980 0.944
0.4 0.998 0.988 0.954
0.6 0.996 0.967
0.8 0.984

(a) Values of τ(x(E [A]), E [x(A)]), A ∼ U(l , r)

r

l 0.2 0.4 0.6 0.8 1.0

0.0 0.166 0.212 0.261 0.317 0.389
0.2 0.256 0.305 0.356 0.414
0.4 0.342 0.381 0.413
0.6 0.382 0.381
0.8 0.326

(b) Values of τ(x(E [A]), Std [x(A)]), A ∼ U(l , r)

b

a 1 4 7 10 13 16

1 0.964 0.965 0.970 0.975 0.979 0.982
4 0.990 0.985 0.984 0.985 0.985 0.986
7 0.995 0.992 0.990 0.990 0.990 0.990
10 0.997 0.995 0.994 0.993 0.993 0.993
13 0.998 0.996 0.995 0.995 0.995 0.994
16 0.999 0.997 0.997 0.996 0.996 0.995

(c) Values of τ(x(E [A]), E [x(A)]), A ∼ Beta(a, b, 0, 1)

b

a 1 4 7 10 13 16

1 0.378 0.410 0.386 0.362 0.344 0.331
4 0.263 0.362 0.395 0.399 0.392 0.383
7 0.217 0.305 0.355 0.382 0.392 0.394
10 0.194 0.268 0.319 0.352 0.373 0.385
13 0.180 0.244 0.291 0.326 0.350 0.367
16 0.170 0.226 0.269 0.303 0.329 0.349

(d) Values of τ(x(E [A]), Std [x(A)]), A ∼ Beta(a, b)

Table 4.5 – RAPr vs. PageRank on the generank data. For the generank matrix, the Kendall-τ
correlation coe�cient shows that the PageRank and the expected PageRank order the genes
similarly, whereas the standard deviation vector produces a di�erent ordering under a wide
range of parameters of the Beta distribution. �e coloring is the same as in table 4.3.

4.8.3 Gene regulatory networks

Recently, many authors have used PageRank-type equations as measures
on arbitrary graphs. Among these measures are GeneRank [Morrison et al.,
2005] for identifying important genes in a regulatory network, ProteinRank
[Freschi, 2007] for identifying important proteins, and IsoRank [Singh et al.,
2007] for identifying important edges in a graph-isomorphism-like problem.
We will demonstrate the results of RAPr on the GeneRank problem using the
data published for that paper.
In this context, we cannot interpret RAPr as representing a hypothetical

random surfer. Instead, the GeneRank vector is used with a single choice
of α to infer important genes. We propose using the standard deviation
vector as another set of important genes, or as “con�dence bounds” on the
actual importance values for a gene. GeneRank uses an undirected graph
of known relationships between genes instead of the directed web graph in
PageRank and speci�es a teleportation vector v based on the expression level
for each gene in a micro-array experiment. In our experiments, we look at
the τ correlation between x(E [A]), E [x(A)], and Std [x(A)] for a range of
parameters when A ∼ Beta(0, 0, [l , r]) and when A ∼ Beta(a, b, [0, 1]). �e
expectation and standard deviation vectors are computed with a 50-point
quadrature rule with a direct solution method.
Table 4.5 presents the τ correlations. We note a few interesting observa-

tions. Again, the τ di�erence between the expectation and PageRank vector
is negligible, whereas the standard deviation vector does produce a value of
τ much closer to 0. For all the tests, τ is positive and, as the mass of the Beta
distribution shi�s closer to 1, the τ values become larger. We hypothesize that
these e�ects are due to the symmetric nature of the initial GeneRank graph,
which has a stationary distribution proportional to the weighted degree of
a node. From these experiments, we believe that looking at the standard
deviation vector would be useful in this application.
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4.8.4 Spam classi�cation

�us far, the evaluations of RAPr have been speculative. We’ve seen that
the standard deviation vector di�ers from the standard PageRank vector.
However, the proof is in the pudding and for RAPr, the pudding is spam.
Web spam occurs when a web site consists primarily of misleading content

or links designed to draw visitors to generate ad revenue or in�ate another
site’s importance. Web spam is distinguished by this arti�ciality. Identifying
these sites is a growing problem and one technique is pure link analysis.
Hypothetically, spam sites have dramatically di�erent linking patterns than
natural (non-spam) sites.
In Castillo et al. [2006] and Becchetti et al. [2008], the authors investigate

identifying web spam purely from link analysis. �ey labeled around 7,500
hosts from the uk-2006 graph as follows.

Label Train Test

spam 674 1250
non-spam 4948 601
no label 5780 9551

�e data have a training and test subset, although only the training subset
is used in Becchetti et al. [2008] and in the following experiments. In the
remainder of our own experiment, we continue following the methodology
of Becchetti et al. [2008], and add the standard deviation vector from RAPr
as an additional feature for a spam classi�cation task. �ey released their
data, which makes experimenting straightforward.
Figure 4.14 shows that the standard deviation information identi�es some

spam pages. In particular, a high standard deviation relative to PageRank (the
right-hand side of the right �gure) is a reasonably strong indicator. Ironically,
a low standard deviation also appears to be an indicator.

Figure 4.14 – Standard deviation and spam.
�e background histogram displays (log)
standard deviation scores for non-spam
hosts when A ∼ Beta(2, 16, [0, 1]).
�e foreground (red) plot shows the
same data for spam hosts. Each host is
represented by its home page score and
the statistics are computed with a 21-
point quadrature rule. �e second �gure
shows the same data for the (log) ratio of
standard deviation over expectation.
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Feature vectors for each host are included with the Becchetti et al. [2008]
data. �ese features are numerical results that may have an impact on the
“spaminess” of the pages on that web host and include TrustRank [Gyöngyi
et al., 2004], PageRank, Truncated PageRank [Becchetti et al., 2008], amongst
others. �us, pure PageRank ideas are already included. To support our
statement that the standard deviation of RAPr is di�erent, then, we must be
able to improve upon the performance with all these features present.
Although measures like PageRank, TrustRank, and RAPr produce one

or two scores for each page, the previous study found that computing a few
statistics on these features aided the classi�cation task. �us, for RAPr on
each host, we produce
• log of RAPr expectation
• log of ( RAPr expectation / log of outdegree )
• log of ( RAPr expectation / log of indegree )
• standard deviation of RAPr expectation on in-links
• log of ( standard deviation of RAPr expectation on in-links / PageRank )
• log of RAPr standard deviation
• log of ( RAPr standard deviation / log of outdegree )
• log of ( RAPr standard deviation / log of indegree )
• standard deviation of standard deviation on in-links
• log of ( standard deviation of RAPr standard deviation on in-links / PageRank )
• log of ( standard deviation of RAPr / RAPr expectation )

where the RAPr scores are from the host home page, and the page with largest
PageRank on the host. In total, we produce 22 features (= 11 from the list ×2
for the di�erent host pages) from the RAPr statistics.
Hosts, with all of their features, are then input to a machine learning

framework that attempts to learn a decision rule about spam based on these
features.31 Just like the original work, we use a Bagged J48 tree classi�er in 31 Covering a full machine learning

background is well outside the scope of
this thesis.

Weka [Witten and Frank, 2005] with 10 bags. Bagging a classi�er produces a
new classi�er whose label is the concensus of a bag of independent classi�ers.
On the training data, we conducted 50 independent 10-fold cross-validation
experiments to estimate the performance of the classi�er, and table 4.6 dis-
plays the results. For each classi�er, we show the
precision fraction of spam pages corrected labeled as spam;
recall fraction of total spam pages identi�ed;
fscore harmonic mean of precision and recall;
false positive fraction of non-spam pages mislabeled as spam; and
false negative fraction of spam pages mislabeled as non-spam.
In the table we also add features based on the derivative. For the deriva-

tive features, we use the derivative instead of the standard deviation in the
previous list.
Both the derivative and RAPr features improve the performance of the

classi�er! It is a small improvement, only a few tenths of a percent in both
cases. Using features from the Beta(−0.5,−0.5, [0, 3, 099]) distribution, we
obtain the best classi�cation performance. In some sense, this distribution
represents the least-likely surfer behavior. In contrast, the actual surfer behav-
ior Beta(1.5, 0.5, [0, 0.99]) has the worst performance of all the experiments
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Table 4.6 – Spam classification performance. Our performance baseline includes all the features
from [Becchetti et al., 2008]. Each row represents adding features from either RAPr or the
derivative based on a particular Beta distribution or value of α. �e results are averaged
over 50 repetitions of 10-fold cross validation with a 10-bag J48 decision tree classi�er.A�er
adding features based on RAPr and the derivative, we observe an improvement in the f -score.
Consequently, these features uncover new information in the graph that is not expressed by
PageRank.

Precision Recall f-score False Positive
Ratio

False Nega-
tive Ratio

Baseline 0.694 0.558 0.618 0.034 0.442

Beta(1.5,0.5,0,0.99) 0.692 0.557 0.617 0.034 0.443
Beta(-0.5,-0.5,0.3,0.99) 0.698 0.564 0.624 0.033 0.436
Beta(0.5,1.5,0,0.99) 0.695 0.561 0.621 0.034 0.439
Beta(10,10,0.3,0.7) 0.690 0.560 0.620 0.034 0.442
Beta(1,1,0,1) 0.698 0.562 0.622 0.033 0.438
Beta(2,16,0,1) 0.699 0.562 0.623 0.033 0.438

Derivative (α = 0.75) 0.697 0.563 0.623 0.033 0.437
Derivative (α = 0.85) 0.697 0.561 0.622 0.033 0.439
Derivative (α = 0.95) 0.700 0.560 0.620 0.033 0.440

and fails to improve on the baseline. Unlike many of the other metrics inves-
tigated in the baseline performance, there is no tuning of the RAPr metrics
for spam ranking. If we combined RAPr and TrustRank, for example, it may
be possible to achieve even better performance.
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summary

By incorporating information from multiple random surfers simultane-
ously, the RAPr model increases the �exibility of PageRank models consider-
ably. We present theoretical results showing that it generalizes the properties
of the PageRank vector. Whereas PageRank contains an oversight when ap-
plied to real-world surfer data, we show that web browsing logs contain the
information to compute the multi-surfer distribution for RAPr. �ese logs
show that users follow links with probability 0.375.
Next, we derive three algorithms to compute the expectation and standard

deviation for the RAPr setup. Two of these algorithms just use PageRank
solutions at multiple values of α. We present both theoretical and empirical
error analysis for each algorithm. �us, computing these quantities is not a
problem.
Finally, our analysis of the expectation and standard deviation shows that

the expectation is closely aligned to PageRank, but the standard deviation
is not. �is holds both for web search networks and gene identi�cation
networks. �e RAPr statistics also improve a spam classi�cation task.



Every block of stone has a statue inside it
and it is the task of the sculptor to

discover it.
—Michelangelo

5 AN INNER-OUTER ITERAT ION FOR

PAGERANK

In the previous two chapters, we saw that computing both derivative of
PageRank and the statistics of the RAPrmodel involve only solving PageRank
problems. In this chapter, we develop an inner-outer iteration that solves
PageRank as a series of PageRank problems with smaller values of α.
Recall that PageRank as a linear system is the vector x that satis�es

(I − αP)x = (1 − α)v, (5.1)

or equivalently
x = αPx + (1 − α)v. (5.2)

In the Richardson iteration for PageRank, we convert this equation into a
stationary iterative method by taking the previous le�-hand side as the new
iterate, that is

x(k+1) = αPx(k) + (1 − α)v. (5.3)

Well known spectral and convergence properties of the PageRank problem
show that it is easier1 when α is closer to 0. Inspired by these results, we 1 Easier in the sense that the condition

number is smaller and the scheme in
(5.3) converges linearly with rate α.

consider a stationary iteration given by the splitting

(I − βP)x(k+1) = (α − β)Px(k) + (1 − α)v
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡f(k)

(5.4)

with 0 < β < α. �is expression de�nes the outer iteration in our new scheme
and corresponds to a PageRank problem with β instead of α and a di�erent
right-hand side.2 2 Formally, it is the PageRank problem

(I − βP)x(k+1) = (1 − β)z for z =
α−β
1−β Px

(k) + 1−α
1−β v. Because e

Tz = 1 and
v i ≥ 0, it is a genuine PageRank problem.

To apply these iterations in practice, we use a Richardson iteration to solve
the inner system

(I − βP)x(k+1) = f(k) (5.5)

yielding the inner iteration,

y(0) ≡ x(k); y( j+1) = βPy( j) + f(k) j = 1, . . . , ℓ; x(k+1) ≡ y(ℓ) . (5.6)

We discuss how to terminate this iteration below, and show that keeping ℓ
small will accelerate convergence.
�e above scheme was initially proposed by Gray et al. [2007] in a tech-

nical report. Subsequently, we have developed a new convergence analysis
showing that the iteration always converges, a large-scale multi-core parallel
implementation, a Gauss-Seidel variant, and an “inner-outer” preconditioner

95
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for PageRank with the BiCG-STAB solver [van der Vorst, 1992]. �ese addi-
tions are reported in Gleich et al. [to appear].
�e goal of our inner-outer idea is a low-memory,matrix-free,3 and para- 3 A matrix-free method relies only on the

availability of a matrix-vector product,
and not the matrix itself.

meter-free scheme to compute PageRank faster than the power method. Al-
though we introduce the parameter β in the de�nition of the method, we
show analytically and experimentally that β = 0.5 is an e�ective choice. �e
result is a PageRank scheme that takes merely three vectors of memory and
consistently outperforms the power method by a substantial margin in time
and matrix-vector products (see table 5.2, �gure 1.4). Because the method is
matrix-free, it is easy to parallelize, provided a parallel matrix-vector product
exists. We present experiments demonstrating the parallel performance of
the inner-outer algorithm onmatrices with over 100,000,000 rows and 3.7 bil-
lion non-zeros. Similar ideas give both an inner-outer Gauss-Seidel method
and a matrix-free preconditioner for the BiCG-STAB iteration. �ese contri-
butions are discussed below, as well as a non-web application of PageRank
with the IsoRank algorithm [Singh et al., 2007].

5.1 existing pagerank algorithms

Improving the computation of PageRank is not a new problem, though
we are not aware of any other PageRank speci�c method that simultane-
ously satis�es all three criteria of our inner-outer algorithm: low-memory,
matrix-free, and parameter-free. Our algorithm converges much faster than
the power method, which is the only previous algorithm that has these three
properties. We brie�y summarize the existing literature. When looking at
the linear system from (5.1), Arasu et al. [2002] investigated the Gauss-Seidel
method, which is not matrix-free. Later, McSherry [2005] suggested a modi-
�cation of the Richardson iteration that exploits matrix structure. Some of
the �rst improvements on the eigenvector problem were acceleration and
extrapolation techniques [Kamvar et al., 2003, 2004], which are sensitive to
the choice of parameter and o�en take considerable memory—approximately
6 vectors. Langville and Meyer [2006b] describe a method to update the sta-
tionary distribution of a Markov chain that depends on having the matrix
structure in-hand. Both Gleich et al. [2004] and Del Corso et al. [2007] look
at Krylov subspace methods for the linear system. While these methods can
be matrix-free, both studies �nd preconditioners are o�en required for con-
vergence. Golub and Greif [2006] propose a specialized Arnoldi method that
is matrix-free, but not low-memory.
Another class of methods exploit properties of the graph structure to

reduce the work involved in the computation [Eiron et al., 2004; Ipsen and
Selee, 2007; Del Corso et al., 2005; Boldi and Vigna, 2004, 2005; Karande
et al., 2009; Lin et al., 2009]. Because our method is matrix-free, for some of
thesemethods we can integrate our inner-outer schemewith them to increase
their e�ectiveness even further.
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5.2 algorithms

We always start our algorithms with x(0) = v, although other starting
conditions are possible. To terminate the iterations, we use the 1-norm of
the residuals of the outer system (5.1) and the inner system (5.5) as stopping
criteria. For the outer iteration (5.4) we require4 4�is quantity is both the residual of

the linear system for PageRank and the
change a�er a single power iteration.∥(1 − α)v − (I − αP)x(k+1)∥ < τ,

and for the inner iteration (5.6) we require

∥f − (I − βP)y( j+1)∥ < η.

�e resulting inner-outer iteration, based on the iterative formulas given in
(5.4) and (5.6), is presented in algorithm 2. Lines 1 and 2 of algorithm 2 ini-
tialize x = v and y = Px. For the purpose of illustrating how the computation
can be e�ciently done, the roles of x and y are altered from the notation used
in the text. Later, we show that β = 0.5 and η = 10−2 are e�ective choices of
these parameters for all graphs (assuming α ≥ 0.85).

Algorithm 2 – The basic inner-outer iteration.

Input: P, v, α, τ, (β = 0.5, η = 10−2)
Output: x
1: x ← v
2: y ← Px
3: while ∥αy + (1 − α)v − x∥ ≥ τ
4: f ← (α − β)y + (1 − α)v
5: repeat
6: x ← f + βy
7: y ← Px
8: until ∥f + βy − x∥ < η
9: end while
10: x ← αy + (1 − α)v

�e damping parameter α is assumed to be given as part of the model, and
τ is a value typically provided by the user.�us, the challenge is to determine
values of β and η that will accelerate the computation.

5.3 algorithm discussion

Algorithm 2 has a number of properties worth noting. Consider the al-
gorithm with β = 0. �e inner loop will always exit a�er a single iteration
because x is set to f . In this case, f = αy + (1 − α)v, but y = Px from the
previous iteration. �us, the inner-outer iteration with β = 0 is just the power
method!
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Now, consider the case β = α. We intuitively expect that this method
reproduces the power method because the inner iteration with β = α is
solved with a Richardson iteration, which is the same as the power method.5 5 Check section 2.4.2 for the formal

equivalence.Here f = (1 − α)v for every inner iteration and thus every inner iteration
corresponds to a step of the power method. When ∥f − βy − x∥ < η, we will
do only one inner iteration for each outer iteration, but again, each step is
just a step of the power method.
�us, we expect no acceleration with β = 0 or β = α.
We make one �nal observation about the basic inner-outer method. For

each outer iteration, the �rst inner iteration is always a step of the power
method. We use this fact repeatedly in the remainder of the chapter.

5.4 convergence

In the previous section, we showed that the algorithm corresponds to the
power method when β = 0 or β = α. Convergence of the power method
implies that the inner-outer iteration also converges with these parameters.
In this section, we analyze the convergence for general 0 < β < α.
We present the convergence analysis in two parts. First, we show that the

outer iteration is a convergent scheme for the PageRank problem. �en we
show that the outer scheme with an inner Richardson scheme will always
converge on the PageRank problem.

Lemma 15. Given 0 < α < 1, if the inner iterations are solved exactly, the
scheme converges for any 0 < β < α. Furthermore,

∥x(k+1) − x∥ ≤
α − β
1 − β

∥x(k) − x∥ ,

where α−β
1−β indicates that the closer β is to α, the faster the outer iterations

converge.

Proof. Let x be the PageRank vector and x(k) be the current iterate. �e next
iterate is

x(k+1) = (I − βP)−1((α − β)Px(k) + (1 − α)v), (5.7)

and the solution is

x = (I − βP)−1((α − β)Px + (1 − α)v). (5.8)

Subtracting these two expressions gives

x − x(k+1) = (α − β)(I − βP)−1P(x − x(k)). (5.9)

�e result now follows from applying 1-norms to both sides and using

∥(I − βP)−1P∥ ≤ 1
1 − β

, (5.10)

which comes from ∥(I − βP)−1P∥ ≤ ∥∑
∞
ℓ=0(βP)ℓ∥ ≤ 1

1−β .
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�e following argument summarizes the convergence theory for inexact
inner iterations. First, we provide an expression for the error in the linear
system during the inner iterations. �en we derive a monotonic bound on
the error during the outer iterations.
Let

g( j) = y( j) − x

be the error a�er the jth inner iteration.

Lemma 16. In the inner-outer iteration with 0 < α < 1 and β < α, when the
inner iterations are solved using a Richardson iteration, a�er j inner iterations,

g( j) = y( j) − x =
⎛

⎝
αβ j−1P j

+ (
α − β

β
)

j−1

∑
ℓ=1

βℓPℓ
⎞

⎠
g(0) j ≥ 1,

where g(0) = y(0) − x = x(k) − x is the error a�er the kth outer iteration.

Proof. We proceed by induction. In the base case,

g(1) = αPg(0)

follows because one inner iteration is identical to an iteration of the power
method.
Consider g( j+1). First, expand

g( j+1) = βPy( j) + (α − β)Px(k) + (1 − α)v − x

= βPg( j) + (α − β)Pg(0) .

Now apply the induction hypothesis and simplify:

g( j+1) = βP
⎛

⎝
(αβ j−1P j

+
α − β

β
)

j−1

∑
ℓ=1

βℓPℓ
⎞

⎠
g(0) + (α − β)Pg(0)

=
⎛

⎝
αβ jP j+1

+ (α − β)P + (α − β)
j−1

∑
ℓ=1

βℓPℓ+1
⎞

⎠
g(0)

=
⎛

⎝
αβ jP j+1

+ (
α − β

β
)

j

∑
ℓ=1

βℓPℓ
⎞

⎠
g(0) .

We know that ∥g(1)∥ ≤ α ∥g(0)∥ because it’s just a step of the power
method, and the above equation says the same thing. �e next iterate satis�es

∥g(2)∥ = ∥αβP2g(0) + (α − β)Pg(0)∥ (5.11)

≤ αβ ∥g(0)∥ + (α − β) ∥g(0)∥ (5.12)

= ((α − 1)β + α) ∥g(0)∥ (5.13)

≤ α ∥g(0)∥ , (5.14)

and so we monotonically decrease a bound on the error for the �rst two
iterations.
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For any iterate, we have

∥g( j)∥ =
XXXXXXXXXXX

αβ j−1P jg(0) + (
α − β

β
)

j−1

∑
ℓ=1

βℓPℓg(0)
XXXXXXXXXXX

(5.15)

≤ ∥αβ j−1P jg(0)∥ +
j−1

∑
ℓ=1

∥
α − β

β
βℓPℓg(0)∥ (5.16)

≤ αβ j−1 ∥g(0)∥ +
j−1

∑
ℓ=1

α − β
β

βℓ ∥g(0)∥ (5.17)

=
⎛

⎝
αβ j−1

+ (
α − β

β
)

j−1

∑
ℓ=1

βℓ
⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡κ j

∥g(0)∥ . (5.18)

We can rearrange κ j to a more meaningful form using

j−1

∑
ℓ=1

βℓ = β 1 − β j−1

1 − β
, (5.19)

which, a�er substitution into (5.18), yields

κ j = αβ j−1
+

(α − β)(1 − β j−1)

1 − β
(5.20)

=
(α − β) + (1 − α)β j

1 − β
. (5.21)

�is bound is monotonically converging to α−β
1−β and we further have

κ j ≤ α for j ≥ 1. (5.22)

From this analysis, we cannot conclude that the error in the inner iteration
is monotonically decreasing. It is, however, bounded by a monotonically
decreasing function. At every outer iteration then, the inner Richardson
iteration decreases the error by at least α. �us, our formulation of the inner-
outer algorithm will always converge regardless of the tolerance η, so long as
we always do at least one inner-iteration. A mathematically precise statement
of this argument follows.

�eorem 17. Given 0 < α < 1 and 0 < β < α, if an inner-iteration is solved
with j steps of a Richardson method then

∥x(k+1) − x∥ ≤ κ j ∥x(k) − x∥ ,

with κ j =
(α−β)+(1−α)β j

1−β . Furthermore, if j ≥ 1 for all inner iterations, then
κ j ≤ α and the inner-outer iteration always converges.

�is theorem places no restrictions on η and only requires that we perform
at least one step of the inner iteration for each outer iteration. Algorithm 2
guarantees this property because the stopping condition is not checked until
a�er the �rst iteration. �us, that algorithm always converges on the Page-
Rank problem.
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5.5 extensions

In this section, we derive a few improvements to algorithm 2.

5.5.1 An inner-outer accelerated power method

A�er a few outer iterations, the inner iterations of algorithm 2 converge
rapidly. As previously mentioned, a single inner iteration is equivalent to
a single step of the power method. �us we can incorporate the following
improvement to the power method: apply the inner-outer scheme, and once
the inner iterations start converging quickly, switch back to the powermethod.
A�er the switch, we eliminate the need to check the stopping criterion of
the inner iteration and save touching one vector of memory. �e change to
algorithm 2 is simple. Add a line between 8-9 to check if the inner-iteration
converged in less than im iterations, and if so, switch to the power method
using the current iterate as the starting vector.

�e modi�ed scheme is presented in algorithm 3. �e value of im is small
and determines the point, in terms of inner iteration count, where we switch
to the power method. If im = 1 then switching to the power method saves the
need to compute f and check the stopping criterion in line 8 of algorithm 2.
�is optimization saves touching an extra vector in memory and a 1-norm
computation. In our numerical experiments we adopt this version of the
accelerated algorithm, i.e. we take im = 1. �e “power(αy + (1− α)v)” clause
in line 9 means apply the power method with αy+(1−α)v as an initial guess,
until convergence.

Algorithm 3 – Inner-Outer power iterations.

Input: P, α, β, τ, η, v, im
Output: x
1: x ← v
2: y ← Px
3: while ∥αy + (1 − α)v − x∥1 ≥ τ
4: f ← (α − β)y + (1 − α)v
5: for i = 1, . . . repeat
6: x ← f + βy
7: y ← Px
8: until ∥f + βy − x∥1 < η
9: if i ≤ im , x=power(αy + (1 − α)v); return
10: end while
11: x ← αy + (1 − α)v

1 function [x,flag,reshist]=inoutpr(P,a,v,tol,maxit)
2 b=0.5*(a≥0.6); itol=1e-2; n=size(P,1);
3 x=zeros(n,1)+v; y=P’*x;y=y+(sum(x)-sum(y))*v; nm=1; f=a*y;f=f+(1-a)*v;f=f-x;
4 dlta=norm(f,1);x=x-b*y;reshist=[dlta;zeros(maxit-1,1)];
5 while nm<maxit && dlta>tol
6 f=(a-b)*y; f=f+(1-a)*v; x=x-f; % f=(a-b)*y+vt;x=x-b*y-f;
7 d = norm(x,1); ii=0;
8 while nm+ii<maxit && d>itol,
9 x=b*y; x=x+f; y=P’*x; y=y+(sum(x)-sum(y))*v;ii=ii+1; % x=b*y+f;y=Pd’*x
10 x=x-b*y; x=x-f; d=norm(x,1); end % x=x-b*y-f;
11 if ii<2, x=a*y; x=x+(1-a)*v; y=y-x; break; end % no mult => no hist updte
12 x=x+f; f=a*y; f=f+(1-a)*v; f=f-x; f=f-b*y; dlta=norm(f,1); % ||a*y+(1-a)*v-x||_1
13 reshist(nm+1:nm+ii)=dlta; nm=nm+ii; end
14 while nm<maxit && dlta>tol % run the power method until convergence
15 y=x./norm(x,1); x=a*(P’*y); w=1-sum(x); x=x+w*v;
16 y=y-x; dlta=norm(y,1); nm=nm+1; reshist(nm)=dlta; end
17 x=x./norm(x,1); flag=dlta>tol; reshist=reshist(1:nm);

Program 8 – The inner-outer iteration for
PageRank.�e input to the inner-outer
code is a = α, v = v, P = PT , tol = ε,
and maxit, an upper bound on the
number of iterations. Our PageRank
solvers are quite compact but work
with PT for performance reasons. On
Matlab R2007a and R2007b, the code
uses only three vectors of storage.
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When im = 1, then algorithm 3 and algorithm 2 produce exactly the same
iterates. Once the inner iteration of algorithm 2 converges in a single iteration,
then it will always converge in a single iteration. We hope we aren’t belaboring
the point by reiterating that a single iteration of the inner iteration is precisely
the power method.

5.5.2 Inner-Outer Gauss-Seidel iterations

�e performance of Gauss-Seidel applied to the PageRank linear system
(I − αP)x = (1 − α)v is considered excellent, given its modest memory
requirements. It o�en converges in roughly half the number of powermethod
iterations. However, from a practical point of view, two pitfalls of the method
are that it requires the matrix P by rows (i.e. the graph by in-edges) and it
does not parallelize well.
We can accelerate Gauss-Seidel using inner-outer iterations, as follows.

Our Gauss-Seidel codes implement the dangling correction to the matrix
P̄ implicitly and match those in the law toolkit [Vigna et al., 2008]. To
convert the inner-outer method to use Gauss-Seidel, we replace the inner
Richardson iteration (5.6) with a Gauss-Seidel iteration. In our pseudo-
code, presented in algorithm 4, the gssweep(x,A, b) function implements
x(k+1) = M−1

GS(NGSx(k) + b) in-place for a Gauss-Seidel splitting of the ma-
trix A.6 �e gauss-seidel-pr function in line 7 of the algorithm refers to 6�is function is explicitly described in

section 2.4.3.the standard “Gauss-Seidel for PageRank” scheme described in section 2.4.3
starting with the current x. �is algorithm only requires two vectors of stor-
age because x is always updated in-place. Details on the performance of this
algorithm are provided in section 5.6.

Algorithm 4 – The inner-outer/Gauss-Seidel iteration.

Input: P, α, β, τ, η, v
Output: x
1: x ← v
2: y ← Px
3: while ∥αy + (1 − α)v − x∥1 ≥ τ
4: f ← (α − β)y + (1 − α)v
5: for i = 1, 2, . . .
6: x, δ ← gssweep(x, I − βP, f) {δ = ∥x(i+1) − x(i)∥1}
7: until δ < η
8: if i=1, gauss-seidel-pr(x, I − αP, (1 − α)v); break
9: y ← Px
10: end repeat
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5.5.3 Preconditioning for non-stationary schemes

�us far we have examined the inner-outer algorithm as a stationary itera-
tion. In this section we switch our viewpoint and examine it as a precondi-
tioner for a non-stationary iteration. As such, we will be mainly interested in
how well the eigenvalues of the preconditioned matrix are clustered.
Consider an approximation of (I − βP̄)−1 as a preconditioner for the

PageRank linear system (I − αP̄). Gleich et al. [2004] and Del Corso et al.
[2007] examined the behavior of Krylov subspace methods on the system

(I − αP̄)y = (1 − α)v, (5.23)

and concluded that, as expected in general, preconditioning is essential for the
linear system formulation of the PageRank problem. �eir preconditioners
were incomplete factorizations or factorizations of diagonal blocks of the
matrix, both of which modify the matrix data structure.
System (5.23) is di�erent from system (5.1) because we use P̄ instead of P.

It corresponds to using PseudoRank instead of PageRank, but the solutions
of the two systems are proportional: x = y/∥y∥1.

7 7 See section 2.2.1 for the de�nition
and equivalence between PseudoRank
and PageRank. Langville and Meyer
[2006a, �eorem 7.2.1] also include a
proof. �e gist is that P = P̄+ vdT and so
(I − αP)x = (I − αP̄)x + γv = (1 − α)v.
We can move γv to the right-hand side
and compute y with an unknown scale.

We switch to the alternate formulation with P̄ for two primary reasons: it
converged more o�en in our experience (we have no insight into why this
occurs); and the behavior of Krylov methods has been empirically studied
more o�en on this formulation of the system.
For β near α, the preconditioned system is as di�cult to solve as the

original linear system. We thus consider a Neumann series approximation,
which is practically equivalent to a Richardson approach as in the basic inner-
outer iteration:

(I − βP̄)−1 ≈ I + βP̄ + (βP̄)2 +⋯ + (βP̄)m .

Since β < 1 and ∥P̄∥1 ≤ 1, this approximation converges as m → ∞, and it
gives rise to an implementation that only uses matrix-vector multiplies with
P̄ and avoids costly (or even impossible) modi�cation of the matrix structure.
Details on the performance of this approach are provided in section 5.6.
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5.6 numerical results

Using the data enumerated in table 2.2, we evaluated these implementa-
tions in a wide range of experimental situations. �e initial guess and telepor-
tation distribution for every method is the uniform distribution, x(0) = v =
(1/n)e, where e is a vector of all ones. We use this speci�c choice because it
is commonly used. When we state a speedup, we use relative percentage gain

vr − vt
vr

⋅ 100% , (5.24)

where vr is a reference performance and vt is a test performance. �e refer-
ence performance is either the power method or the Gauss-Seidel method.
All solution vectors satisfy the residual tolerance

∥αPx(k) + (1 − α)v − x(k)∥ < τ,

where τ is speci�ed in the experiment description. �us we are able to com-
pare all methods directly in terms of total work and time. Parallel, large-scale
(arabic-2005, sk-2005, and uk-2007), and C++ tests were run on an 8-core
(4 dual-core chips) 2.8 GHz Opteron 8220 computer with 128 GB of RAM.
Matlab mex tests were run on a 4-core (2 dual-core chips) 3.0 GHz Intel
Xeon 5160 computer with 16 GB of RAM.
Our codes are implemented in Matlab and C++. We implement both

single-core and multi-core algorithms in C++ using the BVGraph data struc-
ture for compressed web graphs [Boldi and Vigna, 2005].

5.6.1 Inner-Outer parameters

We �rst show the behavior of the inner-outer method for a range of
graphs and parameters in �gure 5.1. For β between 0 and 0.85 and η =

10−5 , 10−4 , 10−3 , 10−2 , 10−1, we plot the number of matrix-vector multiplica-
tions (equivalent to the number of iterations) until the inner-outer iteration
converged. First, note that all instances converged and thus there is no numer-
ical violation of the convergence theory for inner-outer iteration (theorem 17).
Next, when α = 0.85, the inner-outer iteration with β = 0.5 and η = 10−2 uses
fewer multiplications (than the power method) on the in-2004 graph, but not
on the www graph. When α = 0.99, with these same β and η parameters,
the inner-outer iteration uses roughly 30% fewer multiplications. �us, the
plots demonstrate that β = 0.5 and η = 10−2 are e�ective choices. Based on
these same plots, picking η = 10−1 and β = 0.5 also seems a good choice. �e
results from in-2004 with α = 0.99 show that using η = 10−1 may be sensitive
to the value of β, whereas using η = 10−2 reduces this sensitivity for a slight
decrease in performance on the other graphs. Because our goal is robustness,
we prefer the latter.
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Figure 5.1 – Performance of the inner-outer iteration with varied β and η.Wemeasure perfor-
mance with matrix-vector products in this case. For the www and in-2004 graphs, we �x β and
vary η in the le� �gures, and we �x η and vary β in the right �gures. �e top rows use α = 0.85
and the bottom row uses α = 0.99. �is plot suggests that β = 0.5 and η = 10−2 is a good
choice. �e only graph that the inner-outer scheme does not accelerate with these parameters is
the www graph with α = 0.85.
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In the next investigation, we show the convergence of the iterates for the
wb-edu graph in �gure 5.2. For both values of α shown in the plots (α = 0.85
and α = 0.99), the inner-outer iteration uses fewer multiplications. �e
advantage is derived from accelerated convergence in all of the iterations.
Recall that the inner-outer iteration switches back to running iterations of the
power method a�er the inner-outer iterations converge instantly. For these
cases, that occurred a�er roughly 10 and 20 outer iterations, respectively. �us,
this observation indicates that the convergence rate of the power method
changes when used a�er the inner-outer iteration. We return to this point in
section 5.6.6.
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Figure 5.2 – Performance of the PageRank
algorithm. �e inner-outer method
clearly outperforms the power method
on wb-edu with α = 0.85 on the le� and
α = 0.99 on the right. �e small inner
�gure shows the convergence in the �rst
few iterations.

Table 5.1 shows that the inner iteration counts per outer iteration decrease
monotonically down to a single iteration quite quickly. From the table we can
see that it takes 24 inner iterations overall (within 9 outer iterations) until
the inner iterates start converging immediately, at which point we switch to
the power method.

inner iterations for outer iteration
graph 1 2 3 4 5 6 7 8 9 10

wb-edu 4 3 3 3 2 2 2 2 2 1
eu-2005 4 4 3 3 2 2 2 2 2 1

Table 5.1 – Inner iteration counts. Shown
are the number of inner iterations for
each outer iteration when α = 0.99,
β = 0.5, and η = 10−2 . Total iteration
counts and CPU times for this example
can be found in table 5.2.

Finally, we evaluate work and time for the inner-outer iteration on many
graphs in table 5.2. �e inner-outer scheme with β = 0.5 and η = 10−2 is
almost always faster in these experiments. From thewall-clock times reported,
we can see that there is not any signi�cant overhead. For loose outer tolerances
(10−3), the inner-outer iteration uses 45% fewer iterations than the power
method and for tight outer tolerances (10−7), it almost 30% fewer iterations.
�e results are consistently faster and involve no parameter search.
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Table 5.2 – Performance of the inner-outer iteration on various graphs. Total number of matrix-
vector products and wall-clock time required for convergence to three di�erent outer toler-
ances τ, and the corresponding relative gains de�ned by (5.24). �e parameters used here are
α = 0.99, β = 0.5, η = 10−2 . For the �rst �ve graphs we used the Matlab mex codes, and for
the �nal three large graphs we used the C++ codes where the graph is stored by out-edges and
the times refer to the performance of an 8-core parallel code.

tol. graph work (mults.) time (secs.)

power in/out gain power in/out gain

10−3 ubc-cs-2006 226 141 37.6% 1.9 1.2 35.2%
ubc 242 141 41.7% 13.6 8.3 38.4%
in-2004 232 129 44.4% 51.1 30.4 40.5%
eu-2005 149 150 -0.7% 26.9 28.3 -5.3%
wb-edu 221 130 41.2% 291.2 184.6 36.6%

arabic-2005 213 139 34.7% 779.2 502.5 35.5%
sk-2005 156 144 7.7% 1718.2 1595.9 7.1%
uk-2007 145 125 13.8% 2802.0 2359.3 15.8%

10−5 ubc-cs-2006 574 432 24.7% 4.7 3.6 22.9%
ubc 676 484 28.4% 37.7 27.8 26.2%
in-2004 657 428 34.9% 144.3 97.5 32.4%
eu-2005 499 476 4.6% 89.3 87.4 2.1%
wb-edu 647 417 35.5% 850.6 572.0 32.8%

arabic-2005 638 466 27.0% 2333.5 1670.0 28.4%
sk-2005 523 460 12.0% 5729.0 5077.1 11.4%
uk-2007 531 463 12.8% 10225.8 8661.9 15.3%

10−7 ubc-cs-2006 986 815 17.3% 8.0 6.8 15.4%
ubc 1121 856 23.6% 62.5 49.0 21.6%
in-2004 1108 795 28.2% 243.1 179.8 26.0%
eu-2005 896 814 9.2% 159.9 148.6 7.1%
wb-edu 1096 777 29.1% 1442.9 1059.0 26.6%

arabic-2005 1083 843 22.2% 3958.8 3012.9 23.9%
sk-2005 951 828 12.9% 10393.3 9122.9 12.2%
uk-2007 964 857 11.1% 18559.2 16016.7 13.7%
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5.6.2 Inner-Outer Gauss-Seidel

We present our comparison for the Gauss-Seidel method in table 5.3.
Rather thanmatrix-vectormultiplications, the results aremeasured in sweeps
through the matrix. �e work for a single sweep is roughly equivalent to a
single matrix-vector multiplication. For α = 0.99, the inner-outer iteration
only accelerates two of our smallest test graphs. Increasing α to 0.999 and
using a strict τ shows that the inner-outer method also accelerates Gauss-
Seidel-based codes.
We have not invested e�ort in optimizing the scheme in this case; our

experiments are only intended to show that the inner-outer idea is promising
in combination with other high-performance PageRank techniques. We
believe that an analysis of the sort that we have performed for the Richardson
iteration in the previous sections may point out a choice of parameters that
could further improve convergence properties for the inner-outer scheme
combined with Gauss-Seidel.

Table 5.3 – Performance of the Gauss-Seidel inner-outer iteration. Total number of Gauss-Seidel
sweep iterations (equivalent in work to one matrix-vector multiply) and wall-clock time
required for convergence, and the corresponding relative gains de�ned by (5.24). �e param-
eters used here are β = 0.5 and η = 10−2 and we used Matlab mex codes. �e convergence
tolerance was τ = 10−7 .

α graph work (sweeps.) time (secs.)

gs in/out gain gs in/out gain

0.99 ubc-cs-2006 562 492 12.5% 2.9 2.7 7.0%
ubc 566 503 11.1% 19.5 18.0 7.7%
in-2004 473 469 0.8% 65.9 67.3 -2.2%
eu-2005 439 462 -5.2% 56.6 60.4 -6.6%
wb-edu 450 464 -3.1% 357.9 380.0 -6.2%

0.999 ubc-cs-2006 4430 3576 19.3% 19.8 16.8 14.9%
ubc 4597 3646 20.7% 141.6 113.8 19.7%
in-2004 3668 3147 14.2% 451.1 391.0 13.3%
eu-2005 3197 3159 1.2% 354.8 352.4 0.7%
wb-edu 3571 3139 12.1% 2532.5 2249.0 11.2%

5.6.3 Parallel speedup

Parallel PageRank algorithms take many forms [Gleich et al., 2004; Kollias
et al., 2006; McSherry, 2005; Parreira et al., 2006]. Our implementation sub-
stitutes OpenMP shared memory operations for the linear algebra operations
norm, axpy, and the matrix-vector multiply. We implemented two versions
of the parallel code to manipulate the graph stored by out-edges (the natural
order) or by in-edges (the Gauss-Seidel order).
Boldi and Vigna’s bvgraph structure [Boldi and Vigna, 2004] e�ciently

iterates over the edges emanating from a vertex for a �xed ordering of the
nodes. �ese could be either out- or in-edges, depending on how the graph is
stored. To implement the parallel matrix-vector multiply for p processors, we
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make one pass through the �le and store p − 1 locations in the structure that
roughly divide the edges of the graph evenly between p processors. When
the graph is stored by out-edges, the serial matrix-vector operation is

xi=x[i]/degree(i); for (j in edges of i) { y[j]+=xi; }

which writes to arbitrary and possibly overlapping locations in memory. In
the OpenMP version, the update of y becomes the atomic operation

xi=x[i]/degree(i); for (j in edges of i) { atomic(y[j]+=xi); }.

When the graph is stored by in-edges, the original serial update works without
modi�cation as the processors never write to the same location in the vector
y.
We evaluated a few variants of the matrix-vector multiplication when the

graph is stored by out-edges and found the atomic operation variant has
similar performance to storing a separate y vector for each processor and
aggregating the vectors at the end of the operation. Variants that replaced
separate y vectors with separate hash tables were slower in our tests.
Figure 5.3 demonstrates the scalability of the codes when the graph is

stored by out- and in-edges. In the �gure, we distinguish between relative
and true speedup. Relative speedup is the time on p processors compared
with the time on 1 processor for the same algorithm. True speedup is the time
on p processors compared with the best time on 1 processor. �e higher rela-
tive speedup of methods based on the in-edges of the graph (6-7x) compared
to out-edge methods (5-6x) demonstrates that in-edge algorithms are more
scalable. In light of the atomic operation in out-edge methods, this paral-
lelization di�erence is not surprising. No consistent di�erences appear when
comparing the relative speedup of the inner-outer method and the power
method. Consequently, we assume that these methods parallelize similarly
and compare true speedup.
For an out-edge graph, the true speedup and relative speedup are similar.

In contrast, the relative speedup for an in-edge graph is much higher than the
true speedup. Gauss-Seidel causes this e�ect, since it is the fastest method on
an in-edge graph and so the true speedup of most methods starts at around
0.5, a 50% slowdown. With one exception, the inner-outer methods (dashed
lines) all demonstrate a higher true speedup than the power method.
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Figure 5.3 – Parallel performance of the
inner-outer iteration. Parallel scalability
for the three large graphs arabic-2005,
sk-2005, and uk-2007 with the matrix
stored by out-edges (le�) and in-edges
(right). Light gray or teal lines are the
relative speedup compared with the
same algorithm on one processor. Black
lines are the true speedup compared
with the best single processor code. At
the right of each sub-�gure is a small
enlargement of the 8 processor results.
�e parameters were α = 0.99, β = 0.5,
and η = 10−2 . In this plot, speedup is the
ratio vr/vt .
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5.6.4 Preconditioning

We evaluate (I−βP̄)−1 or its Neumann series approximation as a precondi-
tioner, see section 5.5.3, by examining eigenvalue clustering andmatrix-vector
multiplies.
To understand the preconditioner’s e�ect on the convergence of Krylov

subspace methods, we look at clustering of eigenvalues of the matrix (I −
βP̄)−1(I − αP̄). Let λ i , i = 1, . . . , n be the eigenvalues of P̄. If we solve the
preconditioned iteration de�ned by (I − βP̄)−1 exactly, then the eigenval-
ues of the matrix P̄ undergo a Möbius transform to the eigenvalues of the
preconditioned system,

p(λ) = 1 − αλ
1 − βλ

. (5.25)

When we precondition with only a �nite number of terms, then the modi�ca-
tion of the eigenvalues is no longer a Möbius transform, but the polynomial

pm(λ) = (1 − αλ)(1 + βλ +⋯ + (βλ)m). (5.26)

Of course as m →∞, we recover the exact preconditioned system.
To illustrate the spectral properties of the preconditioned system, �gure 5.4

shows the behavior of the preconditioned eigenvalues of two test matrices,
for a variety of choices of β and m. In these examples, our preconditioner
concentrates the eigenvalues around λ = 1. Solving the system exactly appears
unnecessary as we see a strong concentration with evenm = 2 orm = 4 terms
of the Neumann series, for the values of β we tested.
Gleich et al. [2004] and [Del Corso et al., 2007] explored the performance

of preconditioned BiCG-STAB on the PageRank system. We have modi�ed
theMatlab implementation of BiCG-STAB to use the 1-norm of the residual
as the stopping criterion.
To compare against the power-method and Gauss-Seidel, the normalized

solution vectors x = y/∥y∥1 always satisfy

∥αPx(k) + (1 − α)v − x(k)∥ ≤ τ.

�is criterion is equivalent to taking one step of the power method and check-
ing the di�erence in iterations. Consequently, all the solution vectors tested
are at least as accurate as the vectors computed in the power method with
tolerance τ. In practice, we did not test the previous solution criterion at
every iteration and instead modi�ed the Matlab BiCG-STAB function to
terminate the computation when the 1-norm of the residual was less than
(
√
1 − α)τ. Empirically, using (

√
1 − α)τ as the tolerance for BiCG-STAB

yielded y’s that satis�ed our actual tolerance criterion without a full rewrite
of the residual computations.
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Figure 5.4 – Inner-Outer preconditioner spectrum. For the matrices harvard500 and wb-
cs.stanford with α = 0.99, this �gure plots the eigenvalues of the preconditioned matrix
(I− βP̄)−1(I−αP̄) and approximations based on Neumann series. Each dashed circle encloses
a circle of radius 1 in the complex plane centered at λ = 1, and hence the scale is the same in
each small �gure. Gray lines are contours of the function pm(λ) de�ned in (5.26), which is the
identity matrix for m = 0 (i.e. no preconditioning) and the exact inverse when m = ∞. �e
dots are the eigenvalues of the preconditioned system, pm(λ i). Interlacing contours of pm(λ)
demonstrate that this function is not 1-1 for λ ∶ ∣1 − λ∣ ≤ 1.
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Table 5.4 – Inner-Outer preconditioned BiCG-STAB performance.Matrix-vector products required
for BiCG-STAB on in-2004, including preconditioning and residual computations, to converge
on the system (I − αP̄) with preconditioner∑m

k=0(βP)k . A dash indicates the method made
progress but did not converge to a tolerance of (

√
1 − α)10−7 in the maximum number of

iterations required for the power method (100 for α = 0.85, ≈1500 for α = 0.99, ≈15000 for
α = 0.999), and an × indicates the method diverged or broke-down. When m = 0, there is no
preconditioning and the results are independent of β.

α
0.85 0.99 0.999

β β β
m 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85

0 102 102 102 102 × × × × × × × ×

2 128 88 76 76 1140 672 508 500 × 6276 3972 2772
4 186 120 84 78 1584 786 438 414 × 5178 2358 2112
7 — 207 108 72 2565 1053 621 441 × 9567 2709 1449
25 — — — 81 — — 1809 1026 — 20385 7911 2754

BiCG-STAB diverges or breaks down on in-2004 without precondition-
ing for α = 0.99, see table 5.4. �is matches observations by Del Corso
et al. [2007] that Krylov methods o�en have convergence di�culties. Adding
the preconditioner with m = 2 and β ≥ 0.5 avoids these break-down cases.
�e remainder of the table shows that preconditioning accelerates conver-
gence in many cases for “reasonable” parameter choices. Among the methods
discussed, BiCG-STAB with this preconditioner converges with the fewest
matrix-vector multiplications on the in-2004 graph with α = 0.99 and α =

0.999. However, the cost per iteration is higher.

5.6.5 Other applications

�e IsoRank algorithm [Singh et al., 2007] is a heuristic to solve the net-
work alignment problem. Given two graphs,A andB, the goal in the network
alignment problem is to �nd a match for each vertex of graph A in B and
vice-versa. �e resulting matching should maximize the number of cases
where i in A is mapped to j in B, i′ in A is mapped to j′ in B, and both of
the edges (i , i′) ∈ A and ( j, j′) ∈ B exist. �is objective alone is NP-hard.
O�en there are weights for possible matches, e.g. Vji for i in A and j in B,
that should bias the results towards these matchings, and hence the objective
also includes a term to maximize these weights.
Let P and Q be the uniform random-walk transition matrices forA and

B, respectively. Also, let the weights in V be normalized so that eTVe = 1
and Vi j ≥ 0. IsoRank uses the PageRank vector

x = α(P⊗Q)x + (1 − α)v,

where the teleportation vector v = vec(V) encodes the weights and α indi-
cates howmuch emphasis to place on matches using the weights information.
�us the IsoRank algorithm is a case when v is not uniform, and α has a more
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concrete meaning. For a protein matching problem, it is observed experimen-
tally in Singh et al. [2007] that values of α between 0.7 and 0.95 yield good
results.
We look at a case whenA is the 2-core of the undirected graph of subject

headings from the Library of Congress [Various, 2008] (abbreviated LCSH-2)
and B is the 3-core of the undirected Wikipedia category structure [Various,
2007] (abbreviated WC-3). We previously used these datasets in analyzing
the actual matches in a slightly di�erent setting [Bayati et al., 2009]. �e size
of these datasets is reported in table 5.5. For this application, the weights
come from a text-matching procedure on the labels of the two graphs.

dataset size non-zeros

LCSH-2 59,849 227,464
WC-3 70,509 403,960

Product Graph 4,219,893,141 91,886,357,440

Table 5.5 – IsoRank datasets.

In this experiment, we do not investigate all the issues involved in using
a heuristic to an NP-hard problem and focus on the performance of the
inner-outer algorithm in a non-Web ranking context. Without any parameter
optimization (i.e., using β = 0.5 and η = 10−2), the inner-outer scheme shows
a signi�cant performance advantage as demonstrated in table 5.6.

Inner-Outer 188 mat-vec 36.2 hours
Power 271 mat-vec 54.6 hours

Table 5.6 – Inner-Outer performance
for IsoRank.�e inner-outer iteration
(β = 0.5, η = 10−2) is also faster than the
power method on IsoRank with α = 0.95,
τ = 10−7 , and v sparse and non-uniform.
�e computations were done in pure
Matlab and the product graph is never
explicitly formed.
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5.6.6 Inner-Outer acceleration

We now compare our inner-outer method to the power method and at-
tempt to explain why it converges faster. On

G =

1

2

3

4

5

6

with α = 0.99, β = 0.5, and η = 10−2, the inner-outer iteration takes 112
matrix-vector products to converge to an outer tolerance of 10−8. In con-
trast, the power method takes 2,013 matrix-vector products—an incredible
di�erence!
Understanding this performance requires that we investigate where the

error occurs in the space of the eigenvalues of P.8 For this small graph,
8 Here, P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/6 1/2 0 0 0 0
1/6 0 0 1/3 0 0
1/6 1/2 0 1/3 0 0
1/6 0 1/2 0 0 0
1/6 0 1/2 1/3 0 1
1/6 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.the stochastic matrix P is diagonalizable with eigenvalues 1,−1, 0.83,−0.4 ±
0.28i , 0.14. In �gure 5.5 we plot the projected error for a few eigenmodes in
the solution, for each step of the power method and the inner-outer method.
�is �gure shows that the powermethod spendsmost of those 2,000 iterations
reducing the error in the eigenvector with eigenvalue −1. �e inner-outer
method dispatches with this eigenvector a�er 20 iterations and immediately
before the switch to using only the power method. �e remainder of the
inner-outer iterations are consumed reducing the error in the eigenvector
with eigenvalue 0.83, which is a much easier task.
In table 5.7 we illustrate the fact that convergence of the inner-outer itera-

tions does not seem to depend on the eigenvalues of P that are on the unit
circle, but rather on the magnitude of the largest non-dominant eigenvalue.
�is generalizes the results of the previous experiment. �e ratios in the
table are the change in iterates, not the error in the solution. �is makes
techniques based on these numbers amenable to computations. �e table
suggests a strategy to apply the inner-outer iterations dynamically. For the
two smallest graphs we have computed all the eigenvalues, and observe the
expected convergence based on λ until the round-o� error inherent in the
power iteration restores the component of error in the eigenmodes on the unit
circle. We could build an algorithm to watch for an increase in the ratio, or
watch for when the ratio gets su�ciently close to α, and then apply additional
inner-outer iteration pairs to reduce the magnitude of these eigenvalues.
�ese experiments motivate the following conjecture.

Conjecture 18. �e asymptotic convergence rate of the inner-outer iteration is
αλ2, where λ2 is the eigenvalue inside the unit circle with largest magnitude.

We o�er the following support for the conjecture. Consider an eigenvalue
of P on the unit circle: λ = e iθ . If the outer iterations are solved exactly, then
we reduce the error in the associated eigenvector by (α−β)λ

1−βλ . With β = 0.5,
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all eigenvalues di�erent from one achieve some reduction and the largest
reduction is for eigenvectors with eigenvalue −1. For the power method,
none of these eigenvalues is reduced by more than α. �us, the inner-outer
method does reduce the error associated with eigenvalues on the unit circle.
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Figure 5.5 – Inner-Outer error analysis for
a small graph.When α = 0.99, β = 0.5,
and η = 10−2 , the inner-outer iteration
takes 112 matrix-vector multiplies to
converge to an outer tolerance of 10−10
whereas the power method takes 2,013.
�e convergence of the power method
is limited by the error in the eigenvec-
tor with λ = −1, but the inner-outer
iteration quickly eliminates the error in
this component. �e lines in the middle
show where the inner-outer iteration
switched to the power method. (�e
graph is the same as �gure 4.2 and at
le�.)

Table 5.7 – Convergence rates with inner-outer iterations. Convergence ratios from various graphs
are єk+1/єk , where єk is the 1-norm change in x at the kth outer iteration of the inner-outer
method. �e algorithm switched to the power method a�er 10 iterations for all of these cases.
�e �rst eigenvalue o� the unit-circle for small is λ = 0.8257; for ubc-cs-2006 it is λ = 0.9998.
We observe that the convergence rate is approximately αλ.

α =0.85 α=0.99
Iteration

graph 10 50 10 50 100 500

small 0.7019 0.8472 0.8174 0.8174 0.8174 0.99
ubc-cs-2006 0.8220 0.8420 0.9595 0.9801 0.9814 0.9868
in-2004 0.7913 0.8354 0.9343 0.9736 0.9803 0.9872
arabic-2005 0.7936 0.8359 0.9395 0.9746 0.9817 0.9875
sk-2005 0.7932 0.8386 0.9356 0.9773 0.9820 0.9872
uk-2007 0.7925 0.8358 0.9344 0.9743 0.9814 0.9881
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summary

�e inner-outer iteration solves a PageRank problem via a series of Page-
Rank problemswith smaller values of α. Outer PageRank problems are solved
via an inner Richardson iteration. �e subsequent algorithm always con-
verges for PageRank (theorem 17). In addition, we combine the inner-outer
idea with the power method (section 5.5.1), the Gauss-Seidel method (sec-
tion 5.5.2), and the BiCG-STAB method (section 5.5.3). All of these ideas
reduce the number of matrix-vector products (or an equivalent work metric)
required to converge to a PageRank vector for α > 0.85. We also analyze
OpenMP shared memory parallelism and provide a conjecture about why
the inner-outer iteration is faster (conjecture 18).
As a �nal note, the inner-outer algorithm is low-memory, easy to im-

plement, and robust—it has become our PageRank solver of choice when
Gauss-Seidel iterations are not practical.



If you build it, he will come.

—Field of Dreams

6 SOFTWARE

Over the course of this thesis, we developed a few so�ware packages to
aid our work. All are publicly available. �is chapter brie�y describes each
package and its major architecture and design goals. A complete description
of each package would be nearly as lengthy as the current document and
needlessly tedious. Instead, we have editorialized and highlighted the most
interesting or challenging pieces of each implementation.
One of the recurring themes in all the packages is implementing graph

structures in Matlab. We discuss the setting for these idea in sections 6.1
and 6.2.
�e MatlabBGL package (section 6.3) is an interface between the Boost

graph library [Siek et al., 2001] and Matlab.1�e interface is based on the 1 In the remainder of this chapter, we
are going to remove the special styling
on Matlab. Matlab is used as a proper
noun throughout the remainder of the
chapter instead of a product name.

native Matlab sparse matrix and provides a rich suite of graph algorithms
that were previously unavailable in Matlab. Currently, the suite works on
Windows, Mac OSX, and Linux in both 32-bit and 64-bit computing envi-
ronments. It has been downloaded over 7,000 times and used in numerous
publications.
Whereas MatlabBGL is a complicated set of C and C++ routines to extract

the maximum performance for graph operations in Matlab, the gaimc rou-
tines (section 6.4) are written in pure Matlab m-code.2�ese algorithms are 2Matlab m-code is how we refer to

Matlab’s native language.slower than their MatlabBGL counterparts, although, they are faster than the
dictum “for-loops in Matlab are really slow” suggests. For a few algorithms,
the gaimc code runs in twice the MatlabBGL time; for others, it runs in
slightly more than four times the MatlabBGL time. �e bene�t of the library
is that it is easy to add new algorithms with these performance characteristics.
Adding algorithms to MatlabBGL is quite di�cult.
In this thesis, many of the graphs explored are extremely large. When

these are graphs created by crawling the WWW, they have some regular-
ity that makes them highly compressible. Boldi and Vigna [2005] develop
coding schemes to compress these graphs at under three bits per edge. Re-
cent improvements in applying the same technique enhance compression to
around one bit per edge [Boldi et al., 2009]. Our libbvg code (section 6.5)
re-implements pieces of the bvgraph framework in portable C code to enable
a Matlab wrapper and a shared memory parallel interface. Writing a true
Python wrapper for the graphs should also be possible.
Many of the contributions of this thesis have already been published. Each

publication has an accompanying so�ware package providing all the source
code and experiment scripts. �ese packages are brie�y described in sec-
tion 6.6.

117
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6.1 adjacency matrices

�roughout this chapter, we work with graphs. Each graph G = (V , E)
consists of two sets: V = {1, . . . , n} is a set of vertices and E is a set of edges.
Each edge (u, v) = e ∈ E is an ordered pair of vertices with u ∈ V , v ∈ V . Each
vertex is already identi�ed by a numeric index, and we identify graphs with
their binary adjacency matrix:

A = [A i j] A i j =

⎧⎪⎪
⎨
⎪⎪⎩

1 (i , j) ∈ E
0 otherwise.

(6.1)

An undirected graph has both (i , j) and ( j, i) in E . Hence,

when G is undirected, then A is symmetric.

All of the following generalizations of the binary adjacency matrix maintain
this property.
We handle graphs with weighted edges in two cases. In both cases, we

consider the weights as elements fromR. Letw(e) be amap from edges e ∈ E
to weights inR. When all the weights exclude the value 0, our �rst case, then
the weighted adjacency matrix is

A = [A i j] A i j =

⎧⎪⎪
⎨
⎪⎪⎩

w(e) e = (i , j) ∈ E
0 otherwise.

(6.2)

�is approach obviously fails when the edge weights can include the value 0.
In this second case, we store the graph as a pair of matrices: a value matrix A
and a structure matrix S. �is setup yields

A = [A i j] A i j =

⎧⎪⎪
⎨
⎪⎪⎩

w(e) e = (i , j) ∈ E
0 otherwise

(6.3)

and

S = [S i j] S i j =
⎧⎪⎪
⎨
⎪⎪⎩

1 (i , j) ∈ E
0 otherwise.

(6.4)

By encoding the graph structure in S and leaving the values in A, we can dis-
tinguishwhere edges occur and their values. A similar encoding for structural
and weight matrices is described in Latora and Marchiori [2001].
In the remainder of the chapter, the type of the adjacencymatrix—whether

it is binary, weighted, or paired—is determined by the type of graph. To
summarize, when

G is unweighted, A is a binary adjacency matrix;
G has edge weights in R − {0}, A is a weighted adjacency matrix; and
G has edge weights in R, (A, S) is weighted adjacency matrix pair.

We do not consider multi-graphs.
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With the setup of looking at graphs as adjacency matrices, we next discuss
why these adjacency matrices are the natural graph data structures in the
Matlab environment and brie�y review what can be done with graphs in
Matlab with only small snippets of code (section 6.2).

6.2 graphs in matlab

Although Matlab lacks an explicit set of graph algorithms, it does provide
a rich set of techniques that are o�en e�ective surrogates. Given the represen-
tation of a graph as an adjacency matrix, and the e�cient implementation of
sparse matrices in Matlab [Gilbert et al., 1992], this is not greatly surprising.
To be more concrete, many operations on graphs correspond precisely to
an operation on the adjacency matrix. Operations on large, sparse graphs
are e�cient if the operation is also e�cient on a sparse matrix. For example,
computing in- and out-degrees is just an application of the sum command.

din = sum(spones(A),1); % compute in-degrees

dout = sum(spones(A),2); % compute out-degrees

A more complete list of these equivalences is enumerated in Gilbert et al.
[2008, Table 1]. Because Matlab already has e�cient sparse matrices that
easily handle millions of rows and columns with tens of millions of non-zeros
on a single processor, re-using these sparse matrices as adjacency matrices of
large graphs seems prudent.
Let’s examine two more complicated examples. Clustering coe�cients are

measures of the local connectivity density around a vertex [Watts and Strogatz,
1998]. �e key computation to compute clustering coe�cients is counting the
number of triangles around a vertex and dividing by the maximum possible
triangle count.3 On a symmetric adjacency matrix A, the following Matlab 3 For a vertex with degree d, it could

form d(d − 1) with its neighbors.code returns the clustering coe�cients.
A1=spones(A); A1=A1-diag(diag(A1)); % remove weights and self-loops

d=sum(A1,2); d(d<2)=2; % avoid divide by zeros

cc=diag(A1^3)./(d.*(d-1)); % return clustering coefficients

Second, the dmperm function computes the Dulmage-Mendelsohn permu-
tation by �nding a maximum cardinality matching between the rows and
columns when viewed as vertices of a bipartite graph. In the meshpart
toolkit [Gilbert and Teng, 2002], this behavior is exploited to compute the
strongly connected components of a graph.
While each of these approaches demonstates a particular algorithm or

computation in terms of primitive Matlab operations, each approach is also
ine�cient compared to a straightforward implementation on a graph.4 In the 4While these implementations are in-

e�cient on a single processor, graph
operations are notoriously di�cult to
parallelize. Gilbert et al. [2007] posits
that these “ine�cient” implementations
are better for parallel graph computa-
tions.

case of computing degrees, the in-degree counts are stored inside the Matlab
sparse matrix type: we should not need to compute anything. In the case of
clustering coe�cients, we need only compute the diagonal elements of A3,
and not the entire matrix. Finally, in the case of connected components, the
dmperm function solves a bipartitematching problem instead of a simple linear
pass over the graph edges using a standard connected component algorithm.
Nonetheless, the issue with these computations is the algorithm implemen-

tation and not the data structure. �us, much as others in the literature, we
represent graphs as sparse matrices in Matlab. Let’s review the sparse matrix
data structure in Matlab.
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6.2.1 Sparse matrices in Matlab

To store anm×n sparsematrixM, Matlab uses compressed column format
[Gilbert et al., 1992]. Matlab never stores a 0 value in a sparsematrix. It always
“re-compresses” the data structure in these cases. IfM is the adjacency matrix
of a graph, then storing the matrix by columns corresponds to storing the
graph as an in-edge list.
We brie�y illustrate compressed row and column storage schemes in �g-

ure 6.1.

1

2

3

4

5

6

16

13

12

9

14

7

20

4

410

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Compressed sparse row
1 3 5 7 9 11 11

16
2
13
3
10
3
12
4
4
2
14
5
9
3
20
6
7
4
4
6 ∅ci

rp

ai

Compressed sparse column
1 1 3 6 8 9 11

16
1
4
3
13
1
10
2
9
4
12
2
7
5
14
3
20
4
4
5 ∅ri

cp

ai

Figure 6.1 – Compressed row and column
storage. At far le�, we have a weighted,
directed graph. Its weighted adjacency
matrix lies below. At right are the com-
pressed row and compressed column
arrays for this graph and matrix. For
sparse matrices, compressed row and
column storage make it easy to access
entries in rows and columns, respectively.
Consider the 3rd entry in rp. It says
to look at the 5th element in ci to �nd
all the columns in the 3rd row of the
matrix. �e 5th and 6th elements of ci
and ai tell us that row 3 has non-zeros
in columns 2 and 5, with values 4 and
14. When the sparse matrix corresponds
to the adjacency matrix of a graph, this
corresponds to e�cient access to the
out-edges and in-edges of a vertex.

Most graph algorithms are designed to work with out-edge lists instead of
in-edge lists.5 Before running an algorithm, MatlabBGL explicitly transposes

5 See section 6.3.1 for a discussion about
the requirements for various graph
algorithms.

the graph so that Matlab’s internal representation corresponds to storing out-
edge lists. For algorithms on symmetric graphs, these transposes are not
required.
�e mex commands mxGetPr, mxGetJc, and mxGetIr retrieve pointers to

Matlab’s internal storage of thematrixwithoutmaking a copy. �ese functions
make it possible to access a sparse matrix e�ciently without making a copy
and are a requirement of our implementation.
Let us recap. Sparse matrices are the best way to store graphs in Matlab.

�eyprovide all the necessary pieces to integrate cleanlywith “natural”Matlab
syntax and allow us access to their internals to run algorithms e�ciently.

6.2.2 Other packages

�ere are other graph packages for Matlab too. One of the �rst was the
meshpart toolkit [Gilbert and Teng, 2002], which focuses on partitioning
meshes. Amore recent example is Matgraph [Scheinerman, 2009], which con-
tains a rich set of graph constructors to create adjacencymatrices for standard
graphs. It also provides an interface to support graph properties, such as la-
bels and weights. Various authors released individual graph theory functions
on the Mathworks File Exchange [Various, 2009a, search for dijkstra]. For
example, the Exchange contains more than three separate implementations
of Dijkstra’s shortest path algorithm.
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A full comparison of these packages is beyond the scope of this chapter.
�e only package with the breadth of MatlabBGL is the bioinformatics graph
package, which is also based on the Boost graph library. Among the na-
tive Matlab packages, only meshpart [Gilbert and Teng, 2002] handles large
graphs well. Both MatlabBGL and gaimc are distinguished because they
• scale to large graphs;
• support no-data-copy paths when possible; and
• provide a suite of algorithms.

6.3 matlabbgl

MatlabBGL is the �rst package we discuss. Its source code lives publicly
on LaunchPad, http://launchpad.net/matlab-bgl.
As previously mentioned, MatlabBGL is a Matlab package for working

with graphs. It uses the Boost graph library to implement the graph algo-
rithms e�ciently. MatlabBGL is designed to compute on large sparse graphs
with hundreds of thousands of nodes. To do so, the library consists of “wrap-
pers” for algorithms from the Boost graph library. Each wrapper is a mex
function and it is callable directly from Matlab. �e goal of the library was
to introduce as little new material into Matlab as possible. To facilitate this,
MatlabBGL does not introduce a new data structure and uses the Matlab
sparse matrix type as the graph type directly.
For example,
n = 10;

A = spdiags([ones(n,1), zeros(n,1), ones(n,1)],[-1 0 1], n, n);

cc = clustering_coefficients(A)’ % transpose the output for display

comps = components(A)’ % transpose the output for display

constructs a 10-node line graph as a Matlab sparse matrix, computes cluster-
ing coe�cients with the MatlabBGL clustering_coefficients function,
and computes the index of a strongly connected component for each vertex.
For both of these functions, the output consists of one number per vertex.
For clustering_coefficients, it is the clustering coe�cient of that vertex,
and for components, it is the index of the strong component for that vertex.
Examining the output

cc =

0 0 0 0 0 0 0 0 0 0

comps =

1 1 1 1 1 1 1 1 1 1

shows that the clustering coe�cient for each node is 0, which is expected for
the line graph A, and that each node is in the same connected component,
which is also expected for a line graph.
To describe the library and the remainder of the implementation, we begin

by reviewing the Boost graph library.

http://launchpad.net/matlab-bgl
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6.3.1 �e Boost graph library (BGL)

�eBoost graph library or BGL [Siek et al., 2001] is a large set of C++ codes
that implement generic graph algorithms. �e advantage of these generic
graph algorithms is that they specify the algorithm independently of the data
structure. �is independence is not accomplished using interfaces or ab-
stract classes, which are common in standard object oriented programming.
Instead, the Boost graph library uses C++ templates and techniques from
generic programming [Alexandrescu, 2001] to write their data-structure-free
algorithms. �ese techniques, in theory, allows the compiler to view the algo-
rithm and data structure simultaneously and optimize the entire package. In
particular, the compiler can generate in-line optimizations between function
calls.
In the Boost graph library, each algorithm places certain requirements on

the C++ graph type. Concepts codify these requirements. In the BGL, the
concepts largely expressmutability (support for changing the graph during
the algorithm) and access (support for querying the existing graph structure
in various ways). Most of the algorithms wrapped in MatlabBGL do not
change the graph; thus we focus on the access concepts.
For example, the strong_components BGL function requires a graph type

that supports the VertexListGraph and IncidenceGraph concepts. �ese con-
cepts allow the algorithm to iterate over all vertices in the graph and access
the out-edges for an arbitrary vertex. �is access to the graph su�ces to
implement Tarjan’s algorithm for strongly connected components [Tarjan,
1972]. �e other access concepts are

EdgeListGraph iterate over the edges of the graph

BidirectionalGraph access in-edges to an arbitrary vertex, and

AdjacencyGraph access adjacent (out-edge connected) ver-
tices to an arbitrary vertex.

Most algorithms are like strong_components and require only theVertexList-
Graph and IncidenceGraph concepts. Two notable exceptions are maximum
�ow (push_relabel_max_flow, kolmogorov_max_flow), and planar graph
triangulation (make_maximal_planar). In this document, we focus on the
common cases and leave the exceptions to the source code documentation
and help �les of MatlabBGL.

6.3.2 Matlab and Boost graph library interface

Before describing the interface, we reiterate one main point of MatlabBGL.
To integrate cleanly with Matlab, MatlabBGL uses the Matlab sparse matrix
type as the graph type. �us, the goal of the interface betweenMatlab and the
Boost graph library is to take a Matlab sparse matrix data structure and view
it as a C++ type that implements the VertexListGraph and IncidenceGraph
concepts. (Our actual implementation also supports the EdgeListGraph and
AdjacencyGraph concepts.) With such an interface, we can access themajority
of graph analysis algorithms in the Boost graph library. What is lost from the
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BGL is largely irrelevant to MatlabBGL.�ere is no need for the copy_graph
function from Boost, for example.
Next, �gure 6.2 shows the high level architecture of MatlabBGL. �ere

Boost

CSR Graph

CSR Graph

Sparse Matrix

Matlab l ibmbgl

M code

mex code

extern c code

c++  code

dfs

bfs

mst pr immst

dfs

bfs

Figure 6.2 –MatlabBGL architecture.
MatlabBGL consists of four components:
m-�les, mex-�les, libmbgl, and Boost
graph library functions. See the text for
a description of how data �ows through
these components.

are four main components: m-�les, mex-�les, libmbgl, and BGL functions.
Let’s illustrate a typical call to a MatlabBGL function: dfs for a depth-�rst
search through the graph.
First, the dfs.m �le (an M code) receives the sparse matrix representation

of the graph and the identi�er of a vertex that originates the search. It per-
forms some basic parameter checking on the data, transposes the matrix to
get the graph stored by out-edges in the Matlab data structure, and forwards
the information to the dfs_mex.cmex-�le. By providing an optional argu-
ment to the function, both the check and the transpose can be eliminated for
the fastest performance. �e mex-�le extracts the compressed sparse column
arrays for the sparse matrix, which corresponds to a compressed out-edge
list representation of the graph, and sends the information to the libmbgl
function depth_first_search. �e libmbgl functions implement wrappers
around Boost functions on compressed sparse row arrays and expose them
via a C calling convention. �is library is further described in section 6.3.3.
For the depth_first_search function, the wrapper takes the compressed
sparse row arrays and instantiates a csr_graph type that implements theVer-
texListGraph, IncidenceGraph, EdgeListGraph, andAdjacencyGraph concepts
directly on the compressed sparse row arrays. With the csr_graph object,
the libmbgl wrapper calls a Boost graph library function.
�roughout this entire process, the only copy of the data occurs when

the initial sparse matrix is transposed to store the data by out-edges (rows)
instead of in-edges (columns).6 6 Some Boost graph functions make a

copy of the graph inside the algorithm.
We can do nothing about these copies
without modifying the BGL itself.

�us far, the interface between the libraries is only complicated by the
layers of abstraction. Although maintaining three layers (m-�les, mex-�les,
and libmbgl) may seem unnecessary, it simpli�es calling conventions across
multiple platforms. �e m-�les call mex-�les, which Matlab always supports.
�e mex-�les call functions in libmbgl with a C calling convention, which is
also extremely portable. And the C functions interface with the Boost graph
library. We discuss other reasons to keep libmbgl separate from the mex �les
in the next section.
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�emost complicated piece of the interface is the csr_graph object. �is
object is itself a generic object because it must support both 64-bit and 32-bit
index types on the compressed sparse row arrays. Furthermore, it supports
an optimization for algorithms that do not require edge weights. We will not
delve into its implementation here as the arcana of implementing a Boost
graph concept are best le� to the Boost graph documentation.7 7 It is interesting to note that the �rst

version of MatlabBGL with an entirely
correct Graph concept was the third iter-
ation of the library. Earlier revisions did
not implement an obscure property that
was eventually used in the dominator_¬
tree algorithm.

copy-free? A key feature of MatlabBGL is that it provides large-scale
graph algorithms in Matlab by avoiding copies. However, the �rst step in
almost every algorithm is to copy and transpose the sparse matrix. For true
large-scale computations, users must take care to ensure that the no-copy
computation paths within MatlabBGL are used. Most MatlabBGL functions
support these paths and exceptional cases are all documented.8 8 Presently, the exceptional cases are the

maximum �ow routines and the planar
graph triangulation function.

6.3.3 libmbgl: A compressed sparse row interface

WithinMatlabBGL, libmbgl is the component that translates a compressed-
sparse row graph representation into a BGL graph type and makes the BGL
function call. As �gure 6.2 re�ects, this library is completely independent of
theMatlab components. One of the reasons for this separation is that libmbgl
provides a fast interface to the Boost graph library from any application that
can link against a set of C functions. We are aware of at least one manuscript
where this lower level interface was used [Karci, 2008].
Furthermore, libmbgl opens the possibility to reuse a piece of MatlabBGL

with open source scienti�c computing packages such as SciLab and Octave.
If these libraries provide access to a compressed row representation, then
libmbgl provides the necessary link. MatlabBGL is mostly usable “as-is” in
the Octave program because they implement the Matlab mex interface and
support a rough equivalent to the Matlab language.
In summary, we consider libmbgl an integral, but independent, piece of

MatlabBGL and plan to keep it that way.

6.3.4 Return types

�us far, we’ve seen how MatlabBGL takes a sparse matrix and translates
it to a function call in the Boost graph library. Next, the Boost graph library
generally computes a result as part of this function call. We need to represent
these results in Matlab.
Recall that one of the design philosophies of MatlabBGL is to add as little

to Matlab as possible. With this constraint, picking amongst options for the
return types is straightforward. Algorithms that compute ametric on a vertex,
such as strong_components or clustering_coefficients, already support
writing data to a standard int* or double* array. �e wrappers in libmbgl
return these data to themex functions, which proceed to store them inMatlab
arrays.9 9 Because libmbgl requires the array stor-

age to be allocated before the function
call, the data are stored directly into the
Matlab arrays when possible.

For measures on edges, such as biconnected_components, we o�en sup-
port two di�erent return valuemechanisms. When the values are all non-zero,
MatlabBGL will return a sparse matrix with the edge information. When the
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values on an edge may include zero, MatlabBGL optionally returns the edges
and values explicitly as a set of “(source, destination, value)” triplets.10 10�e libmbgl code always returns triplet

arrays and users get the option of which
form to view the triplet arrays in the
MatlabBGL calls

Graph outputs are returned as sparse adjacency matrices.
Finally, when the output is a rooted tree, we store it as a single array

where the ith entry gives the parent of vertex i in the tree. Matlab already
uses this storage format for elimination trees of sparse matrix algorithms
(see treeplot). Weighted trees, from prim_minimum_spanning_tree for
example, are returned as triplet arrays or sparse matrices.
�is section concludes our description of the common Matlab to Boost

graph library interface that exists in MatlabBGL. �e next few subsections
discuss some extensions of this standard interface to take advantage of more
of the Boost graph library.

6.3.5 An in-place class for visitors

�e Boost graph library implements “visitors” to make its algorithms �ex-
ible. Visitors are small classes whose methods are triggered by events in
an algorithm. �ey enable reuse for an implementation of a simple graph
algorithm in a more complicated algorithm. One example is the strong_¬
components function. Using a visitor, it reuses the existing depth_first_¬
search implementation. An alternative use of the visitor pattern is to collect
additional information about an algorithm while it is running. One example
of this feature is recording the �rst visit “time” for a vertex in a breadth-�rst
search. Another example is stopping a search algorithm when it reaches a
target vertex.
Inside the BGL, these visitors are C++ classes that the algorithm calls at

various points. In MatlabBGL, we pass in a set of function handles to receive
the calls instead. Historically, Matlab functions would not have been able to
be full featured visitors in the BGL as they could not store information within
a function call like a C++ class. (We did not consider using global variables
for this task an acceptable solution.) FromMatlab version 7, however, Matlab
supports functions that maintain state using nested functions and closures.
�ese tools are the keys to making visitors useful in MatlabBGL.11 11 FromMatlab 2008a, the new class

semantics support yet another way of
constructing visitors in Matlab.

We explain this by way of a small example.
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Consider this function
function fh=generate_counter()

value = 0;

function curval=counter(k)

curval = value;

value = value+k;

end

fh=@counter;

end

With this function stored in generate_counter.m, then
c = generate_counter()

c(5)

c(1)

c2 = generate_counter()

c2(1)

c2(1)

produces the following output:
ans =

0

ans =

5

ans =

0

ans =

1

Using this technique, we �rst design an “in-place” library for Matlab that
allows a matrix or vector to be passed by reference and not by value.12 �e 12Matlab implements a pass-by-value

scheme with a copy-on-write optimiza-
tion.

three classes of the in-place library are
1. ipdouble,
2. ipint32, and
3. inplace.

Each class constructor takes an existing array and converts it to a type that
has pass-by-reference semantics.
Without pass-by-reference, the following function is useless:
function add_one_inplace(a)

a(1) = a(1) + 1;

When a is an in-place array fromour library, then it becomes useful. Consider
this next example.

n = 1000000;

ipa = ipdouble(ones(n,1)); % turn the array of all ones into

add_one_inplace(ipa); % a pass by reference type

ipa(1)

ans =

2

Using in-place variables allows us to write visitors easily in MatlabBGL. Let
us now address the types of visitors in the BGL.
Algorithms in the BGL de�ne two types of visitors: vertex visitors and edge

visitors. A common vertex visitor is the examine_vertex function. For the
BFSVisitor concept, the Boost graph library de�nes the following prototype
for that visitor:

void visitor::examine_vertex(Vertex u, Graph& g)
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�e corresponding MatlabBGL function takes only one argument, the vertex
index. Here, we illustrate this visitor type by example as Matlab does not have
function prototypes:

visitor.examine_vertex = @(u) fprintf(’called examine_vertex(%i)!\n’, u);

In MatlabBGL, the other vertex visitors follow this same pattern: the only
argument is the index of the vertex.
Edge visitors in Boost provide a BGL edge type:

void visitor::examine_edge(Edge e, Graph& g)

MatlabBGL translates the edge type into an edge index, a source vertex, and
a target vertex, which are provided to the visitor function (again illustrated
with an example visitor):

visitor.examine_edge = @(ei,u,v) fprintf(’called examine_edge(%i,%i)!\n’, u);

A considerable issue with visitors is that they call back to Matlab from a
mex �le. �is operation is not e�cient and visitors are not appropriate for
large-scale computations. Nevertheless, they are an important part of the
Boost graph library and belong in MatlabBGL.
We end this section with two examples that show how visitors are used in

the library.

watching an algorithm with a visitor In this example, we
write a simple visitor that outputs an algorithm’s behavior. �e algorithm
we examine is dijkstra_sp. To examine the runtime behavior we use a
visitor that outputs a string every time a function is called. �e dijkstra_sp
function supports the following visitors:
• initialize_vertex(u)

• discover_vertex(u)

• examine_vertex(u)

• examine_edge(ei,u,v)

• edge_relaxed(ei,u,v)

• edge_not_relaxed(ei,u,v)

• finish_vertex(u)

Rather than implementing 7 functions ourselves, we de�ne two helper func-
tions. �ere is one helper that returns a vertex visitor and one helper than
returns an edge visitor:

vertex_vis_print_func = @(str) @(u) ...

fprintf(’%s called on %s\n’, str, char(labels{u}));

edge_vis_print_func = @(str) @(ei,u,v) ...

fprintf(’%s called on (%s,%s)\n’, str, char(labels{u}), char(labels{v}));

We are almost done. We just have to setup the visitor structure to pass to the
dijkstra_sp call:

vis = struct();

vis.initialize_vertex = vertex_vis_print_func(’initialize_vertex’);

vis.discover_vertex = vertex_vis_print_func(’discover_vertex’);

vis.examine_vertex = vertex_vis_print_func(’examine_vertex’);

vis.finish_vertex = vertex_vis_print_func(’finish_vertex’);

vis.examine_edge = edge_vis_print_func(’examine_edge’);

vis.edge_relaxed = edge_vis_print_func(’edge_relaxed’);

vis.edge_not_relaxed = edge_vis_print_func(’edge_not_relaxed’);
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With the visitor set up, all that remains is to call the function:
dijkstra_sp(A,1,struct(’visitor’, vis));

discover_vertex called on s

examine_vertex called on s

examine_edge called on (s,u)

edge_relaxed called on (s,u)

discover_vertex called on u

...

stopping an algorithm early At any point, if a visitor function
returns a zero value, the algorithm halts. �is behavior may be desirable.
Consider the following example with astar_search:

load graphs/bgl_cities.mat

goal = 11; % Binghamton

start = 9; % Buffalo

% Use the Euclidean distance to the goal as the heuristic

h = @(u) norm(xy(u,:) - xy(goal,:));

% Setup a routine to stop when we find the goal

ev = @(u) (u ≠ goal);

[d pred f] = astar_search(A, start, h, ...

struct(’visitor’, struct(’examine_vertex’, ev)));

�e examine_vertex function returns 0 when the vertex is a targeted vertex.
In this example, we want to �nd the shortest path between Binghamton and
Bu�alo. Once we �nd a shortest path to Bu�alo, we can halt the algorithm!

6.3.6 Handling zero edge weights

Matlab sparse matrices only store non-zero values. Because the structure
of the Matlab sparse matrix is used to infer the edges of an underlying graph,
MatlabBGL cannot distinguish between a 0-weight edge and an absent edge.
To �x this problem, codes that accept a weighted graph allow the user to

specify a vector of edge weights in an optional parameter. �e easiest way to
use this optional parameter is using a helper function called edge_weight¬
_vector. Given a weighted matrix pair (A, S), this function provides the
appropriate optional argument when the graph has zero edge weights.
Internally, this function computes the index of all the non-zero elements

of A when using all of the structural non-zeros of S. An example helps to
clarify what happens.
We wish to create an undirected cycle where the weight of every edge is 0,

except for a single edge with weight 1.
n=8; % 8 vertices,

E = [1:n 2:n 1; 2:n 1 1:n]’; % edge list for a cycle

w = [1 zeros(1,n-1) 1 zeros(1,n-1)]’; % weight of each edge

A = sparse(E(:,1), E(:,2), w, n, n); % create a weighted sparse matrix

As = sparse(E(:,1), E(:,2), true, n, n); % create a structural sparse matrix

ws = edge_weight_vector(As,A)’

�e output reveals the single non-zero edge:
ws =

Columns 1 through 11

1 0 1 0 0 0 0 0 0 0 0

Columns 12 through 16

0 0 0 0 0
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�e edge weight vector ws also satis�es the following property:
[i j] = find(As);

Aw = sparse(j,i,ws,size(As,1),size(As,2));

isequal(Aw,A)

ans =

1

In other words, the order of the edge weight vector corresponds to the order
of non-zeros in the transposed matrix. �e function has to return weights in
the order of the transposed matrix because MatlabBGL transposes the sparse
matrix on a standard function call.
Using the vector is easy. �e trivial usage
[d pred] = shortest_paths(A,1);

d(2)

gives the wrong answer:
ans =

1

Instead, use
[d pred] = shortest_paths(As,1,struct(’edge_weight’,ws));

d(2)

to �nd the correct distance using all the zero-weight edges:
ans =

0

6.3.7 Usage

MatlabBGL has been used in over 10 publications (that we are aware of)
and downloaded over 7,000 times. We highlight three of these publications.
In Honey et al. [2007], the authors utilize the shortest path computations to
analyze the functional connectivity of a macaque neocortex. Next, Lin et al.
[2008] use the connected component, betweenness centrality, and cluster
coe�cients functions to study a network of co-authorship relationships in
abstracts presented at the Society for Neuroscience. �ird, and �nally, Raman
and Chandra [2008] use the shortest path routine to analyze a subset of the
interactome network ofM. tuberculosis.
MatlabBGL continues to be a highly downloaded �le from the Matlab

central �le exchange and we hope to continue improving it in the future.
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6.4 gaimc

�e gaimc library implements a similar set of graph algorithms. It is
written entirely in Matlab and the project is maintained at GitHub, http:
//github.com/dgleich/gaimc.
It follows the motivation of MatlabBGL closely and also uses the Matlab

sparse matrix as its graph type. In the following example, we generate a
random weighted graph and compute a minimum spanning tree:

randn(’state’,0); rand(’state’,0);

A=abs(sprandsym(10,0.2)); % symmetric random graph

T = mst_prim(A);

sum(sum(T))/2 % output the MST weight

If we run this code with gaimc, it produces the output:
ans =

3.9531

In comparison with MatlabBGL, the gaimc library is simple. Each algo-
rithm is a single Matlab m-�le that contains a single function. �is conveys
some advantages. MatlabBGL, while portable to 32-bit and 64-bit Matlab on
Windows, Mac OSX, and Linux, is di�cult to compile and maintain on all
platforms. �e gaimc library is trivial to port between all of these platforms.
However, folklore about Matlab performance claims that “loops” are slow.

A�er�eMathworks introduced the just-in-time compiler in Matlab 7 (R14),
loops are no longer slow—although our experience is that extracting good
performance can be di�cult for complicated functions.
In gaimc, we did our best to extract performance for each graph algorithm

enumerated in table 6.1. Each algorithm is serial and operates on a set of
compressed sparse row arrays. Using this approach, we obtained performance
that is 2-4 times slower than MatlabBGL (see section 6.4.3).13

13 In Matlab R2008b, it seems that the
just-in-time compiler yields worse
performance than in Matlab R2007b.
Instead of a slowdown of 2-4 times, we
found a slowdown of 3-8 times with
respect to MatlabBGL!

Table 6.1 – Algorithms in gaimc. For each function in gaimc, we list the common algorithm
name and the source for the implementation.

Function Algorithm Source

bipartite_matching.m max-weight bipartite matching Papadimitriou and Steiglitz [1998]

clustercoeffs.m clustering coe�cients Watts and Strogatz [1998]

corenums.m core numbers Batagelj and Zaversnik [2003]

dijkstra.m Dijkstra’s single source shortest path Cormen et al. [2001]

dirclustercoeffs.m directed clustering coe�cients Fagiolo [2007]

floydwarshall.m Floyd-Warshall’s all-pairs shortest paths Cormen et al. [2001]

mst_prim.m Prim’s minimum spanning tree Cormen et al. [2001]

scomponents.m Strongly-connected components Tarjan [1972]

Let us begin describing the library by analyzing a necessary tool for many
graph algorithms: a heap.

http://github.com/dgleich/gaimc
http://github.com/dgleich/gaimc
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6.4.1 AMatlab heap structure

To implement bothDijkstra’s shortest path algorithm andPrim’sminimum
spanning tree algorithm we need a means to store and access vertices, in
sorted order, based on a constantly changing set of values. A heap is one data
structure that meets these requirements [Cormen et al., 2001]. In this section,
we discuss a Matlab implementation of a heap.

�e following implementation is inspired by Kahaner [1980].14 From a 14More generally speaking, algorithms
written in Fortran 77 are excellent can-
didates for the Matlab just-in-time
compiler.

data structure perspective, a heap is a binary tree where smaller elements are
parents of larger elements. It supports the following operations:

insert add an element to the heap;
pop remove the element from the heap with the smallest

value; and
update change the value of an element in the heap.

Matlab specializes in arrays (or vectors), and a common way to store a
binary tree in an array is to associate the tree node of index j with a le� child
of index 2 j and a right child of index 2 j + 1. See �gure 6.3 for an example.

�e array
5 6 7 1 9 6

corresponds to the following tree:
5

8

1 9

7

6

Figure 6.3 – Binary trees as arrays.

�e data structure for our Matlab heap will consist of four arrays and one
number.

t the heap tree. �e array T stores the identi�ers of the items in the heap.
�at is, T(i) is the id of the element in tree node i and T(1) is the id
of the element at the root of the heap tree.

d the data store. �e array T stores ids of elements in D so that D(T(i)) is
the actual item for tree node i.15�e size of D must be the maximum 15 For items without natural ids, ids can

be uniquely assigned based on how many
items have already been added to the
heap. In this case, D(i) contains the ith
item added to the heap.

number of items ever added to the heap.16

16 An alternative is to grow the heap by
reallocating the arrays if additional items
must be added.

l a look up table. �e size of L is the maximum id of any item added to the
heap. For id i, L(i) is the tree node index of i in T , and T(L(i)) = i.

v the value array. �e current value associated with id i is given by V(i).
�is means that D(i) and V(i) are the item and its value, respectively.

n the current size of the heap.

When we use this heap structure to store vertices of a graph, there is no
need to maintain the data array D. Each vertex is just a unique numeric
identi�er for the compressed sparse row arrays that gaimc uses. With D, T(⋅)

contains the index of an element in D. When we store vertices in the heap,
each vertex already has a unique identi�er—its index—and the array D is
unnecessary.
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Let us now provide implementations for each of the heap operations on
these arrays in the case that items are vertices of a graph.
insert An insert operation adds a vertex with id v and value val to the
heap arrays at the bottom of the heap tree. It then moves the item up the heap
until the parent element is smaller than the inserted element.
1 function [n,T,L,V]=heapinsert(v,val,n,T,L,V)

2 V(v) = val;

3 % insert item v (v is the unique id)

4 n=n+1; % increment n

5 T(n)=v; L(v)=n; % add v to the arrays

6 % move the element up the heap

7 j=n;

8 while 1

9 if j==1, return; end % element at the top of the heap

10 tj=T(j);

11 j2=floor(j/2); % parent element

12 tj2=T(j2);

13 if V(tj2)<V(tj), return; % parent is smaller

14 else % parent is larger, so swap

15 T(j2)=tj; L(tj)=j2;

16 T(j)=tj2; L(tj2)=j;

17 j=j2;

18 end

19 end

pop A pop operation removes the item with smallest value, which resides
in T(1). It then promotes the last element of the heap to this position and
moves the item down the heap to restore the heap property that the parent
node is always smaller than both children.
1 function [v,n,T,L,V] = heappop(n,T,L,V)

2 if n==0, return; end % check simple case, else delete T(1)

3 v=T(1); % remove the first (smallest) item

4 T(1)=T(n); % promote the last element

5 T(n)=v; % place a dummy value

6 L(v)=0; % and ensure lookups fail

7 n=n-1; % reduce the size

8 k=1; % move the new first element down the heap

9 while 1

10 i=2*k; kt=T(k);

11 if i>n, return; end % end of heap

12 if i==n, % only one child, skip choice between children

13 else

14 % pick the smallest child

15 lc=T(i); rc=T(i+1);

16 if V(rc)<V(lc), i=i+1; end % right child is smaller

17 end

18 if V(kt)<V(T(i)), return; % k is smaller than both children, so end

19 else

20 T(k)=T(i); L(T(i))=k; % swap

21 T(i)=kt; L(kt)=i;

22 k=i;

23 end

24 end
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update An update operation restores the heap property a�er changing
the value associated with vertex v. If the value of the element is increased,
then we must move the element down the tree. If the value of the element is
decreased, then we must move the element up the tree.
1 function [n,T,L,V] = heapupdate(v,n,T,L,V)

2 % V(v) changed, so we need to update the heap

3 if L(v)==0, return; end % v isn’t in the heap

4 % move the element down in the heap

5 k=L(v);

6 while 1

7 i=2*k; kt=T(k);

8 if i>n, break; end % end of heap

9 if i==n % only one child, skip choice between children

10 else

11 % pick the smallest child

12 lc=T(i); rc=T(i+1);

13 if V(rc)<V(lc), i=i+1; end % right child is smaller

14 end

15 if V(kt)<V(T(i)), break; % k is smaller than both children, so end

16 else

17 T(k)=T(i); L(T(i))=k; % swap

18 T(i)=kt; L(kt)=i;

19 k=i;

20 end

21 end

22 % move the element up the heap if necessary

23 j=k;

24 while 1

25 if j==1, return; end % element at the top of the heap

26 tj=T(j);

27 j2=floor(j/2); % parent element

28 tj2=T(j2);

29 if V(tj2)<V(tj), return; % parent is smaller

30 else % parent is larger, so swap

31 T(j2)=tj; L(tj)=j2;

32 T(j)=tj2; L(tj2)=j;

33 j=j2;

34 end

35 end

To design an algorithm using the heap, we o�en write an algorithm using
the heap functions as subroutines. But then to make the �nal implementation
e�cient, we cut-and-paste the heap subroutines “in-line.” �e next section
makes it clear why all the operations cannot reside in separate functions.
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6.4.2 Matlab performance optimizations: Dijkstra’s algorithm

We now discuss performance optimizations for the implementation of
Dijkstra’s single-source shortest path algorithm. �is algorithm returns the
shortest path distance between a source vertex and every other reachable
vertex in the graph. One required assumption is that the edge distances (or
weights) are non-negative. �e algorithm explores the graph in a breadth-�rst
manner based on the current shortest distance from the source. To pick the
next vertex to explore, we need to �nd the closest vertex to the source, add or
update the distance to all their neighbors to the current set of known vertices,
and repeat. Finding the next vertex to explore based on the current distances
can be done with the heap data structure in the previous section.
Using the heap, Dijkstra’s algorithm is only a few lines of code.

1 function [d pred]=dijkstra_slow(A,u)

2 At = A’; n = size(At,1); % transpose for row access

3 d=Inf*ones(n,1); T=zeros(n,1); L=zeros(n,1); pred=zeros(1,n); % allocate heap

4 n=1; T(n)=u; L(u)=n; % n is now the size of the heap

5 % enter the main dijkstra loop

6 d(u) = 0;

7 while n>0

8 [v,n,T,L,d] = heappop(n,T,L,d); % find the closest vertex

9 % for each vertex adjacent to v, relax it

10 [si sj sv]=find(At(:,v));

11 for ei=1:length(si) % ei is the edge index

12 w=si(ei); ew=sv(ei); % w is the target, ew is the edge weight

13 % relax edge (v,w,ew)

14 if d(w)>d(v)+ew

15 d(w)=d(v)+ew; pred(w)=v;

16 % check if w is in the heap, insert if not, else update

17 if L(w)==0, [n,T,L,d] = heapinsert(w,d(w),n,T,L,d);

18 else [n,T,L,d] = heapupdate(w,n,T,L,d);

19 end

20 end

21 end

22 end

Just like the previous description, we �nd the closest vertex and compute the
distance to each neighbor. We then update the heap and continue.
�is function has respectable performance:
load_gaimc_graph(’cs-stanford’) % 9914 by 9914 with 36854 edges (directed)

A = sprand(A);

rand(’state’,0); vs = ceil(size(A,1)*rand(100,1));

tic, for i=1:100, [d pred] = dijkstra_slow(A,i); end, toc

Elapsed time is 10.748844 seconds.

If we remove the function calls for the heap and place the function code
in-line,17 then the performance improves considerably. 17We have omitted the source code for

this case because it gets rather verbose
with all the heap manipulations.Elapsed time is 3.459063 seconds.

�e critical graph operation in Dijkstra’s algorithm is accessing the out-
edges of an arbitrary vertex. �e approach used in the dijkstra_slow imple-
mentation above is to transpose the sparse matrix and work with the Matlab
matrix structure directly. For each out-edges query, this approach involves
extracting a column and using the find function to get the non-zeros.18 An 18 Recall that Matlab stores sparse matri-

ces using the compressed column format
[Gilbert et al., 1992] and thus we’d need
to extract columns for e�ciency.

alternative is to convert the sparse matrix into a compressed sparse row struc-
ture on every call. Using this approach, we obtain even better performance.

Elapsed time is 1.052805 seconds.
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In gaimc, then, we �rst convert any Matlab sparse matrix input to a com-
pressed sparse row data structure for the graph operations. A support func-
tion sparse_to_csr performs this simple conversion. All gaimc functions
also accept a structure with the compressed sparse row arrays pre-computed.
Another advantage of using our own compressed sparse row structure

occurs when the graph has edge weights of 0. �e Matlab sparse matrix
structure removes such entries [Gilbert et al., 1992].
Based on this analysis, we o�er some advice to optimize Matlab functions:
• do not use function calls
• evaluate performance of built-in Matlab functions
• question performance assumptions.

While just-in-time compiled Matlab code may not be as fast as optimized C
or C++ code, it need not be slow.

6.4.3 Performance

In the previous sections, we have reviewed how to implement a heap
structure inMatlab, and optimized the performance of an algorithmusing the
heap. In this section, we compare the performance of gaimc to MatlabBGL.
Writing native Matlab code does not o�er the same performance as native
C or C++ code and we evaluate gaimc by how much slower the routines are
compared with their C++ Boost graph library counterparts. In our tests, we
plot the slowdown ratio

s = tgaimc
tMatlabBGL

,

where tgaimc is the time of an operation in gaimc and tMatlabBGL is the time of
an operation in MatlabBGL. �us, a slowdown ratio around 1 implies that
the routines took roughly the same amount of time.
We evaluate the performance of 6 functions:
1. depth �rst search (dfs),
2. strong components (scomponents),
3. Dijkstra’s single-source shortest paths (dijkstra),
4. directed clustering coe�cients (dirclustercoeffs),
5. Prim’s minimum spanning tree (prim_mst), and
6. clustering coe�cients (clustercoeffs),

in two cases:
• standard Matlab sparse matrix input (standard), and
• “pre-converted” input (fast).

In MatlabBGL and gaimc, the input must be transposed or converted to
compressed-sparse row arrays, respectively. In the second case, we show the
performance with inputs that are already converted, which corresponds to a
faster function call.



136 6 ⋅ software

We evaluate each function on either a small set of sample graphs (dfs and
dijkstra) or a set of synthetic graphs (scomponents, dirclustercoeffs,
prim_mst, and clustercoeffs). For each function, we call it once to ensure
that the Matlab just-in-time compiler has the current version compiled. �e
two search functions that begin with a source vertex—dfs and dijkstra—
are called on each of the graphs listed in table 6.2 with 100 random starting
vertices, and every test is repeated 30 times. �e functions scomponents and
dirclustercoeffs are evaluated on 30 instances of random directed graphs
with 25 edges per row and 10, 100, 5000, 10000, and 50000 vertices. �e
function clustercoeffs is evaluated similarly, but with random symmetric
graphs instead. Finally, the minimum spanning tree function is evaluated on
30 instances of a random symmetric graph with average degree 25 and 100,
5000, and 10000 vertices. �e aggregated results of all these tests are shown
in �gure 6.4.

Graph Verts. Edges

allsp1 5 9
clr24-1 9 14
wb-cs.stan 9914 36584
minnesota 2642 3303
tapir 1024 2846

Table 6.2 – gaimc evaluation graphs.
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Figure 6.4 – Performance of the gaimc library. An experimental comparison of the performance
of the gaimc library to MatlabBGL shows that many functions in gaimc take only twice as
much time as their MatlabBGL counterparts. �e di�erence between the standard and fast
operations is that fast operations eliminate any data translations and measure pure algorithm
speed. Standard calls in these libraries involve some data translation, which is included in the
time for the standard operations.

With the exception of mst_prim, the gaimc functions are roughly 2-4
times slower than their MatlabBGL counterparts. At the moment, we don’t
understand why the dfs function is faster in gaimc or why the mst_prim
routine has dramatically di�erent performance. Exploring these di�erences
is a task for the future.

6.5 libbvg and bvgraph’s in matlab

�e �nal so�ware package that we discuss in this chapter is libbvg and
its Matlab counterpart bvgraph. All the source code and examples for these
paired packages are online at the LaunchPad open-source hosting repository,
https://launchpad.net/libbvg.19 19We anticipate migrating them to the

github system soon.Both of these packages work with web graphs, which are graphs formed
by hyper-linking relationships on the world wide web. �ese graphs are
extremely large—the complete network has over one trillion nodes [Alpert
and Hajaj, 2008]—and subsets o�en have more than one hundred million

https://launchpad.net/libbvg
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nodes. Although gigantic, the network and its subsets have considerable
structure.
Both libbvg and bvgraph provide an interface for web graphs compressed

in the Boldi-Vigna (BV) scheme [Boldi and Vigna, 2005]. With this scheme,
web graphs o�en use fewer than three bits per link. Standard graph storage
techniques need more than four bytes per link.20�e Boldi-Vigna compres- 20�is estimate assumes that graphs

are stored with compressed sparse row
arrays with 32-bit indices (four bytes)
and without any compression.

sion scheme exploits two empirically observed properties of web graphs to
obtain such remarkable compression rates. First, when the URLs of each
node are ordered lexicographically, then the link distances (∣i− j∣where i and
j are the indices of the URLs of the link) follow a power-law. Boldi and Vigna
designed a special coding scheme to compress these power-law distributed
numbers. Second, many URLs within a site repeat the same links. Allow-
ing nodes to “copy” links from previous nodes (within a limited window of
previous nodes) allows them to compress these structures. Together, these
techniques are incredibly e�ective and stable—they have compressed web
graphs collected between 2001 and 2007 at nearly the same rate (three bits
per edge).

�e only problem with their compression scheme is that it makes random
access to the out-edges of a node less e�cient than sequential (or streaming)
access. �is occurs because the desired out-edges may reside in a node that
copies its links from a previous node, which also copies its links from a previ-
ous node, and so on. To combat the “in�nite” copying, the implementation
imposes an optional limit on the maximum copy depth.
E�cient access to large graphs is a powerful experimental tool for algo-

rithms like PageRank. In the remainder of this section, we describe the two
libraries and how they let us compute on enormous graphs with limited re-
sources.

6.5.1 libbvg

In libbvg, we provide a C99 interface for web graphs compressed in the
Boldi-Vigna scheme. �e library enables both in-core and out-of-core access
to these graphs and intends to mirror the Java WebGraph framework [Vigna,
2008].

�e following program uses the library to extract the degree for each node
in a graph and store them in the array degs:

bvgraph g = {0};

bvgraph_load(&g, graphfilename, strlen(graphfilename), -1); /* load out-of-core */

bvgraph_iterator iter; unsigned int deg;

double *degs = malloc(sizeof(double)*g.n);

int rval = bvgraph_nonzero_iterator(&g, &iter);

for (; bvgraph_iterator_valid(&iter); bvgraph_iterator_next(&iter)) {

bvgraph_iterator_outedges(&iter, NULL, &deg); *(degs++) = (double)deg;

}

bvgraph_iterator_free(&iter);

�e two types bvgraph and bvgraph_iterator encompass most of the func-
tionality of the library. �e bvgraph type stores the data about the graph and
the bvgraph_iterator type sequentially accesses vertices and their edges.
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�e current libbvg does not yet support accessing vertices in the graph
randomly. Some of the support for random access exists in an un�nished
bvgraph_random_iterator structure.
�ere is little le� to the library beyond the two types above. Primarily,

this follows because access to out-edges is su�cient to compute PageRank
and other simple problems on the graph. In the next section, we discuss an
optimized implementation of the power method for PageRank using these
data structures.

parallel extensions Before getting to the power method, let us men-
tion that libbvg has a few extensions to work with the bvgraph data struc-
tures in a multi-core environment. �e idea is that each core will have its own
computation thread and we can assign a contiguous set of nodes to that core.
In the implementation, we assign a special nonzero iterator to each thread.
�ese special iterators store their state so that they can begin iterating in the
middle of the graph, which eliminates the problem with links copying their
predecessors.21

21 See section 5.6.3 for more information
about the performance of this technique
with PageRank.

6.5.2 �e power method in libbvg

In program 9, we present an implementation of the power method in
libbvg. Many of the vector operations in the standard power method are
gone. �is particular code replaces themwith a series of combined operations.
So that we can understand how the optimizations work, we begin by repeating
a simple implementation of the power method from program 2. We stripped
the implementation down to the pure computational pieces (and removed
all the convenience features).

function [x flag reshist]=powerpr(P,a,v,tol,maxit,verbose)

n=size(P,1);

x=zeros(n,1)+v; delta=2; iter=0;

while iter<maxit && delta>tol

y = a*(P’*x);

w = 1-csum(y);

y = y + w*v;

delta = normdiff(x,y);

x = y./csum(y);

end

In program 9, the vectors x and ymust be initialized before the bvpr func-
tion, and thus the �rst few lines of the Matlab implementation are irrelevant.
�e y = a*(P’*x) work is handled by the mult function. In addition to
computing y, this function also computes eTy and dTx—both using compen-
sated summation. Consequently, once the function returns, line 53 of bvpr
computes w without any additional work. �e next line performs the shi�
y = y + w*v and simultaneously computes csum(y). Line 56 normalizes y,
computes the di�erence normdiff(x,y), and resets x. Line 57 extracts the
compensated sum for delta and line 58 swaps the interpretation of x and y.
Note that, before the swap, y held the newly normalized iterate and x was
reset to 0. �us, the program is ready for another iteration a�er the swap.
In total, this approach utilizes two passes of the memory of x and y: the

�rst in line 54 and the second in line 56. In contrast, the Matlab code uses
5 passes over the memory of x and y. Vectorized computations, such as the
Matlab code, sometimes sacri�ce some performance.22

22 Furthermore, we also apply multi-
threading to program 9 to take advan-
tage of working on a multi-core system.
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Program 9 – An optimized power method.

1 /* define macros for compensated summation */
2 #define CSUM(x,y,t,z) { t=y[0]; z=(x)+y[1]; y[0]=t+z; y[1]=(t-y[0])+z; }
3 #define FCSUM(y) (y[0]+y[1])
4
5 /** Compute a matrix vector product with a substochastic bvgraph structure
6 *
7 * y = y + alpha*P’*x where P = D^{-1} A for the adjacency matrix A given
8 * by a bvgraph structure.
9 *
10 * g: the bvgraph; x: the right hand vector; y: the result vector (see above)
11 * alpha: the value of alpha (see above);
12 * sum_aPtx: the value e^T (alpha*P’*x); sum_dtx: the value d^T x
13 */
14 int mult(bvgraph *g, double *x, double *y, double alpha,
15 double *sum_aPtx, double *sum_dtx) {
16 using namespace std;
17 bvgraph_iterator git; int *links; unsigned int i, d;
18 bvgraph_nonzero_iterator(g, &git); /* omit error checking */
19 double id=0.0; double sumy[2]={0},t,z; double dtx[2]={0};
20 for (; bvgraph_iterator_valid(&git); bvgraph_iterator_next(&git)) {
21 bvgraph_iterator_outedges(&git, &links, &d); /* get outlinks */
22 if (d > 0) { id = 1.0/(double)d; } else { CSUM(x[git.curr],dtx,t,z); }
23 for (i = 0; i < d; i++) {
24 y[links[i]] += alpha*x[git.curr]*id;
25 CSUM(alpha*x[git.curr]*id,sumy,t,z); /* update the running sum */
26 }
27 }
28 if (sum_aPtx) { *sum_aPtx = FCSUM(sumy); }
29 if (sum_dtx) { *sum_dtx = FCSUM(dtx); }
30 bvgraph_iterator_free(&git);
31 return (0);
32 }
33
34 /** Solve PageRank using the power method with uniform teleportation
35 *
36 * For the strongly preferential model of PageRank with uniform
37 * teleportation, this algorithm computes a vector x such that
38 * x \approx alpha (P + dv’)’*x + (1-alpha) ve’*x
39 *
40 * g: the bvgraph; alpha: the value of alpha in the computation;
41 * tol: the stopping tolerance; maxiter: the maximum number of iterations
42 * x: a vector length n initialized to 1/g.n in each component
43 * y: a vector initialized to 0 in each component
44 * return: the pointer to the vector (x or y) that contains the solution
45 */
46 double* bvpr(bvgraph* g, double alpha, double tol, int maxit, double *x, double *y)
47 {
48 size_t n = (size_t)g->n, n1;
49 int iter = 0; double delta = 2, sumy, dtx, ny, *xi, *yi, t, z;
50 simple_time_clock(&start);
51 while (delta > tol && iter++ < maxit) {
52 if (mult(g, x, y, alpha, &sumy, &dtx)) { return (NULL); }
53 double w = (alpha*dtx+(1-alpha))/(double)n,nys[2]={0}; delta=0.0;
54 n1=n;yi=y; while (n1-->0) { (*yi)+=w; CSUM(fabs(*yi++),nys,t,z); }
55 n1=n;yi=y;xi=x;ny=FCSUM(nys);nys[0]=0.;nys[1]=0.; /* compute norm y */
56 while (n1-->0) {(*yi)/=ny; CSUM(fabs(*yi-*xi),nys,t,z); *xi=0.; xi++; yi++;}
57 delta=FCSUM(nys); /* get the current change */
58 { double *temp; temp = x; x = y; y = temp; } /* swap */
59 }
60 return x;
61 }
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6.5.3 bvgraph

�e last section discussed a case when using a high-level language like
Matlab incurred a possible performance penalty. Nevertheless, using Matlab
o�en increases productivity in other aspects of work. Our �nal package is
bvgraph, which is a Matlab class to work with libbvg.
�e bvgraph class (in the bvgraph package) creates a Matlab object that

presents a libbvg bvgraph type as an adjacency matrix. For example,
G = bvgraph(’wb-cs.stanford’);

d = sum(G,2);

D = diag(G);

y = G*rand(n,1);

loads the �le wb-cs.stanford.graph into memory with libbvg and then
computes the degrees of each node by summing a row of the “matrix”; extracts
the diagonal entries of the “matrix”; and performs a “matrix”-vector product.
�e “matrix” in this case is the adjacency matrix of the wb-cs.stan graph.
With the bvgraph class, this graph always stays compressed and can reside
in main memory (RAM) for faster access, or be streamed from disk when
memory is tight.

�e focus of this thesis is PageRank, and we are willing to spend a bit more
time to make PageRank work e�ciently. Using just the bvgraph class, unfor-
tunately, makes PageRank ine�cient. Consider the matrix-vector product
with P given only the adjacency matrix G:

d = sum(G,2); id = full(spfun(@(x) 1./x, sparse(d)));

y = G’*(x.*id);

�is computation requires storing an extra vector id. For a graph with 108
nodes (such as webbase-2001), an extra vector takes nearly one gigabyte of
memory. For many machines, storing an extra vector of memory may not be
possible. To address this problem, we introduce the ssbvgraph class:

P = ssbvgraph(G);

y = P’*x;

�e ssbvgraph class is a sub-stochastic bvgraph, because it computes a sub-
stochastic matrix-vector product. It computes this product implicitly by
taking advantage of the same implicit normalization that program 9 used.
Using this class, we can substitute a ssbvgraph object for a sub-stochastic
matrix in many of the Matlab codes for PageRank given throughout this
thesis.23 23�e ssbvgraph class works with

both program 2 (the power method),
program 5 (Monte Carlo RAPr), pro-
gram 6 (path damping RAPr), program 7
(quadrature RAPr), and and program 8
(the inner-outer iteration). It does not
work with any of the Gauss-Seidel rou-
tines.

Together, these classes make it easy to work with huge graphs in Mat-
lab. �ey introduce minimal memory overhead, and integrate nicely with
standard Matlab matrix operations.
We now end our discussion of the three so�ware packages composed for

this thesis.
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6.6 publication packages

Britian’s Royal Society is the �rst group of academics to gather regularly
and discuss what we now call science. A key feature of their gatherings was
the presentation of experiments. Experimental evidence and demonstration
were critical aspects of this group. It is disturbing how common the lack of
experimental demonstration has become. Papers have experimental results,
but public demonstration of these results is rare. Some scientists release their
experimental codes, others do not.
�is situation is unacceptable.
Computational results are some of the easiest to publicly demonstrate

and share. Within this thesis, the majority of the experiments work with
roughly 200 lines of code. �is code is part of the thesis, incorporated into
the text, and publicly released. Furthermore, the experimental scripts for the
thesis are also publicly available. Anyonewith access to similar computational
resources and a bit of patience has the capability of reproducing our results.
Furthermore, a similar public disclosure holds for the publications sup-

porting this thesis. We now describe the three publication packages.

rapr Computing the Random Alpha PageRank vectors involves merely a
few lines of Matlab codes, as program 5, program 6, and program 7
show. In the RAPr24 package, we provide these codes along with all of 24 Available online: http://stanford.

edu/~dgleich/publications/2008/

rapr.
the experimental routines. �ese routines reproduce all the �gures in
chapter 4 and even include other experiments that are not incorporated
into the text. Within these codes, we also provide the C++ routines to
compute the RAPr statistics using libbvg.

innout We decided to pun on the name of the popular California burger
chain “In-n-out” with the name of the package corresponding to the
inner-outer iteration.25 Just like the RAPrpackage, the innout package 25 Available online: http://stanford.

edu/~dgleich/publications/2009/

innout.
contains all the Matlab codes, C and C++ programs, and experimental
drivers to reproduce the �gures in chapter 5.

thesis A forthcoming package includes all the codes generated for extra
�gures in this thesis.26 Some of these programs use the RAPr and 26 Available online: http://stanford.

edu/~dgleich/publications/2009/

thesis.
innout packages to derive new results. One example is the list of pages
in Wikipedia with largest derivative from table 3.3. Another example
is the derivative code itself.27 27While there was never a prior deriva-

tive package, our derivative routine was
released in an older Matlab PageRank
package.

We hope that releases like these become standard in the future.

reproducible research �ere is some cause for hope. Jon Claerbout
at Stanford has long advocated reproducible research for scienti�c computa-
tions [Schwab et al., 2000]. Others have adopted his philosophy [Buckheit
and Donoho, 1995; Donoho et al., 2009]. Indeed, an entire issue of the Com-
puting in Science and Engineering journal was recently devoted to this topic
[Fomel and Claerbout, 2009]. �e so�ware packages of this thesis �t the
general motivation of reproducible research, although some of the speci�cs
di�er.

http://stanford.edu/~dgleich/publications/2008/rapr
http://stanford.edu/~dgleich/publications/2008/rapr
http://stanford.edu/~dgleich/publications/2008/rapr
http://stanford.edu/~dgleich/publications/2009/innout
http://stanford.edu/~dgleich/publications/2009/innout
http://stanford.edu/~dgleich/publications/2009/innout
http://stanford.edu/~dgleich/publications/2009/thesis
http://stanford.edu/~dgleich/publications/2009/thesis
http://stanford.edu/~dgleich/publications/2009/thesis
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summary

�ree so�ware packages support the computations in this thesis.

matlabbgl �is library brings the power of the Boost graph library to
Matlab. It usesMatlab’s own sparse matrix type as the adjacencymatrix
of a graph and supports a wide range of graph analysis algorithms.

gaimc In contrast with MatlabBGL, the gaimc package is small and com-
pact, but adds graph algorithms to Matlab in the same way. It is de-
signed for cases when performance is not paramount.

libbvg/bvgraph �ese paired libraries make it easy to work with ex-
tremely large web graphs in C and Matlab. Internally, they use graphs
compressed in the Boldi-Vigna scheme [Boldi and Vigna, 2005], and
keep them compressed throughout the computations.

Finally, we brie�y highlight three publication packages that make all the
results of two publications and this thesis completely reproducible.



�at it should come to this!
—Hamlet

7 CONCLUS ION

At the outset of this thesis, we embarked on an exploration of α. Recall
the setting. PageRank is a technique to rank the nodes of any graph by their
importance. All too o�en, people introduce PageRank with the idea that
“important nodes” connect to other ”important nodes.” Such a de�nition
suggests an importance vector x that satis�es

Px = x,

where P is a column stochastic matrix describing a �ow of importance. Typ-
ically, importance �ows uniformly along the edges of the graph. But, these
introductions ignore α, and it is α that distinguishes PageRank! PageRank
needs α because Px = x creates a model where the importance scores, or
ranks of the nodes, are not well de�ned.
Instead, better de�nitions of PageRank begin with α. We suggest a few

possibilities. First, “important pages” probably connect to other “important
pages.” �e value of α arises immediately to quantify the term probably in
this de�nition. Another possibility is to begin outright with

α: a parameter between 0 and 1 to reduce the �ow of in�uence in a graph.

Or, perhaps

α: the probability that a random surfer in the web follows a link.

�is last de�nition ties PageRank too closely to web search, however. Begin-
ning with all of these de�nitions quickly leads to PageRank itself:

(I − αP)x = (1 − α)v.

In the �rst two de�nitions, v is any intrinsic measure of node importance.
Without other information, a uniform choice is entirely appropriate as the
choice of intrinsic importance. In all de�nitions though, importance �ows
as αP—and that is the key to PageRank.
Given any de�nition of PageRank, it must involve α, and it is surprising

how little attention α received in early discussions. �e �rst �ve years of
PageRank research largely ignored the impact of α. �at �nally changed.
It almost seemed as if α were “in the air,” to borrow a phrase from my late
adviser. A stream of papers between 2003 and 2007 attacked α directly. �ese
attacks established that PageRank is a rational function α [Boldi et al., 2005],
examined the parametric structure of the so-called Google matrix de�nition
of PageRank [Serra-Capizzano, 2005], and even proposed a theoretically

143
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motivated choice of α [Avrachenkov et al., 2007]—among other contributions,
of course.
�is thesis �ts the canon of that attack. We focus on the interaction be-

tween α and PageRank from the perspective of sensitivity analysis in three
ways.

the derivative First, PageRank is a rational function of α. and a simple
measure of the stability or sensitivity of such a function is the derivative.
PageRank’s derivative with respect to α satis�es

(I − αP)x′(α) = Px(α) − v.

Chapter 3 begins with this derivative. We provide two theoretical con-
tributions: a discussion of mathematical formulations of the PageRank
derivative (section 3.1) and a theorem relating a �rst order Taylor step
along the derivative to another PageRank vector (theorem 7). Further-
more, we introduce a new algorithm to compute the derivative using
any existing techniques to compute PageRank (section 3.2).

random alpha Second, the random surfer model for PageRank on web
pages suggests that the value of α ought to re�ect the probability of real
people following links when browsing the web. Chapter 4 embraces
this view and follows it to its logical conclusion. Because PageRank
is a nonlinear function of α, the PageRank vector with any aggregate
probability α is incorrect and we need to regard α as a random variable
distributed according to all the probabilities of following a link. In
order to explore the resulting model computationally (section 4.6), we
employ techniques from the uncertainty quanti�cation community,
which were developed to solve partial di�erential equations models
with random variables. When α is random, the PageRank vector itself
is also random, and the standard deviation of the random variables in
the PageRank vector produces a new sensitivity measure for PageRank
(section 4.2). We also present an empirically measured distribution of
α values for around 2,000,000 people (section 4.5) and show that the
standard deviation vector aids a spam classi�cation task (section 4.8.4).
�is chapter contains rigorous error analysis and convergence theory
for all of the algorithmic techniques (section 4.7).

pagerank solvers �ird, the problem of computing a PageRank vector
for a particular value of α can be formulated as computing a sequence
of PageRank vectors with a β smaller than α. To wit, PageRank with
0 < β < α solves PageRank at any desired α. �e resulting inner-outer
iteration for PageRank is discussed in chapter 5. Sensitivity does not
arise directly in these ideas. Rather, the interplay of α and β in an
e�cient computation depends on many ideas related to the structure
of the PageRank function itself, which inevitably leads to some sen-
sitivity interpretations. �e inner-outer computation is also one of
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the most e�cient PageRank solvers, and we use it throughout the pre-
ceding chapters to compute PageRank vectors for the other sensitivity
analyses.

�ree conclusions from this thesis are:
α matters, but don’t pick it;
everything is just PageRank, so make it fast; and
don’t ignore sensitivity, it could help.

In all of the experiments, we pick a value of α. Just as illustrated in the
introduction (chapter 1), changing α produces a di�erent PageRank vector.
Nothing in this thesis solves this problem. We o�er an alternative, however.

Don’t pick α.
Pick a distribution for a random α instead.

Choosing an appropriate distribution does not change the sensitivity be-
cause changing the distribution a�ects the new random PageRank vector,
too. Sometimes—like in web search—there is a natural distribution to use.
Otherwise, consider a uniform distribution. Even though the distribution
may not be perfect, the distribution produces a useful sensitivity measure:
the standard deviation.
For both sensitivity analyses, the derivative and the standard deviation,

the key computational technique was PageRank itself! Using both models
reduces to solving a few PageRank problems and then deriving the results
from these PageRank vectors. �e inner-outer iteration even solves PageRank
using PageRank, albeit with a smaller value of α. �ese results seem like a
�uke. But they show the remarkable �exibility of PageRank as a function
of α. �e devil’s advocate will argue that such results are expected from an
exploration of sensitivity analysis. �is objection is unfounded. Consider
the conversion from the derivative into PageRank problems. It is surprising
that this conversion is possible because it depends crucially on the structure
of the PageRank problem. Investing the e�ort in a speedy PageRank solver
enables these, and other, experiments.
�e sensitivity measures helped the spam classi�cation task. Nothing in

the design of these measures is tuned to spam identi�cation. �is suggests
that using the sensitivity vectors in other applications may produce similar
improvement. �us, do not ignore sensitivity.

7.1 discussion

Will this thesis matter? Predicting the future is a di�cult problem best
avoided in this case. Instead, let us critically address a few points raised by
this thesis.
• Is PageRank research still useful?
• Is picking a distribution for α really helpful?
• Why use such strict tolerances in your computations?
• What about ties in the PageRank vector?

We address each question in order.
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7.1.1 Is PageRank research still useful?

�e death of PageRank has been forecast since 2003 [Zawodny, 2003].
Zawodny claims that the success of PageRank necessarily induces its future
failure. Because PageRank utilizes the link structure of the web, it originally
produced useful information for web ranking. But, the impact of PageRank
on web search caused people to change their link structures to manipulate
PageRank. �us, links on the web will become less reliable over time.
It is now 2009, and Google still uses PageRank [Cutts, 2009]. Rumors

about its death are greatly exaggerated, apparently.
In fact, Cutts [2009] discusses a critical change in the PageRank formu-

lation used by Google. �e change is that they no longer construct a 0, 1
sub-stochastic matrix from the link structure, but construct a general sub-
stochastic matrix instead.1�is change shows that PageRank is still useful to 1 Formally, for the new sub-stochastic

matrix P̄ we �nd that eT P̄ can be any
number between 0 and 1. �ese column-
sums need not be 0 or 1 as in the formu-
lation in chapter 2.

Google, and thus research on it matters.
On the other hand, Najork et al. [2007] claimed that PageRank is one of

the least e�ective measures in a machine learning framework for web search.
It is worse, incredibly, than a measure based on in-degree. �ey conjecture
that this phenomenon arises from link manipulation to enhance PageRank.
�us, it would seem that they empirically con�rm Zawodny’s claim. If this is
true, why would Google still use PageRank?
We believe that the resolution relies in how Google uses PageRank. Re-

cently, Becchetti et al. [2008] show that metrics derived from PageRank are
helpful in identifying spam pages. PageRank also helps web crawling op-
erations [Lee et al., 2008]. Google supposedly uses PageRank to in�uence
the crawling rate as well [Cutts, 2006]. �ese two tasks are fundamentally
di�erent from determining the order of web search results.
PageRank is still useful.

7.1.2 Is picking a distribution for α really helpful?

In chapter 4, we argue that the RAPr model suggests an obvious choice for
α and the distribution of α: use the values obtained by studying surfers. Crit-
ics will object: these choices may not yield the best results for web search or
spam detection. We agree, and our web spam analysis supports this objection.
Our point is that, regardless of the application, picking a distribution

tends to yield more information about the graph. Some of the information is
correlated with PageRank (the expectation) and some appears uncorrelated
(the standard deviation). Picking a distribution gives us more �exibility to
obtain a “best” vector. For our spam example, the best results occurred with
a distribution that looks nothing like the empirically measured distribution.
In terms of sensitivity, picking a distribution and using the standard devia-

tion seems superior to using a sensitivity measure from the derivative. Values
of the derivative are di�cult to interpret, whereas the standard deviation
sensitivity values have a natural probabilistic interpretation.
Our advice: Just pick a distribution.
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7.1.3 Why use such a strict tolerance in your computation?

In all the PageRank computations throughout the thesis, we computed
PageRank vectors with a strict tolerance, typically tighter than 10−10. �ese
vectors are needlessly accurate. Many applications use PageRank vectors with
loose tolerances around 10−4 [Kamvar et al., 2003].
We felt that computing PageRank accurately was necessary to distinguish

between the e�ects of our new sensitivity measures and the e�ects due to
inaccurate computations. Many of the PageRank values are small and a few
are quite large. Distinguishing di�erences among the small values implies we
should use a strict tolerance.
Also, the real answer to the tolerance question is: because we can. �e

graphs studied in this thesis are small compared with industrial web graphs.
In this sense, the di�erence in computation time for extra accuracy is mean-
ingless. �ere are no application requirements we have to meet, so why not
get extra accuracy?

7.1.4 What about ties in the PageRank vector?

At various points in this thesis, we illustrate a PageRank vector with an
ordered list. For the nodes with highest PageRank, showing an ordered list
is okay because the top few PageRank values are clearly separated from each
other. �e remainder of the PageRank vector, however, is o�en riddled with
tied values. �ese ties are identical �oating-point numbers and not just values
within the machine precision tolerance. Exact �oating-point ties occur when
two pages have identical in-links, the value of v is the same on both pages, and
the PageRank solver is invariant to permutations.2 While we do not attempt 2 It is worth noting that Gauss-Seidel

algorithms are not invariant to permuta-
tions. �is may suggest that they are less
reliable for ranking purposes.

to quantify the total number of ties—they do seem to be common.
�is a�ects the results here in two ways. First, the Kendall-τ computation

requires the order of the nodes. We used a version of τ that incorporates
tied values, however. Second, the intersection similarity measure also uses
a ranked order. �is computation may change in the presence of ties. We
only expect a slight change as the measure itself is considerably less sensitive
to tied values. �is follows because of the smoothing e�ect in the running
average nature of the metric.
In short, ties are a problem with some PageRank computations, but we do

not expect them to alter the results of this thesis in any meaningful way.
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7.2 future work

We are almost done. �ere are some small loose ends (dangling nodes?)
to address (connect?). Each is an idea to improve a piece of the results.

7.2.1 RAPr speed

Although Gauss quadrature is the fastest method to compute the expecta-
tion and standard deviation in the RAPr model, it is slow. We need to solve
many PageRank problems at values of α that are close to 1. �ese vectors take
considerable computation time.
Gauss-Turán quadrature [Gautschi, 2004] uses derivatives in a quadrature

rule. If we use 2s derivatives, then we get a rule with degree of exactness
(2s+2)n−1. �e error estimates extend toO(ρ−(2s+1)n) accuracy for certain
weight functions [Milovanović and Spalević, 2003]. In other words, it satis�es
all the properties of the Gauss quadrature rule, but uses derivatives instead of
extra nodes. Computing PageRank derivatives can be done at the same value
of α. Switching to this new quadrature rule seems a promising idea to speed
the RAPr computations.
One concern is that computing the nodes and weights for the Gauss-Turán

quadrature rule involves solving a set of nonlinear equations. Algorithms
exist to compute the weights. A brief test using the turan.m function from
Gautschi [2002] showed convergence problems for all but the most trivial
rules. For example, the Newton iteration did not converge for more than
three quadrature points. �is suggests that high-precision numerical codes
using Mathematica may be required. One possible implementation is in the
“OrthogonalPolynomials” Mathematica package [Cvetković andMilovanović,
2004] but it does not appear to be publicly available.
It seems that using these rules �rst requires improving their computation.

7.2.2 Random modi�cations to other methods

PageRank has a beautiful interpretation with a random parameter, but
there aremany other numerical methods to rankweb pages. HITS [Kleinberg,
1999] and SALSA [Lempel andMoran, 2000] are two examples. Both of these
methods are parameter free, and there is no analog of α to convert to a
random value. We did not conduct an exhaustive survey to locate methods
that would bene�t from such a treatment, but there are many variations of
PageRank—e.g. TrustRank [Gyöngyi et al., 2004], N-step PageRank [Zhang
et al., 2007]—and some should bene�t.
At least one algorithm for learning a function on a graph includes a regular-

ization parameter that is similar to PageRank [Zhou et al., 2005]. Computing
a function with error bounds seems an exciting possibility for our methods.
Finally, there are many mathematical models that describe a process on a

network (e.g. [Atkinson, 2009]). Using random parameters should provide
new insights into analyses from these models.
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7.2.3 Tensor problems

Tensors are generalizations of indexed data, e.g. a matrix, with more than
two indices. Modern tensor theory and applications of tensor analysis are
quickly evolving �elds, see Kolda and Bader [2009] for a recent survey. One
application synthesizing tensors and PageRank is the sports ranking problem
from Govan et al. [2008]. �ey form a linear combination of multiple frames
of a tensor:

(I − α1P1 − α2P2 −⋯ − αkPk)x = (1 −∑ α j)v.

Using ideas from Constantine [2009], we could analyze this equation as a
multi-variate parameterized matrix problem. Similar techniques will apply
to other types of “tensor-frame” problems.
We would have liked to experiment with these ideas, but there is only so

much time. Perhaps we will be able to explore these techniques in the future.

7.2.4 gaimc performance

We have not discussed the so�ware chapter at all in the current chapter.
�at is not to imply that it is not important, but rather the conclusions of the
thesis are about PageRank and not so�ware.
We would like to conclude that using the Matlab code in gaimc is nearly

as fast as using the complicated MatlabBGL package. Our current perfor-
mance results indicate that this occurs for a few of the functions, but not for
others.
�e next step on the way to this conclusion is to track down these perfor-

mance discrepancies and understand why they are unavoidable or produce a
solution.

7.2.5 Inner-Outer extensions

We ended the chapter on the inner-outer iteration with a conjecture about
its asymptotic performance. Namely, the asymptotic convergence rate of
the inner-outer algorithm seems to be αλ2, where λ2 is the �rst eigenvalue
with ∣λ2∣ < 1, even though it runs iterations of the power method, which
converge at rate α. As written, the conjecture is false.3 For many large graphs, 3 Using P = [

0 0 0 0
1 0 0 1
0 1 0 0
0 0 1 0

] produces a coun-

terexample.
it appears to be a close approximation of what happens. We hope to formalize
this conjecture and establish when and why it holds.
Rigorously proving such a conjecture is incredibly important because we

are not aware of any other iterative algorithm that always computes PageRank
faster than the power method with similar memory requirements. With the
inner-outer iteration, it seems possible.
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7.2.6 PageRank as a function of a matrix

It would be nice to be able to compare the PageRank derivative and the
RAPr models directly. Each comes from a totally di�erent approach, but per-
haps there are some similarities. As luck would have it, there is a framework
where we can simultaneously look at both models: PageRank as a function
of a matrix.
Recall that PageRank is a vector rational function of α. A rational function

is a special case of an analytic function and analytic functions of scalars have
equivalent matrix functions. Formally, if f (x) is an analytic function of x,
then f (A) is well de�ned for any square matrix A. �us, we propose the
PageRank function of a matrix:

x(A).

WhenA = [ α 1
0 α ] then x(A) contains both the PageRank vector and its deriva-

tive. When A = J, the Jacobi matrix for the orthogonal polynomials on the
distribution of a random variable A, then A computes E [x(A)]!
While both vectors �t into thismodel, it does not seempossible to compare

them further.
Nevertheless, the PageRank function of a matrix is a tantalizing generaliza-

tion of the PageRank problem. It is somewhat of an aesthetic generalization
because we have no compelling uses for it; although, the equivalence between
the linear system formulation of PageRank and the eigensystem and Markov
chain interpretation �nally disappears. �ere are many aspects of this thesis
that included results for both the PageRank linear system, which tended to be
easy to derive, and the PageRank eigensystem, which tended to be di�cult to
derive. It is refreshing to conclude there are some di�erences between them.
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summary

PageRank—with its elegant simplicity and enthralling complexity—cap-
tured the hearts and minds of scientists and researchers over the past decade.
�ey have formalized, quanti�ed, extended, reinterpreted, and improved
many aspects of the PageRank problem and algorithms. With this thesis, we
join this global enterprise with our contributions: (i) some new understand-
ing of the PageRank derivative; (ii) a new generalization of PageRank; and
(iii) a faster PageRank algorithm.
Research is never perfect and the discussion in this chapter (section 7.1)

addresses some aspects of these contributions that are not ideal.
But the excitement of research is all the work that is yet come.

Now this is not the end.
It is not even the beginning
of the end. But it is, perhaps,

the end of the beginning.

—Winston Churchill
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