
Mace + Distributed Systems HOWTO

James W. Anderson
jwanderson@cs.ucsd.edu

Charles Killian
ckillian@cs.ucsd.edu

Amin Vahdat
vahdat@cs.ucsd.edu

January 29, 2008

Copyright c©2005, James W. Anderson, Charles Killian, and Amin Vahdat.

All rights reserved.

Terms of redistribution are described in § 1.1, but follow a BSD-Style license.

Abstract

Mace is a programming language and toolkit for building robust and high-performance distributed systems. The Mace
programming language provides constructs to specify services, protocols, and distributed systems as a composition
of services, messages, and C++ code. The Mace toolkit provides implementations for many classes of services,
including routing, overlay routing, multicast, aggregation, HTTP, and distributed hash tables. The Mace toolkit also
includes libraries for encryption, string processing, file I/O, serialization, and XML-RPC.

Contents
1 Preamble 3

1.1 Copyrights and Distribution . 3
1.2 Acknowledgments . 4
1.3 Feedback . 4

2 Why are you reading this document? 4
2.1 What is Mace? . 4
2.2 Why would I want to use a domain-specific language and toolkit? 4
2.3 Why shouldn’t I just use other previously existing languages? . 5

3 Getting and Installing Mace 6
3.1 Mace dependencies . 6
3.2 Getting the Mace source code . 6
3.3 Installing Mace . 6
3.4 The Mace Build System . 7

3.4.1 CMake is a build system generator . 7
3.4.2 Out of source builds . 7
3.4.3 Running CMake . 7
3.4.4 Configuring a CMake Build (and turning on debugging symbols) 7
3.4.5 Changing the CMake Input Configuration Files . 7
3.4.6 Adding New Source Files . 8
3.4.7 Features of CMake Makefiles . 8

1

4 A Simple Example: Ping 8
4.1 Ping Overview . 8

4.1.1 Usage Model . 8
4.1.2 Application and Service Components . 9

4.2 ServiceClass Definitions . 9
4.3 PingServiceClass . 9
4.4 ServiceClass Notes . 9
4.5 Handler Definitions . 10
4.6 PingDataHandler . 10
4.7 Handler Notes . 11
4.8 Service Implementations . 11
4.9 Ping Implementation . 11

4.9.1 Compiling the Ping Service . 12
4.10 Ping Application . 12

4.10.1 Compiling firstping.cc . 13
4.11 Running Ping . 13

5 Mace Specification Overview: Ping in Detail 14
5.1 Header Files . 14
5.2 Service . 14
5.3 Provides . 14
5.4 Services . 15
5.5 The Route Service Class (briefly) . 15
5.6 Under The Covers . 15
5.7 Constants . 15
5.8 Messages . 16
5.9 State Variables . 16
5.10 Transitions . 16

6 Ping Revisited 17
6.1 Revised Ping Implementation . 17
6.2 Revised Ping Application . 20

7 Mace Specification Revisited 22
7.1 Services (Revised) . 22
7.2 Constructor Parameters . 22
7.3 States . 22
7.4 Typedefs . 22
7.5 Messages (Revised) . 23
7.6 State Variables (Revised) . 23
7.7 Transitions (Revised) . 23
7.8 Routines . 25

8 A Real Example: DHT 25

9 Advanced Features 26
9.1 Registration UIDs . 26
9.2 Service Composition . 26
9.3 Local Addresses . 26
9.4 Auto Types . 27
9.5 Message Defaults . 27
9.6 Method Remapping Block . 28
9.7 Automated Failure Detection . 30
9.8 Authentication . 30

2

10 Frequently Asked Questions 30
10.1 Registration UIDs . 30
10.2 Compiler Errors . 30
10.3 Compiler Warnings . 31
10.4 Linker Errors . 31
10.5 MapIterators, NodeCollections, and Iteration . 31
10.6 downcall and upcall helper functions . 32
10.7 64-bit Mace . 32
10.8 On the Mace Library . 33

A Directory Structure 34

B Service Classes 34

C Packaged Services 35

D Logging 36

E Useful Library Functions 37

F Applications 37

G Method Remappings 37

H RPC 38

1 Preamble

1.1 Copyrights and Distribution
This document is released under “the new BSD license” (listed below). The Mace software package is distributed
under the same license restrictions. This manual contains short example programs (“the Software”). Permission
is hereby granted, free of charge, to any person obtaining a copy of the Software, to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the conditions
of the license:

Copyright c©2008, James W. Anderson, Charles Killian, and Amin Vahdat.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the University of California, San Diego, nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

3

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

1.2 Acknowledgments
We thank Adolfo Rodriguez and Dejan Kostic for making Mace possible by developing the original system for building
overlay networks, MACEDON. We also thank all the other contributors who have worked on Mace or MACEDON,
including Ryan Braud, Darren Dao, Alex Rasumssen, Jim Hong, John Fisher-Ogden, Calvin Hubble, Jeannie Albrecht,
Duy Nguyen, Justin Burke, David Oppenheimer, Sooraj Bhat, Ranjit Jhala, and Amin Vahdat. We thank as well in
advance all reviewers of this document and those who give feedback.

1.3 Feedback
Please send feedback and corrections to Charles Killian (ckillian@cs.ucsd.edu), James W. Anderson (jwanderson@cs.ucsd.edu).
We will be grateful for corrections and will incorporate them as soon as possible.

2 Why are you reading this document?
Perhaps you stumbled on this document on the web somewhere, perhaps you have already downloaded Mace and are
trying to figure out how to use it, perhaps you are considering whether to use Mace, or perhaps you’ve been told to use
Mace by a boss or instructor, and need to figure out what that means.

This document will explain what Mace is, go through a simple example of how to use it, and discuss some of its
advanced features as well as address common concerns and questions.

2.1 What is Mace?
If you found this document looking for information on various forms of bludgeoning weapons or self-defense sprays,
then this paragraph will be all that is in this document about your search. None of these are the context in which
Mace will be discussed in this document. The name Mace is instead a derivative from the MACEDON parent project,
abbreviated to suggest the broader scope to which it is applicable.

Mace is a software package for building distributed systems. It builds upon the ideas from its parent project,
MACEDON, by broadening the scope of what can be designed with it, and by removing many limitations of the
original system.

Mace includes a compiler that translates service specifications into C++ code, libraries designed to be linked together
with generated services, a distribution of existing services ready to be used by other services or applications, and a few
basic applications to run the services contained within.

Mace seeks to transform the way distributed systems are built by providing designers with a simple method for
writing complex but correct and efficient implementations of distributed systems. To that end, we are always consid-
ering new libraries and language features which could be used to make building, designing, debugging, or verifying
distributed systems more powerful, flexible, simple, or natural.

2.2 Why would I want to use a domain-specific language and toolkit?
Over the past few years, we have set out to evaluate a variety of techniques for building robust, high-performance
distributed systems. One of our explicit goals has been to conduct head-to-head comparisons of algorithms proposed
in the literature, including our own. Target systems include application-layer multicast, distributed hash trees, peer-to-
peer indexing systems, and overlay routing. One of the primary lessons of this work thus far has been the difficulty

4

mailto:ckillian@cs.ucsd.edu
mailto:jwanderson@cs.ucsd.edu

of translating elegant and seemingly simple distributed algorithms into operational, high-performance, and robust
systems.

We found significant commonality among the various implementations—for instance, event handling, timer man-
agement, failure detection, asynchronous communication, node join/departure, and message serialization/deserialization.
However, differences in individual application structure and implementation forced us to repeatedly reimplement the
same functionality, typically with a different set of errors and inefficiencies each time. Even once the baseline system
was operational, the resulting application often performed significantly slower than expected and bugs in corner cases
would remain dormant or masked for long periods of time.

We concluded that a significant impediment to rapid prototyping of our target applications was the lack of an ap-
propriate development environment for distributed applications. Based on our experience, we identified the following
requirements to ease this development effort.

Constructing distributed systems would be simplified by the ability to compose simple distributed computing prim-
itives into more complex behavior. For instance, many distributed applications would benefit from failure detection,
consensus, multicast, barriers, and key-based routing. However, without well-defined API’s, it is difficult to reuse
implementations or to leverage the benefits of an improved implementation of a given logical subsystem. In this paper,
we describe initial efforts to define required API’s to support complex, multi-layer distributed systems.

Current programming languages are not well suited to the requirements of distributed systems. While there are
communication libraries and class hierarchies in languages such as C++, Java, and Python, they typically target
client/server communications (e.g., HTTP or XMLRPC) and still provide relatively primitive support for failure de-
tection and recovery. Further, we observe that the higher-level structure of many distributed systems is logically event-
and state-based. Each node maintains some state that may be modified as a result of a series of events, typically
message reception and timer expiration. Individual nodes respond to events by modifying their state and perhaps
transmitting their own message to one or more destinations. While this high level structure is simple to describe, it is
error prone to implement. Further, managing asynchrony still remains a challenge. Delivering high performance often
requires careful consideration of appropriate locking primitives, ensuring that individual operations do not block, and
assigning the appropriate number of threads to handle logically concurrent tasks. Of course, all of this can be pro-
grammed in existing languages such as C++ and, to a lesser extent, Java. Providing the appropriate language primitives
can both significantly simplify the code and reduce opportunities for errors.

Debugging support for distributed systems remains primitive, often reducing to custom scripts run over log files
generated at hundreds of individual sites. Generating the necessary debugging information can make the underlying
code less efficient, less readable, and more error prone. With appropriate language support, the appropriate logging in-
formation can be generated semi-automatically. Further, the information can be efficiently stored in a format amenable
to inserting into a SQL database. We have found this log of per-event system activity along with separate programmer
annotations for their expectations of how the distributed system should behave and assertions about global correctness
conditions (both of which must necessarily simultaneously apply to state stored at multiple nodes across at multi-
ple time granularities) to be invaluable in debugging distributed system behavior. These distributed expectations and
assertions may apply to to both system performance and distributed system structure.

We are building Mace to be just the support that a designers and developers need when building distributed systems.
It is a complete redesign and rewrite of its parent project, MACEDON, targeted at a broader range of distributed
systems, and with better support for the programmer with fewer limitations.

2.3 Why shouldn’t I just use other previously existing languages?
Though there are a few existing languages with similar goals, most do not have the emphasis on building real systems
as Mace does. MACEDON of course is very close, but suffers from limitations such as fixed size message headers,
restricted and monolithic API, non-portable network communications, lack of support for connecting with external
processes (such as XML-RPC or HTTP), lack of support for firewall traversal, more primitive logging, and a single
linear protocol/service stack.

(Ed. Note: Comments on other systems forthcoming).

5

3 Getting and Installing Mace

3.1 Mace dependencies
Mace requires the following system software packages:

gcc/g++ The GNU C and C++ compilers. Mace is tested with GCC versions 3.4 (including MinGW), 4.0, 4.1, and 4.2.
It has in the past worked with a few GCC version 3.3.X systems, but most frequently causes internal compiler
segmentation faults. Using at least version 3.4 is highly recommended. This should also be accompanied with a
build system that cmake can output builds for.

perl Perl version 5.8 or greater. Additionally, Class-MakeMethods and Parse-RecDescent modules are needed (and
are included in mace-extras).

system libraries libpthread, libm, libcrypto, libstdc++, and libssl.

libboost Used in a few places for shared pointers and lexical casting.

libdb cxx Version 4.2, 4.3 or 4.4. This is the Berkeley DB package, and is optional for building Mace.

cmake Mace uses the CMake build system for cross-platform building.

lgrind For making the documentation from the source files, beautifying the source code. Also needs LaTeX.

Mace is regularly tested on Debian GNU/Linux and CentOS. It has been tested on 32 and 64 bit Linux systems, 64
bit OSX systems, and WinXP (under MinGW).

Compiling on Windows. When building Mace under MinGW (Windows), users will have to install OpenSSL li-
braries, GNU libregex, pthreads for windows, and (if desired) build the Berkeley DB C++ library by hand (the binary
distribution does not include it as far as we could tell).

3.2 Getting the Mace source code
Mace is Open Source Software which is be published under a BSD-style license. The latest Mace source code release
can be found at the following URL:

http://mace.ucsd.edu/release

Download this file and save it in the directory where you will be doing your development. Unpack it using tar -xvzf
mace-latest.tar.gz where latest is replaced by the version string from the version downloaded.

Or download mace from the subversion repository using:

svn co http://mace.ucsd.edu/svn/mace/trunk mace

3.3 Installing Mace
Currently, the Mace distribution does not require the installation of any Mace-related files outside of the Mace source
tree. All development using Mace can be done inside the source tree.

To build the Mace distribution (in brief), use the following commands:

$ cd mace
$ mkdir builds
$ cd builds
$ cmake ../
$ make edit cache #or ccmake .
$ make

This will build the Mace libraries (described in § E), services (§ C), and applications (§ F).

6

http://www.cmake.org
http://mace.ucsd.edu/release

3.4 The Mace Build System
Mace uses CMake to generate its build system. CMake greatly simplified the process of supporting various platforms,
with different paths, operating systems, bit sizes, and build systems. It can even generate visual studio projects (though
Mace cannot build presently under visual studio).

This document is far from an instruction guide to using CMake, but in this section, we’ll cover several topics about
using CMake to build Mace. If you know CMake, or just want to get on to learning about Mace, you can skip the rest
of this section for now.

3.4.1 CMake is a build system generator

CMake does not actually build Mace. What it does is generate the build system, which in turn does the actual work
of building Mace. In my own work with Mace, this output build system has always been Makefiles for use with
GNU Make. Readers should refer to the CMake documentation for other options. References following will assume a
Makefile build.

3.4.2 Out of source builds

Mace now requires builds to be done ”out-of-source.” What this means is that none of the generated code, object files,
or application binaries are placed inside the source directory. Attempts to configure CMake for in-source build will be
rejected by the Mace CMakeLists.txt (CMake configuration file). Out of source builds have the advantage that they
do not modify the original source directory, so building multiple outputs is simplified, and cleaning up builds is also
simpler. Also, it avoids confusion from having generated source files along side the original source files.

3.4.3 Running CMake

To run CMake, use cmake [path-to-mace], where you supply cmake the path to the top level Mace directory. CMake
will read the CMakeLists.txt in that directory, and configure the build accordingly. You should run cmake from the
directory in which you intend to build Mace. If all goes well, it will indicate that the build system is generated (not
just configured), and there will now be a Makefile you can use.

3.4.4 Configuring a CMake Build (and turning on debugging symbols)

When you run cmake, a number of things may need configuring. This may include the paths to various required or
optional libraries, header files, or include directories. Alternately, you may wish to set a release type. There are (at
least) two ways to configure a CMake build. If the build system hasn’t been generated yet, you have to use the first.
That method is ccmake [path], where ccmake is either the path to a partially configured CMake build (usually ’.’), or
the path to the Mace top-level directory (to start a new build directory). This opens the configuration editor, where you
can set variables and reconfigure the build. After setting a variable, you must first run ”Configure” (perhaps more than
once), and finally ”Generate”, to regenerated the build system. Until you do this, changed values may not be saved.
This method is probably what will be needed after a failed CMake configuration (e.g. for a missing library).

If the build system has already been generated, another way to enter the configuration editor is the command make
edit cache. This is the method commonly used for changing configuration parameters after a complete configuration,
such as the release type. By default, CMake will generated a normal build, in which no special flags are included. Other
options include ”DEBUG” (enable debugging symbols), ”RELWITHDEBINFO” (enable moderate optimizations and
debugging symbols), and ”RELEASE” (enable extreme optimizations and not debugging symbols). After changing
the release type, use Configure and Generate to regenerate the build system.

3.4.5 Changing the CMake Input Configuration Files

If you edit any of the CMake input files, the build system will be automatically regenerated the next time you run
”make”. Be careful not to edit any of the generated input files, as these will just be overwritten.

7

3.4.6 Adding New Source Files

In writing our CMake input files, rather than listing each source file manually (and editing the input files when adding
new files), we use the globbing features to have CMake scan for input files. As a result, when you add new files,
CMake will not detect that a change has occurred. To give CMake the opportunity to include the newly added files,
run cmake rebuild cache, which will cause the build system to be reconfigured and generated. (This also applies if
new files were added by subversion, so be aware you may need to run this in that case).

3.4.7 Features of CMake Makefiles

CMake Makefiles have some automatically built features. These include:

progress Percentages are displayed during builds, which give a rough idea of how far through the build you are.
(These are rough only—in my experience they may halt either before or after 100%. In one rare circumstance,
I saw it get as high as 500%.

quiet By default, the builds are quiet, displaying descriptions of what is going on. To see the full commands, include
”VERBOSE=1” in the command, such as make VERBOSE=1.

parallel build CMake Makefiles support parallel builds. To run make with 4 parallel processes, use make -j4.

help From any level of the Makefile, you can run make help, which displays all targets you could make.

edit cache make edit cache invokes the CMake configuration editor.

rebuild cache make rebuild cache re-runs cmake to regenerate the build system.

selective build When building any particular application or service, CMake will only build (or rebuild) those services
which are needed (instead of always building all services).

shared libraries CMake can build Mace libraries as shared libraries instead of static libraries, by editing the config-
uration to set USE SHARED to on. Note that this is not as well tested, and may not work in all circumstances.

4 A Simple Example: Ping
As an introduction to Mace, we present a simple service that checks the liveness of a peer by sending it ping messages.
A service is a piece of code with a well-defined interface that runs on one or more distributed hosts and provides
an implementation of the methods (or services) specified by its interface. For instance, a route service provides
methods and an implementation for routing messages to a single host, and a multicast service provides methods and
an implementation for delivering a message to many hosts. Services may be used by other services as well as by
applications. This HOWTO will show how to write a Ping service and a sample application using the service.

Throughout the rest of this tutorial, all file paths are relative to the mace root directory.

4.1 Ping Overview
4.1.1 Usage Model

Our ping application is designed to be run on two hosts. One host is the sender and the other is the responder. The
senders sends a message to the responder, who then sends a response message back to the sender. The sender will
print that it received a response, or will report an error if it times out.

In § 6, we show how to extend our usage model to support multiple hosts, continuous queries, and more detailed
latency reports.

8

4.1.2 Application and Service Components

Service Class Definition: PingServiceClass.mh § 4.2-§ 4.4. The interface for our service, defined in a Mace
service class header file.

Handler Definition: PingDataHandler.mh § 4.5-§ 4.7. The interface for receiving upcalls1 from our service,
defined in a Mace handler class header file.

Service Implementation: (First)Ping.mac § 4.8-§ 4.9. The actual implementation of our Ping service, written
using the Mace language in a Mace service file.

Application: (first)ping.cc § 4.10. The implementation of the ping application. The application 1) instantiates
a service instance and a handler instance, 2) registers the handler with the service, and 3) runs the service. This
is a standard C++ file/application.

4.2 ServiceClass Definitions
Before implementing the application, we will first design the interface the application will use so that the application
and the service may be written independently. The way to do this in Mace is by writing a service class and optionally
one or more handlers, which are classes that receive upcalls (i.e. callbacks) for event notifications.

All Mace services implement one or more service classes, which are specifications of the API provided by the ser-
vice. Service classes are analogous to interfaces in Java. Service classes are defined in Mace header files, with names of
the form ServiceNameServiceClass.mh. Service class header files should be placed in services/interfaces.
(Mace includes a variety of service classes, which are listed in § B.) We first present our example service class and
then describe some of the details (§ 4.4):

4.3 PingServiceClass
The service class definition services/interfaces/PingServiceClass.mh follows:

serviceclass Ping {
virtual void monitor(const MaceKey& host);
virtual uint64 t getLastResponseTime(const MaceKey& host) { return 0; }
handlers PingData;
}; // PingServiceClass 5

The Ping service provides two methods:

monitor Request that the service monitor a new host.

getLastResponseTime Query the service for the last time, in epoch microseconds, that a response was received
from the given host.

The Ping service also has one upcall handler, of type PingDataHandler. Handlers will be described in more detail
later.

The type MaceKey is a class used to represent the address of a host. For our simple application, these simply
represent IPv4 addresses. However, MaceKeys can also represent other classes of addresses, such as SHA1 160 bit
hashes, which are used by overlay routing protocols such as Chord and Pastry (which is why they are named keys).

4.4 ServiceClass Notes
The Mace service header files are very similar to C++ header files. They are, in fact, automatically translated into C++
header files by the build process. Here are some notes to keep in mind when writing service class header files.

#ifndef ... #define ... #endif These necessary preprocessor directives to prevent a file from being
included twice are automatically generated for the C++ header file. Do not include them in your .mh Mace
service header file.

1upcalls are the Mace lingo for callbacks. They are called upcalls because they are calls from lower levels of services to upper layers

9

#include, declarations, typedefs, etc All code between the start of the .mh file and the class declaration is copied
verbatim into the generated C++ header file. Put appropriate #include directives here.

Class declaration and inheritance All service classes inherit from the base class ServiceClass. A ServiceClass may
extend other ServiceClasses, but all ServiceClasses have ServiceClass as a common ancestor. If no service
classes are listed as super classes, then the generated C++ header file will have ServiceClass listed as the sole
super class. Derived service classes inherit from other service classes using the normal C++ syntax. However,
all super service classes must be specified with no modifies (public, virtual, etc). For instance, the service
class declaration for OverlayRouterServiceClass is:

serviceclass OverlayRouterServiceClass : OverlayServiceClass { . . .

To define a handler instead of a service class, use the keyword handler instead.

Method implementations All service class methods must have an implementation. If desired, a default implementa-
tion may be provided in the service header file (as done for getLastResponseTime), which will be copied
verbatim into the generated C++ header file. If no method implementation is provided, then a default imple-
mentation will be generated that will assert failure.

handlers Mace service header files introduce a new keyword, handlers, that declares the handlers used by the
service. Recall that handlers are classes (also defined in .mh files, described in detail in the next section) that
receive upcalls for event notifications. handlers should be followed by a comma separated list of one or more
handler names, followed by a semicolon. Thus, we are declaring that PingServiceClass has one handler, of type
PingDataHandler.

The handlers declaration will cause four methods, registerHandler, registerUniqueHandler,
unregisterHandler, and unregisterUniqueHandler to be generated for each handler listed. These
methods are the means by which actual handler objects are registered and unregistered with the service to receive
upcalls when the service has an event to report. For example, the Ping service will report when it receives a
response from a monitored host or when it times out waiting for an expected response.

Calling registerHandler allows you to register multiple upcall handlers for a single service instance. This
is illustrated later in § 6.2. The registerUniqueHandler method tells the service that you are registering
exactly one upcall handler2. We use this in our first Ping application in § 4.10.

Registration IDs In the generated header file, all method signatures will be modified so that they take an additional
parameter of type registration uid t as the last argument that is assigned a default value of -1. Registration
IDs are not needed by application writers when you register unique handlers. You do not need to worry about
registration IDs right now; we mention this for the sake of completeness.

4.5 Handler Definitions
Many Mace services provide the option to register objects to receive upcalls for event notifications (declared by using
the handlers keyword). To make a method upcall, a service needs an object, with a well-defined interface, on
which to make the method call: this object is the handler. Handler objects implement a single handler class interface.
Handler classes are analogous to service classes: they provide API specifications. The APIs for the upcall methods
are defined in Mace header files with names of the form HandlerTypeHandler.mh. Handler class definition header
files should also be placed in services/interfaces.

4.6 PingDataHandler
The handler class definition for services/interfaces/PingDataHandler.mh follows:

handler PingData {
virtual void hostResponseReceived(const MaceKey& host, uint64 t timeSent,

uint64 t timeReceived, uint64 t remoteTime) { }

2In truth, it simply registers your handler with a pre-defined and well-known id which only one handler may be associated with.

10

virtual void hostResponseMissed(const MaceKey& host, uint64 t timeSent) { }
}; // PingDataHandler 5

The Ping data handler provides two methods:

hostResponseReceived Upcall indicating that the given host responded to a ping message. The four parameters are:
1) the host that responded, 2) the time we sent the ping message, 3) the time we received the ping reply, and 4)
the time the remote host sent the ping reply.

hostResponseMissed Upcall indicating that the given host failed to respond to a ping message within the timeout
period.

4.7 Handler Notes
All the notes for ServiceClass definitions, described in § 4.4, apply for handlers, except for 1) the requirement to
extend from a base service class: handlers need not and should not inherit from any super class, and 2) the handlers
declaration may not be used in handler classes, only service classes.

4.8 Service Implementations
Services are implemented in subdirectories of services. Typically, services are implemented in files with names of
the form ServiceName.mac, under the subdirectory services/ServiceName.

4.9 Ping Implementation
We are now ready to implement our Ping service. First, create the new directory services/Ping.

The implementation of services/Ping/FirstPing.mac follows:

service FirstPing;

provides Ping;

services { 5
Transport router = TcpTransport();
} // services

constants {
uint64 t PING TIMEOUT = 2 * 1000 * 1000; // 2 seconds in micros 10
} // constants

messages {
Ping { }
PingReply { 15

uint64 t t;
}
} // messages

state variables { 20
MaceKey target;
uint64 t timeSent;
timer sendtimer;
} // state variables

25
transitions {

upcall deliver(const MaceKey& src, const MaceKey& dest, const Ping& msg) {
downcall route(src, PingReply(curtime));
} // deliver Ping

30
upcall (src == target) deliver(const MaceKey& src, const MaceKey& dest, const PingReply& msg) {

sendtimer.cancel();
upcall hostResponseReceived(src, timeSent, curtime, msg.t);
} // deliver PingReply

11

35
downcall monitor(const MaceKey& host) {

timeSent = curtime;
target = host;
downcall route(target, Ping());
sendtimer.schedule(PING TIMEOUT); 40
} // monitor

scheduler sendtimer() {
upcall hostResponseMissed(target, timeSent);
} // expire timer sendtimer 45
} // transitions

For a detailed discussion of the Mace language, see § 5. We will now describe how to compile the service and write
a simple application that uses the service.

4.9.1 Compiling the Ping Service

Edit services/CMakeLists.txt, and add Ping to the list of services specified in the SERVICE DIRS variable3.
Then you can go to the configured builds directory, and run make Ping, which will re-run CMake, and build the Ping
service directory library.

4.10 Ping Application
We will now write a simple application that uses the Ping service. Our application will report the round-trip response
time latency for live hosts, or will report that the given host is not responding.

Create the new directory applications/ping for our program.
We implement our program in applications/ping/firstping.cc as follows:

#include "SysUtil.h"
#include "Util.h"
#include "PingServiceClass.h"
#include "Ping-init.h"

5
using namespace std;

class PingResponseHandler : public PingDataHandler {

void hostResponseReceived(const MaceKey& host, uint64 t timeSent, uint64 t timeReceived, 10
uint64 t remoteTime, registration uid t rid) {

cout << host << " responded in " << (timeReceived − timeSent) << " usec" << endl;
exit(0);
} // hostResponseReceived

15
void hostResponseMissed(const MaceKey& host, uint64 t timeSent, registration uid t rid) {

const time t t = timeSent / 1000000;
cout << "did not receive response from " << host << " pinged at " << ctime(&t);
exit(0);
} // hostResponseMissed 20

}; // PingResponseHandler

int main(int argc, char* argv[]) {
// Log::autoAdd(“Ping::”); 25

PingResponseHandler prh;

PingServiceClass& ping = FirstPing namespace::new FirstPing Ping();
ping.maceInit(); 30
ping.registerUniqueHandler(prh);
if (argc > 1) {

3Note that this is the name of the directory, not the name of the service, so if you used a name other than ‘Ping’ for the directory, you should use
that here

12

ping.monitor(MaceKey(ipv4, argv[1]));
}

35
SysUtil::sleep();

return 0;
} // main

A brief overview of this file:

1. We define PingResponseHandler, which inherits from PingDataHandler, and overrides both methods.

2. In main(), we instantiate a PingResponseHandler and a PingServiceClass.

3. We call maceInit() on our Ping service object, which initializes the service state, and also executes the
downcall maceInit transition, if defined (we did not define one).

4. We register our PingResponseHandler with our service instance as a unique handler. The registerUniqueHandler
method indicates that there will be only one handler of that type registered with the service. The implication of
this is that registration IDs will not be needed to differentiate handlers.

5. When run with no arguments, the program will simply respond to other ping requests with ping replies. As a
responder, the program will loop forever in the select.

6. When run with a single argument, ping will send a single ping message to the given host, and either print the
round-trip latency or report that it did not receive a response. The handler callback methods call exit(), so
the program will then terminate.

Because the Mace runtime libraries use threads, it is important that main() does not exit until the services complete
their tasks. Thus, we recommend calling SysUtil::sleep() with no arguments, which is an efficient way to
ensure that the main thread does not cause the process to exit.

4.10.1 Compiling firstping.cc

We need to write a very simple CMakeLists.txt to tell CMake how to build our program. The CMakeLists.txt
applications/ping/CMakeLists.txt follows:

SET(APPS firstping)
SET(SERVICES FirstPing)

INCLUDE(../application.cmake)

Also, we need to tell CMake to include the ping application directory. To do so, edit applications/CMakeLists.txt,
and add the line ADD SUBDIRECTORY(ping). Then, go to the builds directory, and run make firstping, which
will build the firstping application at builds/application/ping/firstping.

4.11 Running Ping
Copy the firstping executable to another machine. Assuming your two machines are named alexander and philip,
run the following commands.
On philip:

philip$./firstping

On alexander:

alexander$./firstping philip
IPV4/philip(192.168.0.2) responded in 503404 usec

13

Now kill the firstping process on philip. Re-run the command on alexander:

alexander$./firstping philip
did not receive response from IPV4/philip(192.168.0.2) pinged at Mon May 9 22:01:14 2005

Congratulations! You have written your first Mace service and application.

5 Mace Specification Overview: Ping in Detail
This section explains the various parts of Ping service implementation.

5.1 Header Files
All code between the start of a .(m|mac|mace)file and the first recognized Mace keyword is copied verbatim as
C++ code into the generated header file in your service implementation. Thus, you should include whatever standard
library header files you need at the top of your .(m|mac|mace)file.

You do not, however, need to include header files for mace services or handlers that you reference. The Mace
compiler will generate include statements for all the service classes and handlers used by your service, so it is not
necessary for you to include these yourself. For instance, even though FirstPing.mac needs to reference the
generated PingServiceClass.h and PingDataHandler.h files, we can omit the #include directives for
these files because the compiler will generate them for us.

5.2 Service
The beginning of our example includes a “Service” statement.

service FirstPing;

The service statement specifies the short name of the service. The long name is generated from the short name by
appending “Service” to it, to make PingService. The build system provided with Mace requires the service line to
match the filename. As a shortcut, this statement may be abbreviated as:

service;

This abbreviated form will continue to work if the filename is changed. Future versions of Mace will feature a
different syntax for the service name.

5.3 Provides
The beginning of our example includes a “Provides” statement.

provides Ping;

The provides statement specifies the service class of our Ping service. This line causes the Mace compiler to read
the PingServiceClass interface file (which we also wrote), and generate C++ code for the Ping service so that it inherits
from PingServiceClass.

The syntax of this statement is simple: the keyword provides, the name of the service class (with the suffix
ServiceClass omitted), and a semicolon. Omitting this line causes your service to only provide the “Null” service
class, which is defined just as the initialization and exit functions.

14

5.4 Services
After indicating the interface of the Ping service, we next specify the set of services we use. In the case of Ping, we
mainly need a service which can route messages for us over the network to a destination address. This functionality
exists as part of the RouteServiceClass interface, and there is an included TcpTransport service which implements it.

To tell Mace we want to use this service, we put it in the services block:

services {
Route router = TcpTransport();
} // services

This creates a variable named router, a reference to an object providing the Route service class (defined in
RouteServiceClass). We also specify that, by default, this should be constructed as a new TCP service.

5.5 The Route Service Class (briefly)
The Route service class defines the route method for sending data:

bool route(const MaceKey& dest, const std::string& msg, registration uid t regId);

This method is called with a destination address and a buffer of data to send, as well as a registration id. Delivery
of data is made to the appropriately registered ReceiveDataHandler using its deliver method with a commType of
COMM TYPE UNICAST:

void deliver(const MaceKey& source, const MaceKey& dest, const std::string& msg,
registration uid t regId);

We have now covered the basics necessary to get going. The TcpTransport service, which provides this interface,
handles the management and connection of sockets as well as properly catching errors for you, isolating you from
this burden (you can register a NetworkErrorHandler to receive error notifications if necessary). To send a message
to a peer, just call route. When the message gets to the remote destination, the TCP service calls deliver on the
registered data handler with the same message buffer.

5.6 Under The Covers
When you specify that you will use a Route service class in FirstPing.mac, the compiler automatically makes
the Ping service a ReceiveDataHandler, and when a Ping service is initialized, it handles initializing the RouteSer-
viceClass instance it will use, constructing one if necessary, and then registering itself with that RouteServiceClass
instance. The router variable, defined in the services block, actually refers to the registration id obtained from that
registration, not to the service instance. To utilize Ping’s “router”, instead of calling methods directly on it, you call
the methods of it through helper functions with the same parameter list but a modified name. For example, to call
route, you actually call downcall route. The “downcall ” refers to the fact that the router is a service you are
using (and therefore lower in the service stack). We saw the use of “downcall ” both in Ping’s transitions for sending
data and in the method remappings block, described below.

5.7 Constants
Next we define a constant variable which the Ping service will use to specify the maximum time to wait for a response.

constants {
uint64 t PING TIMEOUT = 2 * 1000 * 1000; // 2 seconds in micros
} // constants

Defining constants is as easy as creating a block for them, and then defining them using normal syntax. Note that
you do not use the C++ keyword const when specifying service constants. Now you can use these constant variables
anywhere else—like in transition code, array sizes and template parameters.

15

5.8 Messages
Now that we have discussed how the calls are mapped to handle messages, we will discuss how you actually define
messages. Ping defines two messages, one for the request sent to the peer, and one for the response.

messages {
Ping { }
PingReply {

uint64 t t;
} 5

} // messages

The first message, “Ping”, has no data fields associated with it. The deliver method already tells us who sent the
data, so there is no need to include the sender as a part of the message. The second message, “PingReply”, has one
field—an unsigned 64-bit integer named “t”.

5.9 State Variables
The state variables4 are like member variables in a class. They are specific to the running instance of a Ping service,
and they are accessible anywhere within the service specification. For the most part they are defined like normal C++
variables.

state variables {
MaceKey target;
uint64 t timeSent;
timer sendtimer;
} // state variables 5

For the Ping service, we define three variables, one for the destination address of the ping, one for the time we sent
the ping, and one for the timer we use to cancel the ping if it takes too long.

5.10 Transitions
The transitions block contain methods that the service executes in response to events. Each method is preceded
by a keyword specifying the transition type and an optional state expression . There are three types of transition
methods:

upcall This method will be called by one of the service instances listed in the services block that your service
uses. Upcalls are the way lower-layer services signal events to higher-layer services (such as delivering a
message). Upcall transitions must be defined by a handler of a service that your service uses.

downcall This method represents an API call that can be made on your service from either applications or services
that use your service. Downcall transitions must be defined by a service class that your service provides.

scheduler This method will be called by the central Mace runtime library scheduler in response to a timer event.
Scheduler methods are the same as the names of the declared timers. Each timer calls its transition when it
expires.

The Ping service defines four transitions: two for delivering messages (one for each message type defined in the
messages block), one to handle the monitor API call, and one to handle the sendtimer. Each transition is described
below.

upcall deliver(const MaceKey& src, const MaceKey& dest, const Ping& msg) {
downcall route(src, PingReply(curtime));
} // deliver Ping

4Mace services are modeled as finite automata. Thus, the variables defined in the state variables block record persistent state information
about the service.

16

The first transition, an upcall, is called on our service by our RouteServiceClass router when it receives a Ping
message. (The prototype for deliver is defined in ReceiveDataHandler, which is listed as one of the handlers for
RouteServiceClass.) When our Ping service receives a Ping message, then we want to send a PingReply message
in response. We do this by making a downcall route call on our RouteServiceClass (recall that the object
(router) on which the method is being invoked, normally passed as the final argument, is automatically inferred).
We pass in the destination for the message, src, the host that sent us the Ping message; and we pass the message we
want to route, a PingReply, which is constructed with the current time (in microseconds), which is available throughout
Mace services using the variable “curtime”.

upcall (src == target) deliver(const MaceKey& src, const MaceKey& dest, const PingReply& msg) {
sendtimer.cancel();
upcall hostResponseReceived(src, timeSent, curtime, msg.t);
} // deliver PingReply

The second transition, another deliver upcall, defines what action we take when we receive a PingReply message.
This transition has been guarded by a state expression, which in this case verifies that the source of the PingReply
message is the same as the target being pinged. If ping replies are received from erroneous destinations, no
action will be taken. In this transition we first cancel our timer, because we have received a response. Then we
make an upcall to the application or service using us, to report that we received a response. Recall that we defined
hostResponseReceived in PingDataHandler. Notice that you access message fields exactly as you would class
member fields, such as “msg.t”.

downcall monitor(const MaceKey& host) {
timeSent = curtime;
target = host;
downcall route(target, Ping());
sendtimer.schedule(PING TIMEOUT); 5

} // monitor

The third transition, a downcall, overrides the default method implementation for monitor specified in PingSer-
viceClass. When an application or service requests that we monitor a host, we do the following: 1) store the current
time, so that we can report it when we make a success or failure upcall; 2) store the target, so that we can report it on
failure and use it to protect the delivery of erroneous ping replies; 3) send a new Ping message to the target, using our
RouteServiceClass router; and 4) schedule our timer to expire after PING TIMEOUT microseconds.

scheduler sendtimer() {
upcall hostResponseMissed(target, timeSent);
}

The final transition, of type scheduler, will fire if the timer expires. Because we schedule the timer when we
send a Ping message in monitor, and cancel it when we receive a PingReply response in deliver, the timer will
only ever fire if we do not receive a response within PING TIMEOUT microseconds. If the timer does fire, then we
make an upcall on the application or service using us to report that we missed an expected response. We defined
hostResponseMissed as the other method in PingDataHandler.

6 Ping Revisited
In this section, we revisit our Ping service, expanding it to make it considerably more flexible and to demonstrate more
aspects of Mace.

6.1 Revised Ping Implementation
We are going to revise our Ping service to incorporate the following changes:

1. Use UDP packets for sending messages, since the reliable byte-stream interface of TCP is unnecessary.

2. Use a run-time configurable ping interval and timeout.

17

3. Provide the ability to ping multiple hosts simultaneously.

4. Ping monitored hosts indefinitely (as opposed to sending a single message).

5. Support multiple registered handlers.

The implementation for our revised service services/Ping/Ping.mac follows:

#include "mmultimap.h"
#include "mlist.h"

service;
5

provides Ping;

services {
Transport router = UdpTransport();
// Transport router = TcpTransport(); 10
} // services

constants {
uint64 t DEFAULT PING INTERVAL = 1*1000*1000; // useconds
uint64 t DEFAULT PING TIMEOUT = (DEFAULT PING INTERVAL + 5*100*1000); // useconds 15
} // constants

constructor parameters {
uint64 t PING INTERVAL = DEFAULT PING INTERVAL;
uint64 t PING TIMEOUT = DEFAULT PING TIMEOUT; 20
} // constructor parameters

states {
ready;
} // states 25

typedefs {
typedef mace::list<uint64 t> PingTimeList;
typedef mace::hash map<MaceKey, PingTimeList> PingListMap;
typedef mace::hash map<MaceKey, uint64 t> TimeMap; 30
typedef mace::multimap<MaceKey, registration uid t> RegistrationMap;
} // typedefs

method remappings {
implements { 35

upcalls {
messageError(MaceKey const & k, TransportError::type code, std::string const & m);
}
}
} 40

messages {
Ping {

uint64 t t;
} 45
PingReply {

uint64 t techo;
uint64 t t;
}
} // messages 50

state variables {
PingListMap sentTimes;
TimeMap responseTimes;
RegistrationMap rids; 55
timer sendtimer attribute((recur(PING INTERVAL)));
} // state variables

transitions {

18

downcall (state == init) maceInit() { 60
state = ready;
sendtimer.schedule(PING INTERVAL);
} // downcall maceInit

(state == ready) { 65
upcall deliver(const MaceKey& src, const MaceKey& dest, const Ping& msg) {

downcall route(src, PingReply(msg.t, curtime));
} // deliver Ping

upcall deliver(const MaceKey& src, const MaceKey& dest, const PingReply& msg) { 70
if(sentTimes[src].empty() | | sentTimes[src].front() > msg.techo) {

return; // ping already notified as failure
}
while(!sentTimes[src].empty() && sentTimes[src].front() <= msg.techo) {

sentTimes[src].pop front(); 75
}
responseTimes[src] = curtime;
if(curtime−msg.techo <= PING TIMEOUT) {

upcallSuccess(src, msg.techo, responseTimes[src], msg.t);
} else { 80

upcallFailure(src, msg.techo);
}
} // deliver PingReply

downcall monitor(const MaceKey& host, registration uid t rid) { 85
if (rids.find(host) == rids.end()) {

ping(host);
}
rids.insert(std::make pair(host, rid));
} // downcall monitor 90

downcall getLastResponseTime(const MaceKey& host) {
return responseTimes[host];
} // downcall getLastResponseTime

95
upcall messageError(const MaceKey& k, TransportError::type code,

const std::string& m) {
maceout << "timeout to " << k << " (" << code << ") " << Log::toHex(m) << Log::endl;
}
} // state == ready 100

scheduler sendtimer() {
for (PingListMap::iterator i = sentTimes.begin(); i != sentTimes.end(); i++) {

if(!i−>second.empty() && curtime − i−>second.front() > PING TIMEOUT) {
upcallFailure(i−>first, i−>second.front()); 105
while(!i−>second.empty() && curtime − i−>second.front() > PING TIMEOUT) {

i−>second.pop front();
}
}
ping(i−>first); 110
}
}
} // transitions

routines { 115
void ping(const MaceKey& host) {

downcall route(host, Ping(curtime));
sentTimes[host].push back(curtime);
} // ping

120
void upcallSuccess(const MaceKey& k, uint64 t ts, uint64 t tr, uint64 t rt) {

for (RegistrationMap::iterator i = rids.find(k); i != rids.end() && i−>first == k; i++) {
upcall hostResponseReceived(k, ts, tr, rt, i−>second);
}
} // upcallSuccess 125

void upcallFailure(const MaceKey& k, uint64 t ts) {

19

for (RegistrationMap::iterator i = rids.find(k); i != rids.end() && i−>first == k; i++) {
upcall hostResponseMissed(k, ts, i−>second);
} 130
} // upcallFailure
} // routines

We discuss the details of the new implementation in § 7. Next, we will present the revised Ping application and
usage.

Since we’ve added a new file, we need to tell CMake to rescan the files, bu running make rebuild cache (in the
builds directory). Then, compile your updated Ping service by running make Ping in the builds directory.

6.2 Revised Ping Application
We now present our revised ping application applications/ping/ping.cc implementation:

#include "SysUtil.h"
#include "Util.h"
#include "PingServiceClass.h"
#include "Ping-init.h"
#include "TcpTransport-init.h" 5
#include "UdpTransport-init.h"
#include <signal.h>

using namespace std;
10

class PingResponseHandler : public PingDataHandler {

void hostResponseReceived(const MaceKey& host, uint64 t timeSent, uint64 t timeReceived,
uint64 t remoteTime, registration uid t rid) {

cout << host << " responded in " << (timeReceived − timeSent) << " usec" << endl; 15
} // hostResponseReceived

void hostResponseMissed(const MaceKey& host, uint64 t timeSent, registration uid t rid) {
const time t t = timeSent / 1000000;
cout << "did not receive response from " << host << " pinged at " << ctime(&t); 20
} // hostResponseMissed

}; // PingResponseHandler

class ErrorHandler : public NetworkErrorHandler { 25
public:

void error(const MaceKey& k, TransportError::type error, const std::string& m,
registration uid t rid) {

cerr << "received error " << error << " for " << k << ": " << m << endl;
} 30

void messageTimeout(const MaceKey& k, TransportError::type error, const std::string& m,
registration uid t rid) {

cerr << "message timeout " << error << " for " << k << ": " << Log::toHex(m) << endl;
} 35
}; // ErrorHandler

static bool shutdownPing = false;

void shutdownHandler(int sig) { 40
shutdownPing = true;
} // shutdownHandler

int main(int argc, char* argv[]) {
Log::autoAdd(".*Ping::.*"); 45
// Log::autoAddAll();
// Log::setLevel(2);

SysUtil::signal(SIGINT, &shutdownHandler);
SysUtil::signal(SIGTERM, &shutdownHandler); 50

20

params::loadparams(argc, argv);

PingResponseHandler prh;
ErrorHandler eh; 55

BufferedTransportServiceClass& router = TcpTransport namespace::new TcpTransport BufferedTransport(TransportCryptoServiceClass::NONE, false);

router.registerHandler(eh);
60

PingServiceClass& ping = Ping namespace::new Ping Ping(router, 5*1000*1000, 6*1000*1000);

ping.maceInit();
registration uid t rid = ping.registerHandler(prh);

65
for (int i = 1; i < argc; i++) {

ping.monitor(MaceKey(ipv4, argv[i]), rid);
}

while (!shutdownPing) { 70
SysUtil::sleepm(500);
}

ping.maceExit();
return 0; 75
} // main

We have changed the implementation as follows:

1. Define PingLatencyHandler, which reports the one-way latency for successful ping messages.

2. Remove calls to exit() in PingResponseHandler.

3. In main(), instantiate a PingLatencyHandler.

4. We now pass the values for PING INTERVAL and PING TIMEOUT as constructor parameters when we instan-
tiate the Ping service object, overriding the defaults.

5. We register both handles with our Ping service instance using registerHandler, instead of registerUniqueHandler,
and we assign the resulting registration uids to variables.

6. We loop over the command line arguments, and call monitor—once for each handler—with each host listed
on the command line.

The program takes zero or more hosts as command line arguments, specified as either host names or IP addresses
in the standard numbers-and-dots notation. If any hosts are specified, we have our Ping service to monitor them. If no
hosts are specified, then the program will simply respond to ping requests from other hosts.

To compile ping.cc, add ping to the list of applications specified by APPS, and Ping to the list of services in
the SERVICES variable in applications/ping/CMakeLists.txt (all directly referenced services should be
listed in that variable):

SET(APPS firstping ping)
SET(SERVICES FirstPing Ping)

INCLUDE(../application.cmake)

You can then run make in the builds directory to build the new executable ping.
Now try running the revised ping application. Try passing it multiple hosts on the command line. Begin monitoring

a host; then kill the ping process, wait a few seconds, and restart it on the monitored host; watch the output on the
monitoring host.

21

7 Mace Specification Revisited
In this section, we will discuss the changes we made for the revised Ping implementation.

7.1 Services (Revised)
We changed the default route service to a UDP RouteServiceClass. We do not need the reliable byte stream semantics
of TCP, and a UDP route service has less overhead.

services {
Route router = UDP();
// Route router = TcpTransport();
} // services

Note that we do not have to change any other code, other than the “= UDP()”, to switch between TCP and UDP
route services. This illustrates a key advantage of using service class interfaces: because both the TcpTransport and
UDPService provide the RouteServiceClass, our code will compile seamlessly with either of them.

7.2 Constructor Parameters
The constructor parameters block allows you to list variables that can be initialized as parameters in the
service constructor. These values must be given defaults in the parameter list for the constructor.

constructor parameters {
uint PING INTERVAL = DEFAULT PING INTERVAL;
double PING TIMEOUT = DEFAULT PING TIMEOUT;
} // constructor parameters

We make PING INTERVAL and PING TIMEOUT constructor parameters, so that they can be set at runtime, as
opposed to being fixed as constants of the Ping service. We also provide defaults, which are defined in the constants
block.

7.3 States
The states block allows you to list the possible states that your service could assume5. All services have an implicit
state named init. You can change the state of your service by assigning the new state (one of those declared in the
states block) to the special Mace variable state, which is defined for each service instance. You can also reference
your current state through this variable to compare it to any of the states declared in the states block, plus init.
We will see examples a little later.

states {
ready;
} // states

Our Ping service defines just one new state, ready. We will use this state to prevent many methods from being
called on our service before the maceInit method is called. Note that qualifying the maceInit function with the
guard expression is not strictly necessary, the generated code treats the maceInit specially and only allows it to be
called once. This is also true of the maceExit function.

7.4 Typedefs
The typedefs block allows you to alias types needed for your service with the normal C++ typedef com-
mand. The primary purpose for this block is to allow you to create typedefs that can both use types defined in
the auto types block (not used in this example) in the typedef and use typedefs in that and the messages block.

5Recall that services are modeled as State Machines. These states are the high-level states of the finite automata.

22

typedefs {
typedef mace::list<uint64 t> PingTimeList;
typedef mace::hash map<MaceKey, PingTimeList> PingListMap;
typedef mace::hash map<MaceKey, uint64 t> TimeMap;
typedef mace::multimap<MaceKey, registration uid t> RegistrationMap; 5

} // typedefs

Ping defines four new types: PingTimeList, which we will use to store a list of times which unacknowledged ping
messages were sent; PingListMap, which we will use to associate a PingTimeList with each host; TimeMap, which we
will use to store the last time that we received a PingReply message from a host; and a RegistrationMap, which will
allow us to store which handlers (as indicated by their registration id) are interested in callbacks for which hosts.

7.5 Messages (Revised)
Since in our new ping service, we will send multiple pings to each host, it may be necessary to distinguish which one
a given reply corresponds to. A simple way of accomplishing this is to pass the time the ping is sent to the recipient
and having them echo this back to the sender. Thus we add an additional field to each message.

messages {
Ping {

uint64 t t;
}
PingReply { 5

uint64 t techo;
uint64 t t;
}
} // messages

7.6 State Variables (Revised)
state variables {

PingListMap sentTimes;
TimeMap responseTimes;
RegistrationMap rids;
timer sendtimer attribute((recur(PING INTERVAL))); 5

} // state variables

We have changed our state variables to include the three maps, mentioned above. We still have the timer sendtimer,
as before. However, we use optional Mace syntax to specify that it is a recurring timer. That is, the timer will auto-
matically reschedule itself to expire again after PING INTERVAL microseconds.

7.7 Transitions (Revised)
Our transitions have been revised and are somewhat more involved. You will notice that they now make use of the
optional state expressions. These can occur either immediately before the transition name, in parentheses, or they can
appear as a block around a set of transitions, with the state expression in parentheses preceding the opening of the
block. State expressions may be arbitrary boolean expressions, with the restriction that they may not cause side-effects
or modify any of the service’s state. State expressions may reference any of the service’s state variables and global
variables (constants, constructor parameters, and state). A transition will only be executed if its state expression
evaluates to true. If no state expression is provided, (true) is assumed (meaning of course that the transition should
always be executed). However, for any given event, only the first matching transition with a true state expression will
be executed.

downcall (state == init) maceInit() {
state = ready;
sendtimer.schedule(PING INTERVAL);
} // maceInit

23

Here we define the maceInit() API method, overriding the empty default implementation in ServiceClass. The
state expression (state == init) ensures that maceInit() will only be executed if our service is in the init
state. Calling maceInit() in any other state (such as ready) will result in a NOP.
maceInit() does two things: 1) it changes the service’s state to ready, and 2) it schedules the timer. Because

the timer is recurring, it only needs to be scheduled once—it will continue to fire every recur() interval until it is
canceled.

(state == ready) {
. . .
} // state == ready

This is the second form of state expression syntax, which indicates that all transitions within the enclosing block
should only be executed if we are in the ready state. This prevents them from being called before maceInit.

upcall deliver(const MaceKey& src, const MaceKey& dest, const PingReply& msg) {
if(sentTimes[src].empty() | | sentTimes[src].front() > msg.techo) {

return; // ping already notified as failure
}
while(!sentTimes[src].empty() && sentTimes[src].front() <= msg.techo) { 5

sentTimes[src].pop front();
}
responseTimes[src] = curtime;
if(curtime−msg.techo <= PING TIMEOUT) {

upcallSuccess(src, msg.techo, responseTimes[src], msg.t); 10

} else {
upcallFailure(src, msg.techo);
}
} // deliver PingReply

The deliver() callback for the receipt of a PingReply message has the same idea as in our previous Ping service,
but it has to do some bookkeeping. First, we check if the ping has already been timed out in the sendtimer transition,
and exit if it has. If not, we update the unacknowledged ping list, and then update the response time for the given
host. Then, if the ping reply was received before the timeout we use the routine upcallSuccess(), defined in the
routines block (below), to notify interested handlers of the result. Otherwise, we use the upcallFailure()
routine to notify interested handlers of the negative result.

downcall monitor(const MaceKey& host, registration uid t rid) {
if (rids.find(host) == rids.end()) {

ping(host);
}
rids.insert(std::make pair(host, rid)); 5

} // monitor

We update the monitor() API method as follows. We check if we are already monitoring this host. If not (the
condition checked in the if), then call the routine ping(). This check is needed to suppress sending duplicate Ping
messages to a host when different handlers request to monitor the same host. We also need to insert the mapping from
the host to the registration id in our registration map, which will allow us to make callbacks on the interested handler.

downcall getLastResponseTime(const MaceKey& host) {
return responseTimes[host];
} // getLastResponseTime

We implement the getLastResponseTime API method as a straight-forward lookup in our map.

24

scheduler sendtimer() {
for (PingListMap::iterator i = sentTimes.begin(); i != sentTimes.end(); i++) {

if(!i−>second.empty() && curtime − i−>second.front() > PING TIMEOUT) {
upcallFailure(i−>first, i−>second.front());
while(!i−>second.empty() && curtime − i−>second.front() > PING TIMEOUT) { 5

i−>second.pop front();
}
}
ping(i−>first);
} 10

}

Because our service monitors multiple hosts, and does so indefinitely, our timer transition has more complexity. The
timer is responsible for two main tasks: 1) notifying timeouts (failures) and 2) sending the next Ping message. Both of
these tasks must be performed on each host that we are monitoring. Thus, we loop over the sentTimes map, which
returns us a (host, PingTimeList) pair, for every host that we are monitoring.

We need to make a failure callback when the PingTimeList (which is storing the times of unacknowledged pings)
is non-empty, and the first element of the list is more than PING TIMEOUT microseconds in the past. After we notify
the failure, we remove all unacknowledged ping messages which are expired from the list.

Finally, we send our next ping to the host, regardless of whether we think it is live or not.

7.8 Routines
Routines are simply C++ methods that are not part of the service API (as either downcalls or callbacks). They are
defined within the routines block. Service routines should be defined for the same reason you would define a
normal class method: to eliminate code duplication for common procedures, or to abstract away a complicated piece
of code, etc.

void ping(const MaceKey& host) {
downcall route(host, Ping(curtime));
sentTimes[host].push back(curtime);
} // ping

The ping() method sends a Ping() message to the host, and records the time in our sent times map.

void upcallSuccess(const MaceKey& k, uint64 t ts, uint64 t tr, uint64 t rt) {
for (RegistrationMap::iterator i = rids.find(k); i != rids.end() && i−>first == k; i++) {

upcall hostResponseReceived(k, ts, tr, rt, i−>second);
}
} // upcallSuccess 5

void upcallFailure(const MaceKey& k, uint64 t ts) {
for (RegistrationMap::iterator i = rids.find(k); i != rids.end() && i−>first == k; i++) {

upcall hostResponseMissed(k, ts, i−>second);
} 10

} // upcallFailure

upcallSuccess() and upcallFailure() are helper methods that ensure that we make the appropriate call-
back on all interested handlers. In both methods, we loop over our registration map, which contains (host, registration-
id) pairs.

8 A Real Example: DHT
In progress....

25

9 Advanced Features
FUTURE NOTE: This section will eventually be in the context of building a larger service such as the DHT service.
For now it just describes many of the different topics which will be covered in context in the future.

9.1 Registration UIDs
Registration UIDs were seen in action in the detailed ping example. Registration UIDs represent the logical link
between two services (or more specifically, a service and one or more handlers). So when a tree service uses a routing
service, the tree service should use a registration UID to refer to itself when requesting data be sent. This allows the
routing service to know the destination ReceiveDataHandler. It also allows the hypothetical tree service receiving the
data to know the source service variable, in case it uses more than one routing service. The requirement for registration
UIDs is that these registration UIDs be unique, but that they are the same across the nodes of the network. The present
implementation allows this by assuming parallel code and a fixed load order, where the UIDs are assigned.

When registering handlers for a service variable, -1 may be passed in as the UID the first time, to which, the assigned
registration UID will be returned. This registration UID should be used in all future calls to the same service variable,
both for registrations and normal API calls. This is handled automatically for generated services; the service variable
itself is a reference to the registration UID. No assumptions should be made about the assignment of UIDs; in the
future this may be used like a cookie, and presentation of the cookie will be a loose form of authentication.

Note: Registration UIDs are also addressed in the FAQ (10).

9.2 Service Composition
One of the powerful features of Mace is the ability to leverage services others have written and to add features to them.
For example, consider the implementation of a generic tree multicast service. This service makes use of two separate
services – one which takes care of maintaining the tree structure, and the other which manages routing data over the
network. Since tree services provide a common API to give the tree structure, a single generic service can implement
the algorithm to multicast data to parents and children.

Constructing the services for a generic tree service might look like this:

services {
Route data = TcpTransport();
Tree tree = RandTree();
}

This indicates that the GenericTreeMulticast service will work over whatever router and tree are passed in, but that
if either service is not passed in to the constructor, new services will be created according to the default listed.

9.3 Local Addresses
Each service exports a Local Address to those which use it, in the form of a MaceKey. For many services and situations,
this will just be the IPV4 address the node is bound to. However, the network address could include a proxy address
(where peers should send traffic destined for it), or it could be part of a different address family together. Services like
Chord and Pastry use addresses based on SHA1 hashes, and systems like SkipNet use free-form strings.

Any service may be asked for its notion of the local address via the getLocalAddress() function in ServiceClass.h.
Services should use this address from their lower-level services rather than make assumptions, so that they may more
generically run over any service providing the right interface. Note, however, that the addressing a service exposes to
a higher layer may be different from the addressing of lower services (which may in fact differ from each other). In
this fashion Pastry reports a local address based on the SHA1 hash of the local IP address, but uses IP addressing for
all internal communication.

For those with a true need to know about the IPV4 address of the local machine, they may use the helper function
Util::getAddr(). A somewhat better helper function to use is Util::getMaceAddr(), which also returns
the proxy address set. By default, this does a lookup on the machine’s hostname, and returns the address associated
with that hostname and the default port. However, for machines which do not have an address associated with their
machine’s name, for machines which have multiple addresses and you want to control which one is used, or if the

26

default code just isn’t working for you, you may set the parameter MACE LOCAL ADDRESS in the Params class,
which should be in the format “hoststring:port” or “hoststring:port/hoststring:port”, where the first is the locally bound
address and port, and the second appends to that the proxy address (which can be used in conjunction with port
forwarding on firewalls, for example).

9.4 Auto Types
Auto types are really just inline data structures with compiler generated features. These features include Serialization
for Messages, XmlRpc-serialization for interfacing with remote processes, the ability to dump and print these in
automated debugging, and to create “nodes” from them to store and use in NodeCollections. While it is true that you
could define these data structures in external header files, and write your own serialize, toString, and other
sundry functions, being able to include them in your service is a convenience. Since it is common for services to have
some private internal representation of its state, this represents a simple way to do so.

To define an auto type, simply include it in the auto types block, and define it as you would any other data
structure6. If you want to use the type in a NodeCollection, specify that it is a node type in its defaults. The full set of
options will be described in the technical manual. For an example, however, consider the following example:

auto types {
child attribute((node(fail detect=enabled; score=delay;))) {

double delay attribute((serialize(no)));
}
} 5

This defines a child class which represents a node, has auto failure detection code generated automatically7, and
which returns the value of the delay field for the default score function. Then, by scoring the round-trip delay in
the delay field, you can quickly query a node collection to find out who has the least score – therefore the smallest
round-trip latency. Furthermore, the delay field will not be serialized if a child is sent over the network in the message.
This can be useful if for example, the type cannot be easily serialized, or if you are trying to conserve bandwidth.

9.5 Message Defaults
When using messages for communication with other nodes8, it may be desirable to utilize per-message defaults for
each call you might make with a message.

Consider this: when developing a new routing protocol, you may want to consider using multiple TCP services
(i.e. socket connections or application queues) for communication in your service. The point of using multiple TCP
services is that each service will maintain an independent queue of messages to send your peers. Therefore, if one is
expected to frequently be full due to congestion backup, it is commonly desirable to have another one on hand which
you will use more sparingly for more important control messages. You can even set the queue size independently for
each TCP service when it is constructed. Alternately, you may have two routing services, one of which you expect will
be encrypted, and the other in plain text. In both of these cases, the chances are that although you have multiple ways
to route messages, you will have one way that you ”normally” send each type of message. Specifying per-message
defaults allows you to set default parameters for fields following the message. In the RouteServiceClass, this includes
the default registration uid t9. This way, when you actually send a message, unless you override the defaults, what
you “normally” want to happen will. Furthermore, if you later change your mind about what you “normally” want to
do, you can change it in a single place.

Now, as an example, consider the RouteServiceClass::route() call. Without using defaults, in the transi-
tions of the .(m|mac|mace)file, you would write the following code to send a foo message with no fields to peer
“dest” over the “control ” routing service:

downcall route(dest, foo(), control);

6Though without the trailing semicolon
7Although failure detection is enabled for this type, no detection will take place unless an instance of a node type or node collection is specified

to perform failure detection using a particular route service
8And really, what else are you going to use messages for?
9And remember that this is how you actually specify which lower-level service to route the message over

27

But, if you specify the following message defaults when defining foo:

messages {
foo [downcall route(const MaceKey&, const Message&, registration uid t regId = control);] { }
}

Then when you actually want to send it you can just write:

downcall route(dest, foo());

Apart from being much shorter, if you later add an encrypted route service to your service, you can change which
service the foo message is sent over by just changing the message defaults. And you can still, on a case-by-case basis
override the defaults.

9.6 Method Remapping Block
Earlier, when writing the Ping service, we glossed quickly over the method remappings block, indicating simply
that it is important to make sure that messages are handled properly. The basic issue is that since the Mace compiler
generates code based on arbitrary interface header files, it does not know a priori what strings mean to services. For
example, they could in fact be any of the messages defined in the messages block, or any serializable type, or just a
plain old string. By default, the compiler assumes a string is just a string, and relies on the annotations in this block
by the service implementor to tell it otherwise. An added effect of putting this annotation in the service description
is that different services may interpret and use the strings differently. However, in the future, we may also consider
annotating the interface files to allow a different default behavior.

A second issue is how to set default parameters for calls made from the service. Calls made with Message parameters
have the ability to set per-message defaults, as discussed in the previous section (§ 9.5). But we need to provide a
mechanism for setting defaults for non-messaging calls, and to provide defaults for all messages.

In the future, we will also be allowing more flexible remappings, which for example allow you to remap types using
anonymous inline functions, and which allow you to remap functions to other functions.

The method remappings block is broken into two parts: uses calls and implements functions.

Uses Calls

Uses calls are calls which a service writer will make from their service into either services which they use (downcalls),
or to handlers which are registered with them (upcalls). This declarations in the block should match the declarations
in their respective header files, with the following differences.

function prefix Each function should be prefixed either by downcall or upcall , appropriate to its kind.

optional string handling Any string parameter may have a serialization instruction provided, which can be any type
mace knows how to serialize and deserialize. The type, and possibly const and/or reference (&) should appear
in the declaration where the string declaration would normally go. Then, an arrow pointing to the right (->) is
used to indicate that for this function you will pass in the type you specified, but it should be converted to the
type from the original function declaration before performing the downcall. The type modifiers will be applied
to the object as it is passed around for serialization or deserialization, and do not necessarily have to match those
from the actual function declaration. 10 This is why in the downcall route specification, the specification is
[const Message&]. Since in these calls, a temporary Message is constructed, the gcc compiler will complain if
the Message parameter is non-const. The Message is passed by reference, to avoid unnecessary memory copies
before serialization, or to ensure the deserialized string fills in the provided message. Note that “Message” is
a special string for serialization, since this will cause the compiler to both apply per-message defaults, and to
handle determining the message type on deserialization and calling the appropriate transition with the message
delivery specified.

10Note that the Mace compiler will [soon] correctly handle updating your data item if a non-constant string reference is used (and therefore
possibly modified). If you don’t want to allow that to happen, you can add the constant modifier to your declaration of your type, which will prevent
the Mace compiler from deserializing the string as the function call returns.

28

default values Default values may be specified. These are done in the usual fashion by naming the variable and
providing a default value for it. After doing so, the parameter can be left out of the call, and the default will be
provided.

method remappings {
uses {

downcall route(const MaceKey&, const Message& −> const std::string&, registration uid t);
downcall joinOverlay(const NodeSet&, const std::string& identity=std::string(), registration uid t regId = router);
upcall verifyJoinOverlay(const MaceKey&, const std::string&, registration uid t regId = activeAuthenticator); 5

}
//. . . service-implemented calls will be described next
implements {

//. . . be patient for this one
} 10

}

In the above example, we’re specifying 3 different uses calls with different instructions. In the first case, we’re
indicating that when we call downcall route, for the second parameter, instead of passing in a string, we will
pass in a const Message&, and that it should be automatically serialized to a string. Since it is a constant reference,
there will be no consideration for the deserialization of the string parameter after the call to downcall route. The
second call specifies that on the downcall joinOverlay call, the default identity is the empty string, and the
default registration UID is the one assigned to the router service variable (assuming one exists). The third mainly
differs in that it is specifying an upcall, and that the regId default should be activeAuthenticator, which may be a state
variable rather than a service variable.

Implements

The implements sub-block remaps calls which may be made on the service the writer is writing. These include
both functions of the API defined by service classes they provide (downcalls), and callback functions/upcalls for
handlers they register with services they use (upcalls). Their declaration also closely follows the original declaration
from the header file, and in this case no qualification about the type of call is necessary since there are sub-blocks
for the different types. Unlike the uses block, the implements block does not support default values since these calls
are incoming from elsewhere, they will already have the parameters filled in. However, the syntax for specifying
serialization instructions are the same, save for the direction of the arrow being reversed (<-) to indicate that the
remote caller is passing in a string and it should be deserialized into your type before your transitions are called. The
same provisos are true about the const and & modifiers on the type, and serialization after your transition is done.
This will typically be used to specify the handling of strings in upcalls either as messages or as other serializable types.

method remappings {
uses {

//. . . see the prior section
}
implements { 5

upcalls {
deliver(const MaceKey&, const MaceKey&, const Message& <− const std::string&,

registration uid t);
}
downcalls { 10

//. . . the same syntax can be used here
}
}
}

In this example there is a single callback specification, and when deliver is called, the 3rd parameter will be handled
like a message.

29

9.7 Automated Failure Detection
Automated failure detection is presently disabled due to incompatible updates to the compiler, but will be fixed soon.
Synopsis: After enabling failure detection for a node-auto type, an instance of a state variable (node or node collection)
may have failure detection active. Liveness probing will automatically be done to the specified peers, and when failures
are detected, they are signaled to the service via special transitions firing.

9.8 Authentication
Authentication will be covered when the DHT is included in the manual. Synopsis: A single authenticator per-group
or per-overlay is registered or set at any given point in time (per-node). Local authentication is handled by that active
authenticator, and remote authentication goes locally to that authenticator. We are adding identity strings to several of
our calls to make this possible.

10 Frequently Asked Questions

10.1 Registration UIDs
I have a question about registartion uid t(s) . . . basically when do I need them and where do I get them from?

Registration UIDs within Mace services are mainly handled by the compiler. When, in a .(m|mac|mace)file, you
do:

downcall route(dest, msg(some, stuff), router);

router is the registration uid for the Route service named router in the services block. Similarly, if you
specify that in defaults for the message (e.g.

join msg [downcall route(const MaceKey&, const Message&, registration uid t regId = router);] {
//stuff

}

router is still the registration uid t.
However, when doing upcalls from the .(m|mac|mace)file to a higher level (i.e. to the application), you need to

know the registration uid t of the higher level.
For example, when the application calls query(...) on your Mace service, the last parameter of the query call

will be the registration uid t of the registered QueryResponseHandler to which the response should go.
Typically, You can implement this by including the registration uid t from the query call in the messages and

responses. Then, when doing the upcall – pass in that registration uid t from the message. The supporting code
generated by the Mace compiler will take care of looking up the correct handler to make the call to.

From the application – after you create the service, you need to register the query response handler. If you pass in
-1, the service will return you a registration UID. If you pass in something else, that will be used as the registration
UID. If you want to create your own, you can get one from the NumberGen class. But the first technique is preferable.
Once you have a registration UID in the application – you should use that for all further calls to that service (i.e. future
registrations, calls for queries, etc.)

Note: Alternately from the application, you may call registerUniqueHandler on the service, as in the first
Ping application. This has the effect of registering your handler with a default and well known UID. Then, when
making future calls, you may omit the last parameter, allowing it the [well known] default value for the UID. Note that
this only works if a single application calls registerUniqueHandler, as implied by its name (and the fact that
only one handler can be registered under any given UID).

10.2 Compiler Errors
TBD

30

10.3 Compiler Warnings
TBD

10.4 Linker Errors
When I try to link my application, I get a message such as “undefined reference to
‘Myservice namespace::new Myservice ServiceClass’ ”. Why can’t it find it?

The straightforward answer, and the one most useful if the suggestions below don’t help, is that the linker cannot find
the library your service is available in. Each service directory is compiled into one or more libraries for of the format
dirname.compiletype.a, depending on the compile type you’re using (typically O2 or O0, for optimization levels),
assuming you haven’t touched the Makefiles for the service directory. When you link your application, you need
to make sure that you include each of the service directory libraries you will be using. If more than one service is
contained in a single directory, all services will be included in that directory’s library. The library itself is generated
in the services directory, so you can see if it exists there. If not, you may just need to run make at a high enough
level to build the services directory. Another problem occurs with the order of the linked directories. g++ is not smart
enough to chase down all dependencies, so you may need to include libraries more than once. In general, you solve
this problem by in services/Makefile.services by listing the services in order such that future directories
depend on earlier directories. The default application makefile then generates the RSERVICES variable which is
the reverse order, the one appropriate for linking. Recently another problem was observed by a mace user—setting
LIBNAME in the application makefile to be the same name as a directory in services caused the service directory to not
be found, instead linking in the application library twice. So make sure your application LIBNAME does not collide
with any other libraries you use, including directory names for services.

10.5 MapIterators, NodeCollections, and Iteration
Okay, so I’m using NodeCollection(s) of node-enabled auto type(s). But how do I iterate over all the ele-
ments?

NodeCollection(s) provide two methods of iteration. The first is to use the MapIterator interface. Suppose for example
that you had an auto type called child. Then, in the typedefs block, you could have:

typedefs {
typedef NodeCollection<child, MAX CHILDREN> children;
}

This would create a convenient type named children to refer to these node collections. Then, in your state variables
you could define a children variable like this:

state variables {
children myKids;
}

Then, to iterate over myKids, you could do so using the MapIterator either in a for loop or a while loop. You’ll
notice, however, that the for loop is a bit non-standard in that the incrementation portion of the loop is empty.

For:

for(children::map iterator i = myKids.mapIterator(); i.hasNext();)
{

child& kid = i.next();
maceout << "Now considering: " << kid.getId() << Log::endl;
} 5

While:

31

children::map iterator i = myKids.mapIterator();
while(i.hasNext())
{

child& kid = i.next();
maceout << "Now considering: " << kid.getId() << Log::endl; 5

}

The second technique for iterating over a node collection is to use the set iterator type (as returned by setBegin()
and setEnd()), which works like standard STL iteration, with the proviso that its like iterating over the node
collection as a set, not as a map (for an iterator i, *i is the node type the collection is templated on).

I did iteration just like the first technique you suggested over a collection in a message, but the gnu-c compiler
won’t compile the code. What’s more, the error message is some template stuff I don’t understand. Do you
know what’s wrong? Or, I’m doing STL iteration like I see it being done elsewhere, but things aren’t compiling.

You should ask yourself if the collection (i.e. NodeCollection, hash map, etc.) is a const collection. If so, you’ll
need to use either the const map iterator or the const iterator. This will allow you to iterate, but the items you are
iterating over will be constant to prevent you from changing them. Also keep in mind that message fields are constant,
even if the message itself is not – so anything in a message will automatically be constant.

10.6 downcall and upcall helper functions
Since I know the API of the services I’m using and the handlers I can make calls to, why can’t I just use syntax
more like making calls on the object? Why do I have to use “silly” downcall and upcall helper functions?

In theory this could work. However, since the generated code is handling these references internally for you, all you
have accessible are the registration UIDs. On a technical note, we want you to use the helper functions, both to be
consistent with the necessity to do so when default values are to be used when making calls or when serialization
instructions have been given, and because having a helper function gives us (the compiler writers) an ideal place to
instrument and insert code to do other useful stuff. One nice thing about this approach is that you can specify default
registration UIDs for each call, and then never have to worry about the references or the registration UIDs again.

If the demand is great enough, we have also talked about adding syntax which would let you write code to call
functions on registration UIDs, which could get mapped appropriately, but thus far is unsupported.

10.7 64-bit Mace
Can I run Mace unmodified on 64-bit systems?

Short answer, no.
We would like to get this working, but we are researchers rather than full-time developers, and it’s enough work

keeping everything running on 32-bit systems. Furthermore, we just don’t have 64-bit systems to test/run the system
on, so we wouldn’t be able to test it anyway. We do welcome tips and patches which make progress towards the goal
of being 64-bit clean. Additionally, we were recently tipped about a work-around if you want to run Mace and can live
with a 32-bit binary on 64-bit machines.

What follows is an unsupported set of tips from a user on compiling 32-bit Mace binaries on and for x86 64 systems.

Makefile.vars added -m32 to GLOBAL VARS

compiler/Makefile added -m32 to CFLAGS and CXXFLAGS, and rules for macecc and serviceparser

compiler/XmlRpc/Makefile added -m32 to xmlrpcc rule

application/Makefile.common added -m32 to the $(APPS) rule. Added another -lcrypto to the LIBS+=rule
of MACE EXTRAS SHA1.

copied files /usr/include/openssl/opensslconf-i386.h to the top mace directory, /usr/lib/libl.a
to lib directory, and /usr/lib/libcrypto.a to the lib directory.

32

A few extra comments from the tip:

Mace is, unfortunately, not 64-bit safe. But apparently, RHEL 64-bit can
compile and run 32-bit code (although some of the 32-bit libraries are
missing, so you have to grab them from a 32-bit machine).

10.8 On the Mace Library
Is KeyRange::containsKey a mace-specific thing or a C++ thing that I don’t know? If it’s mace-specific,
where do I find the implementation (so that I know which order the args come in.)

Look in lib/KeyRange.h for definitions.
Note that KeyRange is left/start inclusive, and right/end exclusive. start == end is interpreted as the entire range,

not the empty range.
As a special note for Chord, typical Chord usages are left-exclusive and right-inclusive. (A Chord node address

space is from right after your predecessor to and including its own id). On the other hand, the implemented behavior
is the standard Pastry/Bamboo use. In the Mace implementation of Chord, to handle this there is a lot of stuff based
on “plusone”.

Where is mace::deque defined? I tried lib/collections.h, and I greped mace/lib but didn’t have much
luck.

Your grep probably failed because you looked for mace::deque. The mace:: part is a namespace, so it doesn’t appear
in the definition. The code would look something like:

namespace mace {
class deque {

};
} 5

So if you were to grep for class deque, you would find it much easier. Unfortunately, it’s hard to tell whether the ::
imply (1) a static method of a class, (2) an inner class, or (3) a namespace.

Anyway, mace is a namespace, and the ‘collections’ defined in the mace namespace are for the most part just
extensions of C++ STL counterparts. So mace::deque extends from std::deque. All of these collections are defined in
files of the form mfoo.h or m foo.h in the lib directory. Generally we use the underscore when foo begins with m. So
you’d find mdeque.h or m map.h in the lib directory.

If you’re looking for documentation on the methods, for the most part you’ll want to see instead the documentation
of the STL parts. A good reference here is the SGI webpage [http://www.sgi.com/tech/stl/].

Some systems have the STL manpages installed, so then you can just do man std::deque.
The reason Mace has counterparts of these STL things is to provide print-ability and serialize-ability. We also add

a few convenience methods like containsKey (for maps), though these are often unused for efficiency.
Oh, as a final note, one thing you might should know is that constructors are not inherited. We’ve only defined the

ones we need usually. If you need another one, they are easy to add. The defined ones will appear in the mace .h file.

The STL documentation says that you shouldn’t inherit from STL collections. Does that mean Mace code is
broken or unsafe?

STL classes were defined without a virtual destructor. This is a mechanism they use to discourage inheriting from
them. In our (perhaps incomplete) understanding of this mechanism, the only cause for concern is if you were to
delete a pointer to the base class type when the object was implemented by an inherited class. In our code we avoid
the use of pointers, and generally only use the mace template types anyway, so we believe that this use is relatively
safe. Without the inherited classes, we would have to come up with complicated ways to add new methods to STL
types, or define new collection types. Since this method seems mostly safe and it was by far the easiest method to get
it working, we went ahead and inherited from them. So now you know what to watch our for. Be careful!

33

http://www.sgi.com/tech/stl/

A Directory Structure
This section covers the directory structure of Mace. You should read this section if you’re either can never figure out
where a file is in the repository, or if you are trying to figure out where to put a new file.

At the top level, there are 5 directories in the release.

lib The lib directory contains general purpose code with useful interfaces that may be useful in building applications
and services. They include the logging facilities, a facility for operating on command-line and file parameters,
the Mace stl extensions, a variety of Util functions and much more. An overview of these is in § E. This directory
should contain code which (a) has no dependencies to other Mace directories, and (b) will be generally useful
to more than one application, service, or compiler.

perl5 The compiler directory contains the source for compilers and a variety of other perl tools. The primary compiler
is the macecc compiler which operates on .(m|mac|mace)files and produces C++ source code. Other
compilers here are the xmlrpcc compiler generating xmlrpc stubs, and a macemh compiler for compiling the
service interface files.

services The services directory contains the interfaces (ServiceClass and Handler definitions) for services, as well as
the implementation of various services. Services by definition provide some service class, though they may be
a mix of hand-crafted (C++ implemented) and generated (via Mace compiler). The interfaces are all stored in
the services/interfaces directory, without other files there. (A possible exception is considered for files
which define things needed by interfaces but for which it does not make sense to place in the lib directory.)
The services themselves are stored in the remaining subdirectories. Frequently, each directory implements a
single service, though it may include supporting files or test code in that directory. Occasionally, however,
related services are placed in the same directory. Note that any *.cc in a service directory will be included in
the directory’s library. The included services and interfaces are covered further in § B and § C.

application This directory contains the various applications included with Mace. Some are toy applications but
most could be made to do useful work with only small modifications. The applications are described in § F.
Additionally, there is a common subdirectory which includes code which is to be shared between applications,
as building blocks, but which include dependencies in the services/interfaces directory, and therefore
cannot be included as part of the lib directory. Note that to the extent possible, this directory should not
include dependencies on particular services, in an effort to allow this directory to be built without regard for
what services are being built.

docs The files necessary to produce this documentation. It can be produced by running ”make”. To produce it you
will need latex and lgrind installed. For convenience, a pre-built PDF is already included.

B Service Classes
Service classes you will recall define the public interface of a service. Handlers are interfaces of callback or upcall
objects registered with a service class.

All service classes derive from the base ServiceClass, which defines the initialization and de-initialization routines
(maceInit and maceExit), respectively. These functions are special functions for the Mace compiler: it reference
counts them, and recurses them (only once) to the services used. It also ensures that the maceInit or maceExit event
only occurs once for the service.

The specific interfaces for each service can best be seen by looking at the .mh file in the services/interfaces
directory – an overview of what they contain will be here.

Sending and Receiving Data TransportServiceClass, RouteServiceClass, MulticastServiceClass, and Hierarchical-
MulticastServiceClass define the routing functions found in the original MACEDON system. Each takes a
ReceiveDataHandler registration for delivery of data. The primary addition of the HierarchicalMulticastSer-
viceClass is the collect and distribute calls, which transmit data up or down the hierarchy, respectively.
In the ReceiveDataHandler there is a forward call which is performed at all nodes processing the data, in-
cluding source and destination(s), and a deliver call, which is called to deliver the data. Also related to these

34

services is the NetworkErrorHandler, which is used to report node failures, and the BandwidthRouteService-
Class, which provides an interface for measuring the bandwidth to a set of peers. which is achieved by the
routing.

Aggregation and Gossip AggregateServiceClass, GossipServiceClass. and their respective handlers are the Mace
interfaces for aggregating data and gossiping data. Each of these interfaces allows a user to register different
aggregations or gossip values for different channel ids.

Structures Service classes have been developed for a few common structures (so far trees and overlay routers), to
allow shared code for operations over these structures, separating out the actual maintenance of the structure.
These service classes are OverlayRouterServiceClass and TreeServiceClass. A special service class presently
exists for ScribeTreeServiceClass, which defines the extra interface Scribe-like services provide so they may be
managed by SplitStream-like services. This service class will likely have its name changed when it is adapted
for more general-purpose use.

Overlay and Group These two service classes define the interface for joining overlays or groups. They are separated
because it is believed that the same interface will be useful for different kinds of services, for example joining a
multicast group or joining a group for threshold cryptography or the like11.

Http The Http service class actually provides little interface into it. It’s primary value is the ability to register a
handler with the Http service which lets you respond to Http queries in Mace-generated code.

Null The Null service class is one which derives directly from ServiceClass and provides no additional interface. Its
existance is generally for test code, which is supposed to do its task as a result of maceInit().

C Packaged Services
The following services come pre-implemented in Mace (divided by directory located).

Transport Several TransportServiceClass services are in this directory. This includes TcpTransport, UdpTransport,
MaceTransport (a user-level TCP-like service), ProvisionalTransport (which allows cancelling messages), and
RouteTransportWrapper (which wraps a RouteServiceClass on top of a TransportServiceClass, providing the
forward upcall.) Features include built-in encryption and authentication using SSL certs, and the ability to run
Mace instances using different ports and through port-forwarding firewalls or with unroutable nodes. It also
stands as the building block for a number of new features we are considering.

ReplayTree ReplayTree represents the original MACEDON random tree, and provides the TreeServiceClass interface
by building a tree randomly. Its random tree features are deprecated by the new RandTree, but it is still useful
for constructing a tree by specifying its structure in a configuration file (it replays a tree determined offline).

RandTree RandTree provides the TreeServiceClass interface by building a random tree. Every node joins at the root
and finds a place in the overlay tree randomly. This implementation, unlike the MACEDON version provides a
degree of tolerance for network failures, including root failover.

RanSub This directory contains implementations of RanSubAggregator, an implementation of the AggregateService-
Class, and RanSub, an implementation of the GossipServiceClass. Unlike a “standard” gossip service, RanSub
provides a uniformly random subset of peer data (the gossip) using an aggregation service which works simply
by passing up and down the tree.

Pastry This is an implementation of the original Pastry overlay router. It does include some degree of recovery
from network failures, though it does not include any of the newer Microsoft work on controlling the cost of
reliability. It does provide proximity neighbor selection.

11Similar concepts to groups are starting to appear for aggregation, gossip (channel id), or file distribution (file name) – this notion will likely be
merged in a future release

35

ScribeMS This is an implementation of the Scribe tree protocol. The MS refers to the fact that in MACEDON there
were two implementations of Scribe, one which followed more of the Microsoft design, and one which followed
more of the Rice design, which have somewhat diverged from the original publication. This release contains
several bugfixes as compared to the MACEDON implementation.

SplitStreamMS This is an implementation of the SplitStream forest multicast protocol. The MS refers to the fact
that in MACEDON there were two implementations of SplitStream, one which followed more of the Microsoft
design, and one which followed more of the Rice design, which have somewhat diverged from the original
publication. This release contains several bugfixes as compared to the MACEDON implementation.

GenericOverlayRoute This directory contains two implementations of routing over an overlay. RecursiveOverlay-
Route provides basic overlay routing using recursive lookups (at each hop, consult with an overlay router to
find out the next hop). CacheRecursiveOverlayRoute uses recursive routing techniques, but establishes direct
links to destination nodes for applications such as tree multicast which frequently don’t want intermediate nodes
forwarding data between two tree-peers. It does this transparently however so that higher level services need
not concern them with the physical addresses of the destination nodes but can just refer to them by their overlay
identifiers.

GenericTreeMulticast Implements the HierarchicalMulticastServiceClass given an instance of a TreeServiceClass
and a RouteServiceClass. The assumption of this service is that the addressing schemes of these two service
instances are the same (that nodeids correspond between the two).

Http Provides an implementation of the HttpServiceClass, with which you may register to receive URL requests
matching a certain path. May be used either as a service by another service, or as a standalone service.

Chord This is an implementation of the original Chord overlay router.

DHT A service for storage in an overlay routed network.

There is effort underway to port services from MACEDON to Mace, and these will be included and described as
they available.

D Logging
All log messages have selectors and log levels. Logging can additionally be enabled or disabled at compile time or
runtime.

For a log to get printed, it’s level must be below (or equal to) the log level of the system. It’s selector must be
selected, and the logging must not be disabled. Furthermore, there is a way to disable (at compile time) all normal
logs by defining some macros and/or setting a compile-time max log level.

For relevant code, look at lib/mace-macros.h and lib/LogIdSet.h.
Selectors are added by the macro ADD SELECTORS(); If called by ADD FUNC SELECTORS, it uses PRETTY FUNCTION .

Mace services generally use $service::$function::$state or $service::$function::$message::$state. $message is a mes-
sage name or timer name, $state is the guard, or ”(demux)” if it’s the demux method, or some other strings on gener-
ated methods. However, this format can be overridden by the log selectors{} block. This can be done to shorten
selectors for example. A prefix is added sometimes based on the macro and LogIdSet.

All logging macros use log level 0, except macecompiler and macedbg (or their printf variants). These take
a required log level, though the compiler versions should only be used by generated code.

Finally, there is the configuration of logging output. This handled by

• Log::add

• Log::autoAdd

• Log::autoAddAll

• Log::configure

36

(See lib/Log.h for prototypes)
Log::configure utilizes those other ones, and references a number of configuration parameters (from the

Params singleton), including MACE LOG AUTO SELECTORS, MACE LOG LEVEL, and more. The add, autoAdd,
and autoAddAll methods allow configuration of which selectors get printed to which FILE*(s), and using what
formats (timestamp, selector, thread id, etc.). By default, WARNING and ERROR are autoAdded to stderr. This
can be disabled. Selectors can be printed to more than one file descriptor. Different selectors can be printed using
different formats to the same file descriptor, and the same selector can be printed using different formats to different
file descriptors.

A log selector string is mapped to a log id at the beginning of the execution. If the selector is not selected before
the mapping occurs, -1 is returned. -1 causes fast-pass log suppression. Otherwise the log id is an index into a data
structure telling how to do the logging.

You can in theory call Log::logXXX("selector"...), which checks the selector mapping each time (though
once a mapping is selected, I’m not sure it is re-evaluated). But that is highly inefficient – instead the log id should
be used whenever possible, which the mace logging macros handle for you.

So that’s just a brief introduction to Mace logging. It is supremely flexible and highly optimized, albeit a bit complex
to fully understand.

That should help you get started.

E Useful Library Functions
TBD

The lib directory contains a large number of useful library functions. These fall into categories such as STL
wrappers, Logging, and Utility functions. At present I’ll merely advise looking at the .h files to see what’s available.

F Applications
The following applications (largely toy applications) are presently being released with Mace.

appmacedon appmacedon is a port of the original appmacedon toy application. It is used as a driver for multicast
and unicast services, and will attempt to stream [bogus] data at a given rate. It will report average bandwidth
and latency for each node at the end of the run.

unit app unit app is an application for performing unit tests. It runs by constructing an instance of a NullService-
Class, calling maceInit(), sleeping for the duration of the run, and then calling maceExit(). In the future
it may support a type of return code which could indicate the success or failure of the test.

filecopy filecopy is a simple application to transmit a file over a constructed RouteServiceClass and store it at the
destination. It has primarily been used to measure the performance of the low-level transports.

http TBD

common Okay – not really an application. TBD

G Method Remappings
As specified by the RouteServiceClass API, to route a message over the router, you would have to pass in a string.
You could manually create that string and have it in a certain message format (known as serializing the message)
that you could read back later (deserializing it). However, writing this is mechanical and tedious. Thus, Mace will
automate this process for you by allowing you to specify messages, which we will cover in § 5.8. For this automatic
conversion to work, however, you have to tell the Mace compiler that the strings in the route downcall and in the
deliver upcall should actually be handled as messages. The following code, placed in the method remappings
block, will do just that:

37

method remappings {
uses {

downcall route(const MaceKey&, const Message& −> const std::string&);
} // uses

5

implements {
upcalls {

deliver(const MaceKey&, const MaceKey&, const Message& <− const std::string&);
} // upcalls
} // implements 10

} // method remappings

At this point we are going to give a cursory overview of this syntax. At a high level, you are remapping the route
downcall (which you use from the router) and the deliver upcall (which you implement for the router) to
calls which have slightly different parameters – namely using a constant “Message” reference. “Message” here is a
keyword to tell the compiler that it could be replaced by any message. The arrow just denotes the direction in which
the serialization occurs. That is, for downcall route, your service will pass in a Message, and it will be serialized
into a string, the type expected by RouteServiceClass. For the upcall deliver, the RouteServiceClass will pass in a
string, which will be automatically deserialized into a Message for your service.

Note that the method remappings block also allows you to specify optional per-message defaults. These appear
as declarations of methods with the specific messages given, declared with the appropriate default values. One conve-
nient use for these optional defaults is to set the default service registration id for a message. The syntax is illustrated
below. Say that the Ping service used two RouteServiceClasses, r1 and r2. If we wanted Ping messages to go over
r1 and PingReply messages to go over r2, we could define that as:

method remappings {
uses {

downcall route(const MaceKey&, const Message& −> const std::string&, registration uid t regId);
downcall route(const MaceKey&, const Ping&, registration uid t regId = r1);
downcall route(const MaceKey&, const PingReply&, registration uid t regId = r2); 5

} // uses
\ldots
} // method remappings

In this example, we listed the registration id parameter on the remapped method as well, since we will need it on
the target methods.

However, when there is only one suitable service variable on which a downcall could be made, then, provided the
default registration id is passed (that is, you omit the final parameter in the downcall), then the call will go to the that
service. Thus, we do not need to specify any optional parameters for our messages, because we use only a single
RouteServiceClass.

H RPC
TBD

38

	Preamble
	Copyrights and Distribution
	Acknowledgments
	Feedback

	Why are you reading this document?
	What is Mace?
	Why would I want to use a domain-specific language and toolkit?
	Why shouldn't I just use other previously existing languages?

	Getting and Installing Mace
	Mace dependencies
	Getting the Mace source code
	Installing Mace
	The Mace Build System
	CMake is a build system generator
	Out of source builds
	Running CMake
	Configuring a CMake Build (and turning on debugging symbols)
	Changing the CMake Input Configuration Files
	Adding New Source Files
	Features of CMake Makefiles

	A Simple Example: Ping
	Ping Overview
	Usage Model
	Application and Service Components

	ServiceClass Definitions
	PingServiceClass
	ServiceClass Notes
	Handler Definitions
	PingDataHandler
	Handler Notes
	Service Implementations
	Ping Implementation
	Compiling the Ping Service

	Ping Application
	Compiling firstping.cc

	Running Ping

	Mace Specification Overview: Ping in Detail
	Header Files
	Service
	Provides
	Services
	The Route Service Class (briefly)
	Under The Covers
	Constants
	Messages
	State Variables
	Transitions

	Ping Revisited
	Revised Ping Implementation
	Revised Ping Application

	Mace Specification Revisited
	Services (Revised)
	Constructor Parameters
	States
	Typedefs
	Messages (Revised)
	State Variables (Revised)
	Transitions (Revised)
	Routines

	A Real Example: DHT
	Advanced Features
	Registration UIDs
	Service Composition
	Local Addresses
	Auto Types
	Message Defaults
	Method Remapping Block
	Automated Failure Detection
	Authentication

	Frequently Asked Questions
	Registration UIDs
	Compiler Errors
	Compiler Warnings
	Linker Errors
	MapIterators, NodeCollections, and Iteration
	downcall_ and upcall_ helper functions
	64-bit Mace
	On the Mace Library

	Directory Structure
	Service Classes
	Packaged Services
	Logging
	Useful Library Functions
	Applications
	Method Remappings
	RPC

