

## A Methodology for Hiding Knowledge in Databases

Tom Johnsten Vijay Raghavan



## Knowledge Hiding in Databases

- Non-trivial hiding of potentially sensitive knowledge in databases.
  - Maximize release data
  - Maintain data integrity

January 3, 2003





### **KHD Process**

- Identify sensitive knowledge
- Identify data mining algorithms
- Formulate security policies
- Risk assessment
- Sanitize data
- Report generation

January 3, 2003



### KHD vs. KDD

- Analyze a collection of data for its information content.
- Iterative processes
  - Information requirement, discovery phase, reporting phase.

January 3, 2003

5



# KHD: Classification Mining

January 3, 2003



# Identify Sensitive Knowledge

"Junior engineers may not access mileage class of newly designed cars".

January 3, 2003

7



| ID  | Fuel  | Cyl | Power | Trans | Mileage     |
|-----|-------|-----|-------|-------|-------------|
| T1  | Efi   | 4   | High  | Manu  | Med         |
| T2  | Efi   | 6   | High  | Manu  | Med         |
| Т3  | 2-bbl | 6   | High  | Auto  | Low         |
| T4  | Efi   | 6   | Med   | Manu  | Med         |
|     |       |     |       |       |             |
| T15 | 2-bbl | 4   | High  | Auto  | NULL (High) |
| T16 | Efi   | 6   | Med   | Auto  | NULL (Low)  |
| T17 | 2-bbl | 4   | Low   | Auto  | NULL (Med)  |

January 3, 2003



## Class-Accuracy Set

- $\{(c_1, a_1), (c_2, a_2), ..., (c_n, a_n)\}$ 
  - where
    - c<sub>i</sub> is the i<sup>th</sup> attribute in the domain of attribute containing the protected data element.
    - a<sub>i</sub> is the predicted accuracy (level of confidence) according to the classification algorithm of assigning to the protected object class label c<sub>i</sub>.

January 3, 2003

9



## Class-Accuracy Set

- Class-accuracy set for tuple T15:
  - {(Mileage = low, a<sub>low</sub>), (Mileage = med, a<sub>med</sub>), (Mileage = high, a<sub>high</sub>)}

January 3, 2003



## Security Policies

- Maximum threshold
  - All  $a_i$  are less than some threshold value  $\epsilon$ .
- Maximum range
  - $[MAX(a_1, ..., a_n) MIN(a_1, ..., a_n)] < \varepsilon$

January 3, 2003

11



## Security Policies

- Protected threshold
  - a<sub>i</sub> < ε, (a<sub>i</sub> is predicted accuracy value associated with protected data element).
- Protected rank
  - Ranked position of protected data element is not within the non-secure range [L,U].

January 3, 2003



### Risk Assessment

- Individual algorithm assessment
- Generic assessment

January 3, 2003

13



## Risk Assessment

- Decision-Region Based Algorithms
  - Condition-1:
    - It is possible to identify a priori a finite set of descriptions, D, in terms of the properties present in an object O such that the particular description d used by A to classify O is an element of D.

January 3, 2003



#### Risk Assessment

- Decision-Region Based
  - Condition-2:
    - The predicted accuracy of assigning an object O satisfying a description d∈ D to a class C is dependent on the distribution of class label C relative to all other class labels among the objects that satisfy d in the training set.

15

January 3, 2003



### Risk Assessment

• Given a description d∈ D the predicted accuracy of assigning the protected tuple T the label c is the ratio of the number of tuples assigned label c and satisfy d to the number of tuples that satisfy d.

January 3, 2003 16



### Risk Assessment

- Apply security policy to a particular description d.
- Apply security policy to each description d∈ D.

January 3, 2003 17



January 3, 2003

```
REPEAT
  K = 1
  WHILE (exist descriptions to inspect)
    D = K level descriptions requiring inspection
    FOR (each description d in D)
       IF (d == zero description)
        append all specializations of d to zero description list
       ELSE IF (d == non-secure description)
         append d to non-secure description list
     END_FOR
     transform non-secure descriptions to secure descriptions
     by protecting subset of attribute values not belonging to
     target object
     K = K+1
  END_WHILE
UNTIL (no non-secure descriptions)
```

Q



| ID  | Fuel  | Cyl | Power | Trans | Mileage     |
|-----|-------|-----|-------|-------|-------------|
| T1  | Efi   | 4   | High  | Manu  | Med         |
| T2  | Efi   | 6   | High  | Manu  | Med         |
| T3  | 2-bbl | 6   | High  | Auto  | Low         |
| T4  | Efi   | 6   | Med   | Manu  | Med         |
|     |       | ••• |       |       |             |
| T15 | 2-bbl | 4   | High  | Auto  | NULL (High) |
| T16 | Efi   | 6   | Med   | Auto  | NULL (Low)  |
| T17 | 2-bbl | 4   | Low   | Auto  | NULL (Med)  |

January 3, 2003

19



| Tuple | Description              | Class-Accuracy                          |
|-------|--------------------------|-----------------------------------------|
| T15   | (Fuel = 2-bbl)           | {(low, .25), (med, 0), (high, .75)}     |
| T15   | (Cyl = 4)                | {(low, 0), (med, .375), (high, .625)}   |
| T15   | (Power = high)           | {(low, .25), (med, .375), (high, .375)} |
| T15   | (Cyl=4 & Power = high)   | {(low, 0), (med, .5), (high, .5)}       |
| T15   | (Cyl = 4) & Tran = auto) | {(low, 0), (med, .5), (high, .5)}       |

January 3, 2003



| ID  | Fuel  | Cyl  | Power | Trans | Mileage     |
|-----|-------|------|-------|-------|-------------|
| T1  | Efi   | NULL | High  | Manu  | Med         |
| T2  | Efi   | 6    | High  | Manu  | Med         |
| T3  | 2-bbl | NULL | High  | NULL  | Low         |
| T4  | Efi   | 6    | Med   | Manu  | Med         |
|     |       |      |       |       |             |
| T15 | 2-bbl | 4    | High  | Auto  | NULL (High) |
| T16 | Efi   | 6    | Med   | Auto  | NULL (Low)  |
| T17 | 2-bbl | 4    | Low   | Auto  | NULL (Med)  |

January 3, 2003

21



# KHD: Association Mining

January 3, 2003



# Identify Sensitive Knowledge

- Analysis will only be as complete as the identified knowledge.
- "Fault-tree" to structure process.

January 3, 2003

23



## **Identify Sensitive Knowledge**

 "Employees may not have knowledge of customers suffering from sensitive health conditions".

January 3, 2003





## Formulate Security Policies

- Transform constructed fault-tree into appropriate security policies.
- Predefined set of templates.

January 3, 2003



TYPE-1: Specific Item -> Specific Item

TYPE-2: Specific Item -> Any Item

TYPE-3: Any Item -> Specific Item

TYPE-4: Specific Item -> Any Subset of Items

TYPE-5: Any Subset of Items -> Specific Item

TYPE-6: Specific Item -> Specific Concept

TYPE-7: Specific Concept -> Specific Item

TYPE-8: Any Item -> Specific Concept

TYPE-9: Specific Concept -> Any Item

TYPE-10: Any Subset of Items -> Specific Concept

TYPE-11: Specific Concept -> Any Subset of Items

TYPE-12: Specific Concept -> Specific Concept

All templates include user-defined support and confidence threshold values.

January 3, 2003

27



## Risk Assessment

- Each template is expanded into one or more association rules.
  - Each association rule is evaluated.

January 3, 2003



### Sanitize Data

- Remove items from database
  - Maintains data integrity
- Modify item values
  - Maximize available data

January 3, 2003

29



### **Remove Items**

- Minimum Coverage Item Set (MCIS)
  - Given a set of association rules A, a MCIS is a minimum set of items in which at least one of the items in the set is included in each rule r∈ A.

January 3, 2003



## Example

- Given the non-secure sensitive association rules:
  - I1 -> I2
  - I1 -> I3 ∧ I4
  - I5 -> I6
  - I2 -> I7 ∧ I6
  - I6 -> I2 ∧ I1
- MCIS = {I1, I6}
  - Concealment of items I1 and I6 guarantees that the rules have no accuracy and strength.

January 3, 2003

31



# Data Integrity $(X \rightarrow Y)$

- Contains no items whose values have been modified.
  - Same level of support and confidence as with respect to unsanitized data.

January 3, 2003



## Data Integrity $(X \rightarrow Y)$

- Items belonging to left-hand side have been modified.
- Support:
  - [#(X ∧ Y) / T, (#(X ∧ Y) + P\_MAX(X)) / T]
- Confidence:
  - [#(X ∧ Y) / (#(X) + P\_MAX(X)), (#(X ∧ Y) + P\_MAX(X)) / (#(X) + P\_MAX(X))]

January 3, 2003

33



## Data Integrity $(X \rightarrow Y)$

- Items belonging to right-hand side have been modified.
- Support:
  - [#(X ∧ Y) / T, (#(X ∧ Y) + P\_MAX(Y)) / T]
- Confidence:
  - [#(X ∧ Y) / #(X), (#(X ∧ Y) + P\_MAX(Y)) / #(X)]

January 3, 2003



## Data Integrity $(X \rightarrow Y)$

- Items belonging to left- and right- sides have been modified
- Support:
  - [#(X ∧ Y) / T, (#(X ∧ Y) + P\_MAX(X,Y)) / T]
- Confidence:
  - [#(X ∧ Y) / (#(X) + P\_MAX(X)), (#(X ∧ Y) + P\_MAX(X,Y)) / (#(X)+P\_MAX(X,Y))]

January 3, 2003

35



### **Future Work**

- Formal models to specify sensitive knowledge.
- Risk assessment procedures.
- Sanitization procedures.
- Data Integrity (Intra and Inter).

January 3, 2003