

Chris Clifton clifton@cs.purdue.edu

www.cs.purdue.edu/people/clifton

Privacy and Security Constraints

- Individual Privacy
 - Nobody should know more about any entity after the data mining than they did before
 - Approaches: Data Obfuscation, Value swapping
- Organization Privacy
 - Protect knowledge about a collection of entities
 - Individual entity values may be known to all parties
 - Which entities are at which site may be secret

Privacy constraints don't prevent data mining

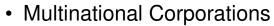
- · Goal of data mining is summary results
 - Association rules
 - Classifiers
 - Clusters
- The results alone need not violate privacy
 - Contain no individually identifiable values
 - Reflect overall results, not individual organizations

The problem is computing the results without access to the data!

Privacy-Preserving Data Mining: Who?

- Government / public agencies. Example:
 - The Centers for Disease Control want to identify disease outbreaks
 - Insurance companies have data on disease incidents, seriousness, patient background, etc.
 - But can/should they release this information?
- Industry Collaborations / Trade Groups. Example:
 - An industry trade group may want to identify best practices to help members
 - But some practices are trade secrets
 - How do we provide "commodity" results to all (Manufacturing using chemical supplies from supplier X have high failure rates), while still preserving secrets (manufacturing process Y gives low failure rates)?

Privacy-Preserving Data Mining: Who?



- A company would like to mine its data for globally valid results
- But national laws may prevent transborder data sharing
- Public use of private data
 - Data mining enables research studies of large populations
 - But these populations are reluctant to release personal information

Outline

- Types: Individual, collection, result limitation
- Sources: Regulatory, Contractual, Secrecy
- · Classes of solutions
 - Data obfuscation
 - Summarization
 - Data separation

Individual Privacy: Protect the "record"

- Individual item in database must not be disclosed
- Not necessarily a person
 - Information about a corporation
 - Transaction record
- Disclosure of parts of record may be allowed
 - Individually identifiable information

Individually Identifiable Information

- Data that can't be traced to an individual not viewed as private
 - Remove "identifiers"
- But can we ensure it can't be traced?
 - Candidate Key in non-identifier information
 - Unique values for some individuals
 Data Mining enables such tracing!

Re-identifying "anonymous" data (Sweeney '01)

- 37 US states mandate collection of information
- She purchased the voter registration list for Cambridge Massachusetts
 - 54,805 people
- 69% unique on postal code and birth date
- 87% US-wide with all three

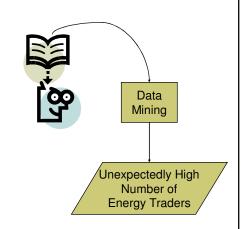
- Solution: k-anonymity
 - Any combination of values appears at least k times
- Developed systems that guarantee k-anonymity
 - Minimize distortion of results

Collection Privacy

- Disclosure of individual data may be okay
 - Telephone book
 - De-identified records
- Releasing the whole collection may cause problems
 - Trade secrets corporate plans
 - Rules that reveal knowledge about the holder of data

Collection Privacy Example: Corporate Phone Book

- Telephone Directory discloses how to contact an individual
 - Intended use
- Data Mining can find more
 - Relative sizes of departments
 - Use to predict corporate plans?
- Possible Solution: Obfuscation
 - Fake entries in phone book
 - Doesn't prevent intended use
- Key: Define Intended Use
 - Not always easy!



Restrictions on Results

- Use of Call Records for Fraud Detection vs. Marketing
 - FCC § 222(c)(1) restricted use of individually identifiable information
 - Until overturned by US Appeals Court
 - 222(d)(2) allows use for fraud detection
- Mortgage Redlining
 - Racial discrimination in home loans prohibited in US
 - Banks drew lines around high risk neighborhoods!!!
 - These were often minority neighborhoods
 - Result: Discrimination (redlining outlawed)

What about data mining that "singles out" minorities?

Sources of Constraints

- Regulatory requirements
- · Contractual constraints
 - Posted privacy policy
 - Corporate agreements
- Secrecy concerns
 - Secrets whose release could jeopardize plans
 - Public Relations "bad press"

Regulatory Constraints: Privacy Rules

- Primarily national laws
 - European Union
 - US HIPAA rules (www.hipaadvisory.com)
 - Many others: (<u>www.privacyexchange.org</u>)
- · Often control transborder use of data
- Focus on intent
 - Limited guidance on implementation

European Union Data **Protection Directives**

- Directive 94/46/EC
 - Passed European Parliament 24 October 1995
 - Goal is to ensure free flow of information
 - Must preserve privacy needs of member states
 - Effective October 1998
- Effect
 - Provides guidelines for member state legislation
 - · Not directly enforceable
 - Forbids sharing data with states that don't protect privacy
 - · Non-member state must provide adequate protection,
 - · Sharing must be for "allowed use", or
 - Contracts ensure adequate protection
 - US "Safe Harbor" rules provide means of sharing (July 2000)
 - Adequate protection
 - · But voluntary compliance
- Enforcement is happening
 - Microsoft under investigation for Passport (May 2002)
 - Already fined by Spanish Authorities (2001)

EU 95/46/EC: Meeting the Rules

- Personal data is any information that can be traced directly or indirectly to a specific
- Use allowed if:
 - Unambiguous consent given
 - Required to perform contract with subject
 - Legally required
 - Necessary to protect vital interests of subject
 - In the public interest, or
 - Necessary for legitimate interests of processor and doesn't violate privacy
- Some uses specifically proscribed
 - Can't reveal racial/ethnic origin, political/religious beliefs, trade union membership, health/sex life
- Must make data available to subject
 - Allowed to object to such use
 - Must give advance notice / right to refuse direct marketing use
- Limits use for automated decisions
 - Onus on processor to show use is legitimate

europa.eu.int/comm/internal market/en/dataprot/law

US Healthcare Information Portability and Accountability Act (HIPAA)

- · Governs use of patient information
 - Goal is to protect the patient
 - Basic idea: Disclosure okay if anonymity preserved
- · Regulations focus on outcome
 - A covered entity may not use or disclose protected health information, except as permitted or required...
 - To individual
 - For treatment (generally requires consent)
 - To public health / legal authorities
 - Use permitted where "there is no reasonable basis to believe that the information can be used to identify an individual"
- Safe Harbor Rules
 - Data presumed not identifiable if 19 identifiers removed (§ 164.514(b)(2)), e.g.:
 - Name, location smaller than 3 digit postal code, dates finer than year, identifying numbers
 - Shown not to be sufficient (Sweeney)
 - Also not necessary

Moral: Get Involved in the Regulatory Process!

Regulatory Constraints: Use of Results

- · Patchwork of Regulations
 - US Telecom (Fraud, not marketing)
 - · Federal Communications Commission rules
 - · Rooted in antitrust law
 - US Mortgage "redlining"
 - · Financial regulations
 - · Comes from civil rights legislation
- · Evaluate on a per-project basis
 - Domain experts should know the rules
 - You'll need the domain experts anyway ask the right questions

Contractual Limitations

- · Web site privacy policies
 - "Contract" between browser and web site
 - Groups support voluntary enforcement
 - <u>TrustE</u> requires that web site DISCLOSE policy on collection and use of personal information
 - BBBonline
 - posting of an online privacy notice meeting rigorous privacy principles
 - completion of a comprehensive privacy assessment
 - monitoring and review by a trusted organization, and
 - participation in the programs consumer dispute resolution system
 - · Unknown legal "teeth"
 - Example of customer information viewed as salable property in court!!!
 - P3P: Supports browser checking of user-specific requirements
 - Internet Explorer 6 disallow cookies if non-matching privacy policy
 - PrivacyBird Internet Explorer plug-in from AT&T Research
- Corporate agreements
 - Stronger teeth/enforceability
 - But rarely protect the individual

Secrecy

- · Governmental sharing
 - Clear rules on sharing of classified information
 - Often err on the side of caution
 - · Touching classified data "taints" everything
 - · Prevents sharing that wouldn't disclose classified information
- Corporate secrets
 - Room for cost/benefit tradeoff
 - Authorization often a single office
 - Convince the right person that secrets aren't disclosed and work can proceed
 - Antitrust: Need to be able to show that secrets aren't shared!
- Bad Press
 - Lotus proposed "household marketplace" CD (1990)
 - Contained information on US households from public records
 - · Public outcry forced withdrawal
 - Credit agencies maintain public and private information
 - Make money from using information for marketing purposes
 - Key difference? Personal information isn't disclosed
 - · Credit agencies do the mining
 - "Purchasers" of information don't see public data

Antitrust Example: Airline Pricing

- Airlines share real-time price and availability with reservation systems
 - Eases consumer comparison shopping
 - Gives airlines access to each other's prices

Ever noticed that all airlines offer the same price?

- Shouldn't this violated price-fixing laws?
 - It did!

Antitrust Example: Airline Pricing

- Airlines used to post "notice of proposed pricing"
 - If other airlines matched the change, the prices went up
 - If others kept prices low, proposal withdrawn
 - This violated the law
- Now posted prices effective immediately
 - If prices not matched, airlines return to old pricing
- · Prices are still all the same
 - Why is it legal?

The Difference: Need to Know

- · Airline prices easily available
 - Enables comparison shopping
- Airlines can change prices
 - Competition results in lower prices
- These are needed to give desired consumer benefit
 - "Notice of proposed pricing" wasn't

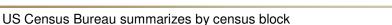
Classes of Solutions

- Data Obfuscation
 - Nobody sees the *real* data
- Summarization
 - Only the needed facts are exposed
- Data Separation
 - Data remains with trusted parties

Data Obfuscation

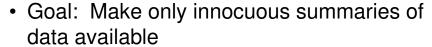
- Goal: Hide the protected information
- Approaches
 - Randomly modify data
 - Swap values between records
 - Controlled modification of data to hide secrets
- Problems
 - Does it really protect the data?
 - Can we learn from the results?

Example: US Census Bureau Public Use Microdata



- Minimum 300 people
 - Ranges rather than values
- · For research, "complete" data provided for sample populations
 - Identifying information removed
 - Limitation of detail: geographic distinction, continuous → interval
 - Top/bottom coding (eliminate sparse/sensitive values)
 - Swap data values among similar individuals (<u>Moore '96</u>)
 - Eliminates link between potential key and corresponding values
 - · If individual determined, sensitive values likely incorrect
 - Preserves the privacy of the individuals, as no entity in the data contains actual values for any real individual.
 - Careful swapping preserves multivariate statistics
 - Rank-based: swap similar values (randomly chosen within max distance)
 Preserves dependencies with (provably) high probability
 - Adversary can estimate sensitive values if individual identified But data mining results enable this anyway!

Summarization



- · Approaches:
 - Overall collection statistics
 - Limited query functionality
- · Problems:
 - Can we deduce data from statistics?
 - Is the information sufficient?

Example: Statistical Queries

- User is allowed to query protected data
 - Queries must use statistical operators that summarize results
 - Example: Summation of total income for a group doesn't disclose individual income
 - Multiple queries can be a problem
 - · Request total salary for all employees of a company
 - Request the total salary for all employees but the president
 - · Now we know the president's salary
- Query restriction Identify when a set of queries is safe (Denning '80)
 - query set overlap control (Dobkin, Jones, and Lipton '79)
 - Result generated from at least *k* items
 - Items used to generate result have at most r items in common with those used for previous queries
 - At least 1+(k-1)/r queries needed to compromise data
 - Data perturbation: introducing noise into the original data
 - Output perturbation: leaving the original data intact, but introducing noise into the results

Example: Statistical Queries

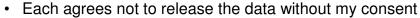
- Create histograms for unprotected independent variables (e.g., job title)
- Run statistical queries on the protected value (e.g., average salary)
- Create a synthetic database capturing relationships between the unprotected and protected values
- Data mining on the synthetic database approximate real values
- Problem with statistical queries is that the adversary creates the queries
 - Such manipulation likely to be obvious in a data mining situation
 - Problem: Proving that individual data not released

Data Separation

- · Approaches:
 - Data held by owner/creator
 - Limited release to trusted third party
 - Operations/analysis performed by trusted party
- · Problems:
 - Will the trusted party be willing to do the analysis?
 - Do the analysis results disclose private information?

Example: Patient Records

- · My health records split among providers
 - Insurance company
 - Pharmacy
 - Doctor
 - Hospital



- Medical study wants correlations across providers
 - Rules relating complaints/procedures to "unrelated" drugs
- Does this need my consent?
 - And that of every other patient!
- It shouldn't!
 - Rules don't disclose my individual data

When do we address these concerns?

- Must articulate that
 - A problem exists
 - There will be problems if we don't worry about privacy
 - We need to know the issues
 - · Domain-specific constraints
 - A technical solution is feasible
 - · Results valid
 - Constraints (provably) met

What we need to know

- · Constraints on release of data
 - Define in terms of Disclosure, not Privacy
 - What can be released, what mustn't
- Ownership/control of data
 - Nobody allowed access to "real" data
 - Data distributed across organizations
 - · Horizontally partitioned: Each entity at a separate site
 - Vertically partitioned: Some attributes of each entity at each site
- Desired results: Rules? Classifier? Clusters?

Summary

- Privacy and Security Constraints can be impediments to data mining
 - Problems with access to data
 - Restrictions on sharing
 - Limitations on use of results
- Technical solutions possible
 - Randomizing / swapping data doesn't prevent learning good models
 - We don't need to share data to learn global results
 - When the secrets are in the results and we want to share the data
- Let's Hear How!