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Motivation

ÿ Privacy issues in data mining have emerged
globally;

ÿ Broad application of frequent itemsets;

ÿ The traditional solution “all or nothing” has
been too rigid;

ÿ The need for techniques to enforce privacy
concerns when mining.
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Privacy Preservation Problem

Visual representation of restrictive and non-restrictive patterns and the
patterns effectively discovered after transaction sanitization.

ψψψψ allows a trade-off between problems (1) and (2)
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Restrictive Patterns and
Sensitive Transactions

ÿ Definition 1: Let D be a transactional database, P be
a set of all frequent patterns that can be mined from
D, and RulesH be a set of decision support rules that
need to be hidden according to some security
policies. A set of patterns, denoted by RP, is said
to be restrictive if RP ⊂⊂⊂⊂ P and if and only if RP
would derive the set Rules H. ¬RP is the set of non-
restrictive patterns such that ¬RP ∪ RP = P.
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Restrictive Patterns and
Sensitive Transactions

ÿ Definition 2: Let T be a set of all transactions in a
transactional database D and RP be a set of
restrictive patterns mined from D. A set of
transactions is said to be sensitive, as denoted
by S T, if ST ⊂⊂⊂⊂ T and iff all restrictive patterns can
be mined from ST and only from ST.
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D D’

Transactional
Database

Sanitized
Database

The sanitization process

Privacy Preservation Problem

Problem Definition: If D is the source database of
transactions and P is a set of relevant patterns that could
be mined from D, the goal is to transform D into a
database D' so that the most frequent patterns in P can
still be mined from D' while others will be hidden.

The goal: Hide restrictive patterns while minimizing the
impact on the sanitized database.
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Privacy Preservation Framework

Transactional
Database

Sanitizing
Algorithms

Privacy Preservation Framework

Inverted File

Vocab. Occurrences

Transaction
Retrieval
Engine
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The Inverted File Index

Docs Items/Terms

T1 A B C D

T2 A B C

T3 A B D

T4 A C D

T5 A B C

T6 B D

A 5

Item Freq

B 5

C 4

D 4

Vocabulary

T1, T2, T3, T4, T5

T1, T2, T3, T5, T6

T1, T2, T4, T5

T1, T3, T4, T6

Transaction IDs

An example of transactions modeled by documents
and the corresponding inverted file.
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Docs Items/Terms

T1 A B C D

T2 A B C

T3 A B D

T4 A C D

T5 A B C

T6 B D

Conflicting Transactions
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Example: RP = {ABD, ACD}

ST = {T1, T3, T4}

ABD = {T1, T3}
ACD = {T1, T4}

Degree (T1) = 2
Degree (T3) = 1
Degree (T4) = 1

Sample Transactional Database
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Sanitizing Algorithms: Major Steps

1. Identify sensitive transactions for each restrictive
patterns;

2. For each restrictive pattern, identify a candidate
item that should be eliminated (victim item);

3. Based on the disclosure threshold ψ, compute the
number of sensitive transactions to be sanitized;

4. Based on the number found in 3, remove the victim
items from the sensitive transactions.
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A Taxonomy of Sanitizing Algorithms
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Sanitizing Algorithms

Item Restriction-Based Pattern Restriction-Based

Naive
MinFIA MaxFIA IGA

A taxonomy of sanitizing algorithms
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The Naïve Algorithm
Naive_Algorithm
Input: D, RP, ψψψψ
Output: D'
Step 1. For each restrictive pattern rpi ∈∈∈∈ RP do

1. T[rpi] ← Find_Sensitive_Transactions(rpi, D);
Step 2. For each restrictive pattern rpi ∈∈∈∈ RP do

1. Victims(rpi) ← ∀∀∀∀ itemk such that itemk ∈∈∈∈ rpi

Step 3. For each restrictive pattern rpi ∈∈∈∈ RP do
1. NumTrans(rpi) ← |T[rpi]| x (1 – ψ) // |T[rpi]| : number of sensitive transac.
for rpi

Step 4. D' ← D
For each restrictive pattern rpi ∈∈∈∈ RP do

1. Sort_Transactions(T[rpi]); //in ascending order of degree of
conflict

2. TransToSanitize ← Select first NumTrans(rpi) transactions from
T[rpi]

3. in D' foreach transaction t ∈∈∈∈ TransToSanitize do
3.1. t ← [t – Victims(rpi)]

End
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The Minimum Frequency Item
Algorithm (MinFIA)

Minimum_Frequency_Item_Algorithm
Input: D, RP, ψψψψ
Output: D'
Step 1. For each restrictive pattern rpi ∈∈∈∈ RP do

1. T[rpi] ← Find_Sensitive_Transactions(rpi, D);

Step 2. For each restrictive pattern rpi ∈∈∈∈ RP do
1. Victim(rpi) ← itemv such that itemv ∈∈∈∈ rpi and ∀∀∀∀itemk ∈∈∈∈ rpi

support(itemk, D) ≥≥≥≥ support(itemv, D)
Step 3. For each restrictive pattern rpi ∈∈∈∈ RP do

1. NumTrans(rpi) ← |T[rpi]| x (1 – ψ) // |T[rpi]| : number of sensitive transac. for rpi

Step 4. D' ← D
For each restrictive pattern rpi ∈∈∈∈ RP do

1. Sort_Transactions(T[rpi]); //in ascending order of degree of conflict
2. TransToSanitize ← Select first NumTrans(rpi) transactions from T[rpi]
3. in D' foreach transaction t ∈∈∈∈ TransToSanitize do

3.1. t ← [t – Victim(rpi)]
End
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The Maximum Frequency Item
Algorithm (MaxFIA)
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Maximum_Frequency_Item_Algorithm
Input: D, RP, ψψψψ
Output: D'
Step 1. For each restrictive pattern rpi ∈∈∈∈ RP do

1. T[rpi] ← Find_Sensitive_Transactions(rpi, D);

Step 2. For each restrictive pattern rpi ∈∈∈∈ RP do
1. Victim(rpi) ← itemv such that itemv ∈∈∈∈ rpi and ∀∀∀∀itemk ∈∈∈∈ rpi

support(itemk, D) ≤≤≤≤ support(itemv, D)
Step 3. For each restrictive pattern rpi ∈∈∈∈ RP do

1. NumTrans(rpi) ← |T[rpi]| x (1 – ψ) // |T[rpi]| : number of sensitive transac. for rpi

Step 4. D' ← D
For each restrictive pattern rpi ∈∈∈∈ RP do

1. Sort_Transactions(T[rpi]); //in ascending order of degree of conflict
2. TransToSanitize ← Select first NumTrans(rpi) transactions from T[rpi]
3. in D' foreach transaction t ∈∈∈∈ TransToSanitize do

3.1. t ← [t – Victim(rpi)]
End
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The Item Grouping Algorithm (IGA)
Item_Grouping_Algorithm
Input: D, RP, ψψψψ Output: D'
Step 1. For each restrictive pattern rpi ∈∈∈∈ RP do

1. T[rpi] ← Find_Sensitive_Transactions(rpi, D);

Step 2.
1. Group restrictive patterns in a set of groups GP such that ∀∀∀∀ G ∈∈∈∈ GP, ∀∀∀∀ rpi,
rpj ∈∈∈∈ G, rpi and rpj share the same itemset I. Give the class label α to G such
that α ∈∈∈∈ I and ∀∀∀∀ β ∈∈∈∈ I, support(α, D) ≤≤≤≤ support(β, D).
2. Order the groups in GP by size in terms of number of restrictive patterns in
the group.
3. Compare groups pairwise Gi and Gj starting with the largest.
For all rpk ∈ Gi ∩ Gj do

3.1. if size(Gi) ≠≠≠≠ size(Gj) then remove rpk from smallest(Gi, Gj)
3.2. else remove rpk from group with class label α such that

support(α, D) ≤≤≤≤ support(β, D) and α, β are class labels of either Gi or Gj
4. For each restrictive pattern rpi ∈∈∈∈ RP do

4.1. Victim(rpi) ← α such that α is the class label of G and rpi ∈ G
Step 3. For each restrictive pattern rpi ∈∈∈∈ RP do

1. NumTrans(rpi) ← |T[rpi]| x (1 – ψ) // |T[rpi]| is the number of sensitive transac. for rpi
Step 4. D' ← D

For each restrictive pattern rpi ∈∈∈∈ RP do
1. Sort_Transactions(T[rpi]); //in descending order of degree of conflict
2. TransToSanitize ← Select first NumTrans(rpi) transactions from T[rpi]
3. in D' foreach transaction t ∈∈∈∈ TransToSanitize do

3.1. t ← [t – Victim(rpi)]
End
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3. Compare the groups pairwise
G3= {ABD, ACD} Class Label = {A,D}
G1= {ABD} Class Label = {D}
G2= {ACD} Class Label = {C}

The Item Grouping Algorithm (IGA)

Docs Items/Terms

T1 A B C D

T2 A B C

T3 A B D

T4 A C D

T5 A B C

T6 B D

1. Group restrictive patterns
G1= {ABD} Class Label = {D}
G2= {ACD} Class Label = {C}
G3= {ABD, ACD} Class Label = {A,D}

Sample Transactional Database
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ST = {T1, T3, T4}

ABD = {T1, T3}
ACD = {T1, T4}

2. Order the groups by size
G3= {ABD, ACD} Class Label = {A,D}
G1= {ABD} Class Label = {D}
G2= {ACD} Class Label = {C}

3. Compare the groups pairwise
G3= {ABD, ACD} Class Label = {D}

Support(D)<=Support(A)
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Experimental Results

� PC AMD Athlon 1900/1600, with 1.2 GB of RAM

� Dataset: 100K transactions, 500 different items

� Minimum size per transaction: 40 items

� Restricted patterns: 10 patterns (support: 20% to 40%)

� Restrictive patterns ranging from 2 to 5 items

� 22,479 patterns became restricted (out of 1,866,693)

� Time required to build the inverted file: 4.05 sec.

� Time for retrieving all sensitive transactions: 1.02 sec.
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1. Hiding Failure (HF)

2. Misses Cost (MC)

3. Artifactual Patterns (AP)

Measuring three possible problems
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Effect of ψψψψ on the hiding failure and the misses cost
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Effect of support threshold σσσσ on privacy preservation (Naïve)
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Effect of support threshold σσσσ on privacy preservation (MinFIA)
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Effect of support threshold σσσσ on privacy preservation (MaxFIA)
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Effect of support threshold σσσσ on privacy preservation (IGA)
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The difference in size between D and D’
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Conclusions and Future Work
ÿ Main contributions of this paper:

� The design and implementation of the framework;
� A taxonomy of sanitizing algorithms;
� Performance measures for mining frequent patterns.

ÿ Future Work:
� Investigating optimizing the “negative” impact of the

sanitization process;
� Adjusting the sanitizing algorithms for association rule

mining;
� Studying the impact of data sanitization in distributed

environment;
� Integrating this framework with RBAC.
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Questions?


