


 Systems that rely on some time constraint 

for complete correctness

› Not necessarily speed, but timeliness

 Examples: 

› Pacemakers

› Nuclear power plant control

› AI tournament chess player



 Java’s widespread use and relative 

simplicity make it a desirable language 

to program in

 Java is not suitable for real-time systems 

by default

› Thread priority inversion

› Garbage collection

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1

2
9
3

5
8
5

8
7
7

1
1
6
9

1
4
6
1

1
7
5
3

2
0
4
5

2
3
3
7

2
6
2
9

2
9
2
1

3
2
1
3

3
5
0
5

3
7
9
7

R
u

n
 T

im
e

 (
μ

s)

Iteration Number



 First specification to be introduced with 

the Java Community Process (JSR-1)

 Goal was to improve real-time 

programming in seven areas

› Thread scheduling/real-time threads

› Memory management/hierarchy to avoid 

GC



Immortal Memory “a”

Scoped Memory

“b”
Scoped Memory

“c”

Scoped Memory

“d”

Scoped Memory

“e”



 Unsafe memory accesses will result in 

exceptions being thrown

 Unacceptable in safety-critical 

applications, yet hard to eliminate

 Java annotations can aid in automated 

detection of errors

› @Override, @Deprecated, e.g.



 @Immortal

› Singleton instance where all scoped 

memories reside

 @ScopeDef(name=“b”, parent=“a”)

› Identifies a memory location by name and 

parent scope

 @Scope(“a”)

› Declares a class to be within a scope



 Memory regions must form a tree

 Class A can perform limited operations 

on a class in a parent scope: R/W 

primitives or annotated types



 Class A cannot access class B unless B is 

declared in the same scope

 Class A cannot allocate objects of type 

B unless B is in the same scope or is a 

non-annotated type

Immortal

“a” “b”
A B



 Utilizes Apache’s Byte Code Engineering 

Library (BCEL) and Java 5

 All previously listed rules accomplished—

not all rules enumerated

› Casting a scope-annotated type to a non-
annotated type (Object) is illegal

› Method calls must be checked against 

implicit up-casts



 Code refactoring to use BCELs provided 
Visitor class

 Implement stack emulation—necessary 

for type checking in method invocations

 Support for several unmentioned 

annotations

 Support for local variable annotations


