


 Systems that rely on some time constraint 

for complete correctness

› Not necessarily speed, but timeliness

 Examples: 

› Pacemakers

› Nuclear power plant control

› AI tournament chess player



 Java’s widespread use and relative 

simplicity make it a desirable language 

to program in

 Java is not suitable for real-time systems 

by default

› Thread priority inversion

› Garbage collection

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1

2
9
3

5
8
5

8
7
7

1
1
6
9

1
4
6
1

1
7
5
3

2
0
4
5

2
3
3
7

2
6
2
9

2
9
2
1

3
2
1
3

3
5
0
5

3
7
9
7

R
u

n
 T

im
e

 (
μ

s)

Iteration Number



 First specification to be introduced with 

the Java Community Process (JSR-1)

 Goal was to improve real-time 

programming in seven areas

› Thread scheduling/real-time threads

› Memory management/hierarchy to avoid 

GC



Immortal Memory “a”

Scoped Memory

“b”
Scoped Memory

“c”

Scoped Memory

“d”

Scoped Memory

“e”



 Unsafe memory accesses will result in 

exceptions being thrown

 Unacceptable in safety-critical 

applications, yet hard to eliminate

 Java annotations can aid in automated 

detection of errors

› @Override, @Deprecated, e.g.



 @Immortal

› Singleton instance where all scoped 

memories reside

 @ScopeDef(name=“b”, parent=“a”)

› Identifies a memory location by name and 

parent scope

 @Scope(“a”)

› Declares a class to be within a scope



 Memory regions must form a tree

 Class A can perform limited operations 

on a class in a parent scope: R/W 

primitives or annotated types



 Class A cannot access class B unless B is 

declared in the same scope

 Class A cannot allocate objects of type 

B unless B is in the same scope or is a 

non-annotated type

Immortal

“a” “b”
A B



 Utilizes Apache’s Byte Code Engineering 

Library (BCEL) and Java 5

 All previously listed rules accomplished—

not all rules enumerated

› Casting a scope-annotated type to a non-
annotated type (Object) is illegal

› Method calls must be checked against 

implicit up-casts



 Code refactoring to use BCELs provided 
Visitor class

 Implement stack emulation—necessary 

for type checking in method invocations

 Support for several unmentioned 

annotations

 Support for local variable annotations


