\I(pe checking for the Real-

Ti Specification for Java

Daniel Tang
Protessor Jan Vitek




Real-fime Systems

Systems that rely on some fime constraint
for complete correctness

Not necessarily speed, but timeliness

Examples:
Pacemakers
Nuclear power plant control
Al tournament chess player



DN

Real-time Java

spread use and relative
It a desirable language

® Java's wi
simplicity ma
to program in

® Java is not suitable real-fime systems

by default
> Thread priority inversion
> Garbage collection

1.00E+06

1.00E+05
1 00E+04
1 00E+03
1.00E+02 4 ///////
1.00E+0]
1.00E+00

@
2
o
£
=
c
=)
o

OOOOOOOOOOOOO
NNNNNNNNNN

Iteration Number



Real-time Specification for
Java (RTSJ)

First specification to be introduced with
the Java Community Process (JSR-1)

Goal was to improve real-time
programming in seven aredas
Thread scheduling/real-time threads

Memory management/hierarchy to avoid
GC




RTSJ Memory Areas




Safety-crifical RTSJ

Unsafe memory accesses will result in
exceptions being thrown

Unacceptable in safety-critfical
applications, yet hard to eliminate

Java annotations can aid in automated
detection of errors
@Override, @Deprecated, e.g.



RTSJ Anhnotations

@Immortal

Singleton instance where all scoped
memories reside

@ScopeDef (name=“b”, parent=“3a”)

ldentifies a memory location by name and
parent scope

@Scope(“a”)
Declares a class to be within a scope



N

Safety Rules

® Memory regions must form a free

® Class A can perform limited operations
on a class in a parent scope: R/W
primitives or annotated types




Safety Rules

® Class A cannot access class B unless B is
declared in the same scope

® Class A cannot allocate objects of type
B unless B Is In the same scope oris a

non-annofated type




Implementation

U
L
A

tilizes Apache’s Byte Code Engineering

orary (BCEL) and Java 5

| previously listed rules accomplished—

not all rules enumerated

Casting a scope-annotated fype 1o a non-
annotated type (Object) is illegal

Method calls must be checked against
Implicit up-casts



Future Work

Code refactoring to use BCELs provided
Visitor class

Implement stack emulation—necessary
for type checking in method invocations

Support for several unmentioned
annotations

Support for local variable annotations



