
1

CS590D: Data Mining
Chris Clifton

January 13, 2005
Data Preparation

CS590D 2

Data Preprocessing

• Why preprocess the data?
• Data cleaning
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy

generation
• Summary

2

CS590D 3

Why Data Preprocessing?

• Data in the real world is dirty
– incomplete: lacking attribute values, lacking certain

attributes of interest, or containing only aggregate
data

• e.g., occupation=“”

– noisy: containing errors or outliers
• e.g., Salary=“-10”

– inconsistent: containing discrepancies in codes or
names

• e.g., Age=“42” Birthday=“03/07/1997”
• e.g., Was rating “1,2,3”, now rating “A, B, C”
• e.g., discrepancy between duplicate records

CS590D 4

Why Is Data Dirty?

• Incomplete data comes from
– n/a data value when collected
– different consideration between the time when the

data was collected and when it is analyzed.
– human/hardware/software problems

• Noisy data comes from the process of data
– collection
– entry
– transmission

• Inconsistent data comes from
– Different data sources
– Functional dependency violation

3

CS590D 5

Why Is Data Preprocessing
Important?

• No quality data, no quality mining results!
– Quality decisions must be based on quality data

• e.g., duplicate or missing data may cause incorrect or even
misleading statistics.

– Data warehouse needs consistent integration of
quality data

• Data extraction, cleaning, and transformation
comprises the majority of the work of building a
data warehouse. —Bill Inmon

CS590D 6

Multi-Dimensional Measure
of Data Quality

• A well-accepted multidimensional view:
– Accuracy
– Completeness
– Consistency
– Timeliness
– Believability
– Value added
– Interpretability
– Accessibility

• Broad categories:
– intrinsic, contextual, representational, and

accessibility.

4

CS590D 7

Major Tasks in Data
Preprocessing

• Data cleaning
– Fill in missing values, smooth noisy data, identify or remove

outliers, and resolve inconsistencies
• Data integration

– Integration of multiple databases, data cubes, or files
• Data transformation

– Normalization and aggregation
• Data reduction

– Obtains reduced representation in volume but produces the
same or similar analytical results

• Data discretization
– Part of data reduction but with particular importance, especially

for numerical data

CS590D 9

Data Preprocessing

• Why preprocess the data?
• Data cleaning
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy

generation
• Summary

5

CS590D 10

Data Cleaning

• Importance
– “Data cleaning is one of the three biggest problems in

data warehousing”—Ralph Kimball
– “Data cleaning is the number one problem in data

warehousing”—DCI survey

• Data cleaning tasks
– Fill in missing values
– Identify outliers and smooth out noisy data
– Correct inconsistent data
– Resolve redundancy caused by data integration

CS590D 11

Missing Data

• Data is not always available
– E.g., many tuples have no recorded value for several

attributes, such as customer income in sales data
• Missing data may be due to

– equipment malfunction
– inconsistent with other recorded data and thus

deleted
– data not entered due to misunderstanding
– certain data may not be considered important at the

time of entry
– not register history or changes of the data

• Missing data may need to be inferred.

6

CS590D 12

How to Handle Missing
Data?

• Ignore the tuple: usually done when class label is
missing (assuming the tasks in classification—not
effective when the percentage of missing values per
attribute varies considerably.

• Fill in the missing value manually: tedious + infeasible?
• Fill in it automatically with

– a global constant : e.g., “unknown”, a new class?!
– the attribute mean
– the attribute mean for all samples belonging to the same class:

smarter
– the most probable value: inference-based such as Bayesian

formula or decision tree

CS590D 13

Noisy Data

• Noise: random error or variance in a measured variable
• Incorrect attribute values may due to

– faulty data collection instruments
– data entry problems
– data transmission problems
– technology limitation
– inconsistency in naming convention

• Other data problems which requires data cleaning
– duplicate records
– incomplete data
– inconsistent data

7

CS590D 14

How to Handle Noisy Data?

• Binning method:
– first sort data and partition into (equi-depth) bins
– then one can smooth by bin means, smooth by bin

median, smooth by bin boundaries, etc.
• Clustering

– detect and remove outliers
• Combined computer and human inspection

– detect suspicious values and check by human (e.g.,
deal with possible outliers)

• Regression
– smooth by fitting the data into regression functions

CS590D 15

Simple Discretization
Methods: Binning

• Equal-width (distance) partitioning:
– Divides the range into N intervals of equal size: uniform grid
– if A and B are the lowest and highest values of the attribute, the

width of intervals will be: W = (B –A)/N.
– The most straightforward, but outliers may dominate

presentation
– Skewed data is not handled well.

• Equal-depth (frequency) partitioning:
– Divides the range into N intervals, each containing approximately

same number of samples
– Good data scaling
– Managing categorical attributes can be tricky.

8

CS590D 16

Binning Methods for Data
Smoothing

• Sorted data (e.g., by price)
– 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

• Partition into (equi-depth) bins:
– Bin 1: 4, 8, 9, 15
– Bin 2: 21, 21, 24, 25
– Bin 3: 26, 28, 29, 34

• Smoothing by bin means:
– Bin 1: 9, 9, 9, 9
– Bin 2: 23, 23, 23, 23
– Bin 3: 29, 29, 29, 29

• Smoothing by bin boundaries:
– Bin 1: 4, 4, 4, 15
– Bin 2: 21, 21, 25, 25
– Bin 3: 26, 26, 26, 34

CS590D 17

Cluster Analysis

9

CS590D 18

Regression

x

y

y = x + 1

X1

Y1

Y1’

CS590D 19

Data Preprocessing

• Why preprocess the data?
• Data cleaning
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy

generation
• Summary

10

CS590D 20

Data Integration

• Data integration:
– combines data from multiple sources into a coherent store

• Schema integration
– integrate metadata from different sources
– Entity identification problem: identify real world entities from

multiple data sources, e.g., A.cust-id ≡ B.cust-#
• Detecting and resolving data value conflicts

– for the same real world entity, attribute values from different
sources are different

– possible reasons: different representations, different scales, e.g.,
metric vs. British units

CS590D 21

Handling Redundancy in Data
Integration

• Redundant data occur often when integration of
multiple databases
– The same attribute may have different names in

different databases
– One attribute may be a “derived” attribute in another

table, e.g., annual revenue
• Redundant data may be able to be detected by

correlational analysis
• Careful integration of the data from multiple

sources may help reduce/avoid redundancies
and inconsistencies and improve mining speed
and quality

11

CS590D 22

Data Transformation

• Smoothing: remove noise from data
• Aggregation: summarization, data cube

construction
• Generalization: concept hierarchy climbing
• Normalization: scaled to fall within a small,

specified range
– min-max normalization
– z-score normalization
– normalization by decimal scaling

• Attribute/feature construction
– New attributes constructed from the given ones

CS590D: Data Mining
Chris Clifton

January 18, 2005
Data Preparation

12

CS590D 24

Data Transformation:
Normalization

• min-max normalization

• z-score normalization

• normalization by decimal scaling

AAA

AA

A

minnewminnewmaxnew
minmax

minv
v _)__(' +−

−
−=

A

A

devstand_

meanv
v

−='

j

v
v

10
'= Where j is the smallest integer such that Max(| |)<1'v

CS590D 25

Z-Score (Example)

-.5543.873.00
-.582-0.300.50
-.4970.240.82
-.71-5-0.970.10
.47600.220.81
.20450.500.98

-.2322-0.170.58
-.87-14-0.020.67
-.44100.040.70
-.3018-0.090.63
-.0532-0.800.20
3.87250-0.070.64
-.3515-0.790.21
-.5350.400.92
-.488-0.220.55
-.05320.200.80

470-0.720.25
.555-0.270.52

55.9sdev.11400.59sdev-0.140.60
34.3Avg-.26200.68Avg-0.840.18

v’vv’v

13

CS590D 27

Data Preprocessing

• Why preprocess the data?
• Data cleaning
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy

generation
• Summary

CS590D 28

Data Reduction Strategies

• A data warehouse may store terabytes of data
– Complex data analysis/mining may take a very long time to run

on the complete data set
• Data reduction

– Obtain a reduced representation of the data set that is much
smaller in volume but yet produce the same (or almost the same)
analytical results

• Data reduction strategies
– Data cube aggregation
– Dimensionality reduction — remove unimportant attributes
– Data Compression
– Numerosity reduction — fit data into models
– Discretization and concept hierarchy generation

14

CS590D 29

Data Cube Aggregation

• The lowest level of a data cube
– the aggregated data for an individual entity of interest
– e.g., a customer in a phone calling data warehouse.

• Multiple levels of aggregation in data cubes
– Further reduce the size of data to deal with

• Reference appropriate levels
– Use the smallest representation which is enough to

solve the task
• Queries regarding aggregated information

should be answered using data cube, when
possible

CS590D 30

Dimensionality Reduction

• Feature selection (i.e., attribute subset selection):
– Select a minimum set of features such that the probability

distribution of different classes given the values for those
features is as close as possible to the original distribution given
the values of all features

– reduce # of patterns in the patterns, easier to understand
• Heuristic methods (due to exponential # of choices):

– step-wise forward selection
– step-wise backward elimination
– combining forward selection and backward elimination
– decision-tree induction

15

CS590D 31

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

A4 ?

A1? A6?

Class 1 Class 2 Class 1 Class 2

> Reduced attribute set: {A1, A4, A6}

Example of
Decision Tree Induction

CS590D 33

Data Compression

• String compression
– There are extensive theories and well-tuned algorithms
– Typically lossless
– But only limited manipulation is possible without expansion

• Audio/video compression
– Typically lossy compression, with progressive refinement
– Sometimes small fragments of signal can be reconstructed

without reconstructing the whole
• Time sequence is not audio

– Typically short and vary slowly with time

16

CS590D 34

Data Compression

Original Data Compressed
Data

lossless

Original Data
Approximated

lossy

CS590D 35

Wavelet
Transformation

• Discrete wavelet transform (DWT): linear signal
processing, multiresolutional analysis

• Compressed approximation: store only a small fraction of
the strongest of the wavelet coefficients

• Similar to discrete Fourier transform (DFT), but better
lossy compression, localized in space

• Method:
– Length, L, must be an integer power of 2 (padding with 0s, when

necessary)
– Each transform has 2 functions: smoothing, difference
– Applies to pairs of data, resulting in two set of data of length L/2
– Applies two functions recursively, until reaches the desired

length

Haar2 Daubechie4

17

CS590D 36

DWT for Image
Compression

• Image

Low Pass High Pass

Low Pass High Pass

Low Pass High Pass

CS590D 37

Principal Component
Analysis

• Given N data vectors from k-dimensions, find c ≤
k orthogonal vectors that can be best used to
represent data
– The original data set is reduced to one consisting of N

data vectors on c principal components (reduced
dimensions)

• Each data vector is a linear combination of the c
principal component vectors

• Works for numeric data only
• Used when the number of dimensions is large

18

CS590D 38

X1

X2

Y1

Y2

Principal Component Analysis

CS590D 39

Numerosity Reduction

• Parametric methods
– Assume the data fits some model, estimate

model parameters, store only the parameters,
and discard the data (except possible outliers)

– Log-linear models: obtain value at a point in
m-D space as the product on appropriate
marginal subspaces

• Non-parametric methods
– Do not assume models
– Major families: histograms, clustering,

sampling

19

CS590D 40

Regression and Log-Linear
Models

• Linear regression: Data are modeled to fit
a straight line
– Often uses the least-square method to fit the

line

• Multiple regression: allows a response
variable Y to be modeled as a linear
function of multidimensional feature vector

• Log-linear model: approximates discrete
multidimensional probability distributions

CS590D 41

Regress Analysis and Log-
Linear Models

• Linear regression: Y = α + β X
– Two parameters , α and β specify the line and are to

be estimated by using the data at hand.
– using the least squares criterion to the known values

of Y1, Y2, …, X1, X2, ….
• Multiple regression: Y = b0 + b1 X1 + b2 X2.

– Many nonlinear functions can be transformed into the
above.

• Log-linear models:
– The multi-way table of joint probabilities is

approximated by a product of lower-order tables.
– Probability: p(a, b, c, d) = αab βacχad δbcd

20

CS590D 42

Histograms

• A popular data reduction
technique

• Divide data into buckets
and store average (sum)
for each bucket

• Can be constructed
optimally in one
dimension using dynamic
programming

• Related to quantization
problems. 0

5

10

15

20

25

30

35

40

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

CS590D 43

Clustering

• Partition data set into clusters, and one
can store cluster representation only

• Can be very effective if data is clustered
but not if data is “smeared”

• Can have hierarchical clustering and be
stored in multi-dimensional index tree
structures

• There are many choices of clustering
definitions and clustering algorithms,
further detailed in Chapter 8

21

CS590D 44

Sampling

• Allow a mining algorithm to run in complexity that is
potentially sub-linear to the size of the data

• Choose a representative subset of the data
– Simple random sampling may have very poor performance in the

presence of skew

• Develop adaptive sampling methods
– Stratified sampling:

• Approximate the percentage of each class (or subpopulation of
interest) in the overall database

• Used in conjunction with skewed data

• Sampling may not reduce database I/Os (page at a
time).

CS590D 45

SRSWOR

(simple random

sample without

replacement)

SRSWR

Raw Data

Sampling

22

CS590D 46

Sampling

Raw Data Cluster/Stratified Sample

CS590D 47

Hierarchical Reduction

• Use multi-resolution structure with different degrees of
reduction

• Hierarchical clustering is often performed but tends to
define partitions of data sets rather than “clusters”

• Parametric methods are usually not amenable to
hierarchical representation

• Hierarchical aggregation
– An index tree hierarchically divides a data set into partitions by

value range of some attributes
– Each partition can be considered as a bucket
– Thus an index tree with aggregates stored at each node is a

hierarchical histogram

23

CS590D 48

Data Preprocessing

• Why preprocess the data?
• Data cleaning
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy

generation
• Summary

CS590D 49

Discretization

• Three types of attributes:
– Nominal — values from an unordered set
– Ordinal — values from an ordered set
– Continuous — real numbers

• Discretization:
– divide the range of a continuous attribute into

intervals
– Some classification algorithms only accept categorical

attributes.
– Reduce data size by discretization
– Prepare for further analysis

24

CS590D 50

Discretization and Concept
hierachy

• Discretization
– reduce the number of values for a given

continuous attribute by dividing the range of
the attribute into intervals. Interval labels can
then be used to replace actual data values

• Concept hierarchies
– reduce the data by collecting and replacing

low level concepts (such as numeric values
for the attribute age) by higher level concepts
(such as young, middle-aged, or senior)

CS590D 52

Discretization and Concept Hierarchy
Generation for Numeric Data

• Binning (see sections before)
• Histogram analysis (see sections before)
• Clustering analysis (see sections before)
• Entropy-based discretization
• Segmentation by natural partitioning

25

CS590D 53

Definition of Entropy

• Entropy

• Example: Coin Flip
– AX = {heads, tails}
– P(heads) = P(tails) = ½
– ½ log2(½) = ½ * - 1
– H(X) = 1

• What about a two-headed coin?
• Conditional Entropy:

2() () log ()
Xx A

H X P x P x
∈

= −∑

(|) () (|)
Yy A

H X Y P y H X y
∈

= ∑

CS590D 54

Entropy-Based
Discretization

• Given a set of samples S, if S is partitioned into two
intervals S1 and S2 using boundary T, the entropy after
partitioning is

• The boundary that minimizes the entropy function over
all possible boundaries is selected as a binary
discretization.

• The process is recursively applied to partitions obtained
until some stopping criterion is met, e.g.,

• Experiments show that it may reduce data size and
improve classification accuracy

1 2
1 2

| | | |
(,) () ()

| | | |
H S T H H

S S
S SS S= +

() (,)H S H T S δ− >

26

CS590D 55

Segmentation by Natural
Partitioning

• A simply 3-4-5 rule can be used to segment
numeric data into relatively uniform, “natural”
intervals.
– If an interval covers 3, 6, 7 or 9 distinct values at the

most significant digit, partition the range into 3 equi-
width intervals

– If it covers 2, 4, or 8 distinct values at the most
significant digit, partition the range into 4 intervals

– If it covers 1, 5, or 10 distinct values at the most
significant digit, partition the range into 5 intervals

CS590D 56

Example of 3-4-5 Rule

(-$4000 -$5,000)

(-$400 - 0)

(-$400 -
-$300)

(-$300 -
-$200)

(-$200 -
-$100)

(-$100 -
0)

(0 - $1,000)

(0 -
$200)

($200 -
$400)

($400 -
$600)

($600 -
$800) ($800 -

$1,000)

($2,000 - $5, 000)

($2,000 -
$3,000)

($3,000 -
$4,000)

($4,000 -
$5,000)

($1,000 - $2, 000)

($1,000 -
$1,200)

($1,200 -
$1,400)

($1,400 -
$1,600)

($1,600 -
$1,800) ($1,800 -

$2,000)

msd=1,000 Low=-$1,000 High=$2,000Step 2:

Step 4:

Step 1: -$351 -$159 profit $1,838 $4,700

Min Low (i.e, 5%-tile) High(i.e, 95%-0 tile) Max

count

(-$1,000 - $2,000)

(-$1,000 - 0) (0 -$ 1,000)

Step 3:

($1,000 - $2,000)

27

CS590D 57

Concept Hierarchy Generation
for Categorical Data

• Specification of a partial ordering of attributes
explicitly at the schema level by users or experts
– street<city<state<country

• Specification of a portion of a hierarchy by
explicit data grouping
– {Urbana, Champaign, Chicago}<Illinois

• Specification of a set of attributes.
– System automatically generates partial ordering by

analysis of the number of distinct values
– E.g., street < city <state < country

• Specification of only a partial set of attributes
– E.g., only street < city, not others

CS590D 58

Automatic Concept Hierarchy
Generation

• Some concept hierarchies can be automatically
generated based on the analysis of the number of
distinct values per attribute in the given data set
– The attribute with the most distinct values is placed at the lowest

level of the hierarchy
– Note: Exception—weekday, month, quarter, year

country

province_or_ state

city

street

15 distinct values

65 distinct values

3567 distinct values

674,339 distinct values

28

CS590D 59

Data Preprocessing

• Why preprocess the data?
• Data cleaning
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy

generation
• Summary

CS590D 60

Summary

• Data preparation is a big issue for both
warehousing and mining

• Data preparation includes
– Data cleaning and data integration
– Data reduction and feature selection
– Discretization

• A lot a methods have been developed but
still an active area of research

29

CS590D 61

References
• E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE

Bulletin of the Technical Committee on Data Engineering. Vol.23, No.4
• D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments.

Communications of ACM, 42:73-78, 1999.
• H.V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the

Technical Committee on Data Engineering, 20(4), December 1997.
• A. Maydanchik, Challenges of Efficient Data Cleansing (DM Review - Data Quality

resource portal)
• D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.
• D. Quass. A Framework for research in Data Cleaning. (Draft 1999)
• V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data

Cleaning and Transformation, VLDB’2001.
• T. Redman. Data Quality: Management and Technology. Bantam Books, New York,

1992.
• Y. Wand and R. Wang. Anchoring data quality dimensions ontological foundations.

Communications of ACM, 39:86-95, 1996.
• R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research.

IEEE Trans. Knowledge and Data Engineering, 7:623-640, 1995.
• http://www.cs.ucla.edu/classes/spring01/cs240b/notes/data-integration1.pdf

CS590D: Data Mining
Chris Clifton

January 20, 2005
Data Cubes

30

CS590D 63

A Sample Data Cube

Total annual sales
of TV in U.S.A.Date

Pro
du

ct

C
ou

nt
rysum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

CS590D 64

Cuboids Corresponding to
the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid

31

CS590D 65

Browsing a Data Cube

• Visualization
• OLAP

capabilities
• Interactive

manipulation

CS590D 66

Typical OLAP Operations
• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction

• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed data, or
introducing new dimensions

• Slice and dice:

– project and select

• Pivot (rotate):

– reorient the cube, visualization, 3D to series of 2D planes.

• Other operations

– drill across: involving (across) more than one fact table

– drill through: through the bottom level of the cube to its back-end
relational tables (using SQL)

32

CS590D 68

Efficient Data Cube
Computation

• Data cube can be viewed as a lattice of cuboids
– The bottom-most cuboid is the base cuboid

– The top-most cuboid (apex) contains only one cell

– How many cuboids in an n-dimensional cube with L
levels?

• Materialization of data cube
– Materialize every (cuboid) (full materialization), none

(no materialization), or some (partial materialization)

– Selection of which cuboids to materialize
• Based on size, sharing, access frequency, etc.

)1
1

(+∏
=

=
n

i iLT

CS590D 69

Cube Operation

• Cube definition and computation in DMQL
define cube sales[item, city, year]: sum(sales_in_dollars)

compute cube sales

• Transform it into a SQL-like language (with a new
operator cube by, introduced by Gray et al.’96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year

• Compute the following Group-Bys
(date, product, customer),
(date,product),(date, customer), (product, customer),
(date), (product), (customer)
()

(item)(city)

()

(year)

(city, item) (city, year) (item, year)

(city, item, year)

33

CS590D 70

Cube Computation: ROLAP-
Based Method

• Efficient cube computation methods
– ROLAP-based cubing algorithms (Agarwal et al’96)
– Array-based cubing algorithm (Zhao et al’97)
– Bottom-up computation method (Beyer & Ramarkrishnan’99)
– H-cubing technique (Han, Pei, Dong & Wang:SIGMOD’01)

• ROLAP-based cubing algorithms
– Sorting, hashing, and grouping operations are applied to the

dimension attributes in order to reorder and cluster related tuples

– Grouping is performed on some sub-aggregates as a “partial

grouping step”

– Aggregates may be computed from previously computed

aggregates, rather than from the base fact table

CS590D 71

Cube Computation: ROLAP-
Based Method (2)

• This is not in the textbook but in a research paper
• Hash/sort based methods (Agarwal et. al. VLDB’96)

– Smallest-parent: computing a cuboid from the smallest,
previously computed cuboid

– Cache-results: caching results of a cuboid from which other
cuboids are computed to reduce disk I/Os

– Amortize-scans: computing as many as possible cuboids at the
same time to amortize disk reads

– Share-sorts: sharing sorting costs cross multiple cuboids when
sort-based method is used

– Share-partitions: sharing the partitioning cost across multiple
cuboids when hash-based algorithms are used

34

CS590D 72

Multi-way Array Aggregation
for Cube Computation

• Partition arrays into chunks (a small subcube which fits in memory).

• Compressed sparse array addressing: (chunk_id, offset)

• Compute aggregates in “multiway” by visiting cube cells in the order
which minimizes the # of times to visit each cell, and reduces
memory access and storage cost.

What is the best
traversing order
to do multi-way
aggregation?

A

B
29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60

CS590D 73

Multi-way Array Aggregation
for Cube Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

44
28 56

40
24 52

36
20

60

B

35

CS590D 74

Multi-way Array Aggregation
for Cube Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

44
28 56

40
24 52

36
20

60

B

CS590D 75

Multi-Way Array Aggregation
for Cube Computation (Cont.)

• Method: the planes should be sorted and
computed according to their size in ascending
order.
– See the details of Example 2.12 (pp. 75-78)
– Idea: keep the smallest plane in the main memory,

fetch and compute only one chunk at a time for the
largest plane

• Limitation of the method: computing well only for
a small number of dimensions
– If there are a large number of dimensions, “bottom-up

computation” and iceberg cube computation methods
can be explored

36

CS590D 76

Indexing OLAP Data:
Bitmap Index

• Index on a particular column
• Each value in the column has a bit vector: bit-op is fast
• The length of the bit vector: # of records in the base table
• The i-th bit is set if the i-th row of the base table has the value for

the indexed column
• not suitable for high cardinality domains

Cust Region Type
C1 Asia Retail
C2 Europe Dealer
C3 Asia Dealer
C4 America Retail
C5 Europe Dealer

RecID Retail Dealer
1 1 0
2 0 1
3 0 1
4 1 0
5 0 1

RecID Asia Europe Am erica
1 1 0 0
2 0 1 0
3 1 0 0
4 0 0 1
5 0 1 0

Base table Index on Region Index on Type

CS590D 77

Indexing OLAP Data: Join
Indices

• Join index: JI(R-id, S-id) where R (R-id, …)
⊳⊲ S (S-id, …)

• Traditional indices map the values to a list of
record ids
– It materializes relational join in JI file and

speeds up relational join — a rather costly
operation

• In data warehouses, join index relates the
values of the dimensions of a start schema to
rows in the fact table.
– E.g. fact table: Sales and two dimensions city

and product
• A join index on city maintains for each

distinct city a list of R-IDs of the tuples
recording the Sales in the city

– Join indices can span multiple dimensions

37

CS590D 78

Efficient Processing OLAP
Queries

• Determine which operations should be performed on the

available cuboids:

– transform drill, roll, etc. into corresponding SQL and/or OLAP

operations, e.g, dice = selection + projection

• Determine to which materialized cuboid(s) the relevant

operations should be applied.

• Exploring indexing structures and compressed vs. dense

array structures in MOLAP

CS590D 79

Iceberg Cube

• Computing only the cuboid cells whose count
or other aggregates satisfying the condition:

HAVING COUNT(*) >= minsup

• Motivation
– Only a small portion of cube cells may be “above the water’’ in a

sparse cube

– Only calculate “interesting” data—data above certain threshold

– Suppose 100 dimensions, only 1 base cell. How many
aggregate (non-base) cells if count >= 1? What about count >=
2?

38

CS590D 80

Bottom-Up Computation
(BUC)

• BUC (Beyer & Ramakrishnan,
SIGMOD’99)

• Bottom-up vs. top-down?—
depending on how you view it!

• Apriori property:
– Aggregate the data,

then move to the next level
– If minsup is not met, stop!

• If minsup = 1 ⇒ compute full
CUBE!

CS590D 81

Partitioning

• Usually, entire data set can’t fit in
main memory

• Sort distinct values, partition into blocks
that fit

• Continue processing
• Optimizations

– Partitioning
• External Sorting, Hashing, Counting Sort

– Ordering dimensions to encourage pruning
• Cardinality, Skew, Correlation

– Collapsing duplicates
• Can’t do holistic aggregates anymore!

39

CS590D 82

Drawbacks of BUC

• Requires a significant amount of memory
– On par with most other CUBE algorithms though

• Does not obtain good performance with dense CUBEs

• Overly skewed data or a bad choice of dimension ordering reduces
performance

• Cannot compute iceberg cubes with complex measures
CREATE CUBE Sales_Iceberg AS

SELECT month, city, cust_grp,

AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND

COUNT(*) >= 50

CS590D 83

Non-Anti-Monotonic
Measures

• The cubing query with avg is non-anti-

monotonic!

– (Mar, *, *, 600, 1800) fails the HAVING clause

– (Mar, *, Bus, 1300, 360) passes the clause

………………

520540HDEduVanMar

25001500LaptopBusMonFeb

12801160CameraEduTorJan

1200800TVHldTorJan

485500PrinterEduTorJan

PriceCostProdCust_grpCityMonth

CREATE CUBE Sales_Iceberg AS

SELECT month, city, cust_grp,
AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND
COUNT(*) >= 50

40

CS590D 84

Top-k Average

• Let (*, Van, *) cover 1,000 records
– Avg(price) is the average price of those 1000 sales

– Avg50(price) is the average price of the top-50 sales
(top-50 according to the sales price

• Top-k average is anti-monotonic
– The top 50 sales in Van. is with avg(price) <= 800 �

the top 50 deals in Van. during Feb. must be with
avg(price) <= 800

………………

PriceCostProd
Cust_gr

p
CityMonth

CS590D 85

Binning for Top-k Average

• Computing top-k avg is costly with large k
• Binning idea

– Avg50(c) >= 800
– Large value collapsing: use a sum and a count to

summarize records with measure >= 800
• If count>=800, no need to check “small” records

– Small value binning: a group of bins
• One bin covers a range, e.g., 600~800, 400~600, etc.

• Register a sum and a count for each bin

41

CS590D 87

Quant-info for Top-k Average
Binning

• Accumulate quant-info for cells to compute
average iceberg cubes efficiently
– Three pieces: sum, count, top-k bins
– Use top-k bins to estimate/prune descendants
– Use sum and count to consolidate current cell

avg()

Not anti-
monotoni

c

real avg 50()

Anti-monotonic,
but

computationally
costly

Approximate avg 50()

Anti-monotonic, can
be computed

efficiently

strongestweakest

CS590D 97

Discussion: Other Issues

• Computing iceberg cubes with more complex measures?
– No general answer for holistic measures, e.g., median, mode,

rank

– A research theme even for complex algebraic functions, e.g.,
standard_dev, variance

• Dynamic vs . static computation of iceberg cubes
– v and k are only available at query time

– Setting reasonably low parameters for most nontrivial cases

• Memory-hog? what if the cubing is too big to fit in
memory?—projection and then cubing

42

CS590D 98

Condensed Cube

• W. Wang, H. Lu, J. Feng, J. X. Yu, Condensed Cube: An Effective

Approach to Reducing Data Cube Size. ICDE’02.

• Icerberg cube cannot solve all the problems

– Suppose 100 dimensions, only 1 base cell with count = 10. How many
aggregate (non-base) cells if count >= 10?

• Condensed cube

– Only need to store one cell (a1, a2, …, a100, 10), which represents all the

corresponding aggregate cells

– Adv.

• Fully precomputed cube without compression

– Efficient computation of the minimal condensed cube

CS590D 99

References (I)
• S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S.

Sarawagi. On the computation of multidimensional aggregates. VLDB’96

• D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses.

SIGMOD’97.

• R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE’97

• K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs..

SIGMOD’99.

• S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM

SIGMOD Record, 26:65-74, 1997.

• OLAP council. MDAPI specification version 2.0. In http://www.olapcouncil.org/research/apily.htm,

1998.

• G. Dong, J. Han, J. Lam, J. Pei, K. Wang. Mining Multi-dimensional Constrained Gradients in

Data Cubes. VLDB’2001

• J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H.
Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-

totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.

43

CS590D 100

References (II)
• J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes With Complex

Measures. SIGMOD’01

• V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. SIGMOD’96

• Microsoft. OLEDB for OLAP programmer's reference version 1.0. In
http://www.microsoft.com/data/oledb/olap, 1998.

• K. Ross and D. Srivastava. Fast computation of sparse datacubes. VLDB’97.

• K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities.
EDBT'98.

• S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes.
EDBT'98.

• E. Thomsen. OLAP Solutions: Building Multidimensional Information Systems. John Wiley &
Sons, 1997.

• W. Wang, H. Lu, J. Feng, J. X. Yu, Condensed Cube: An Effective Approach to Reducing Data
Cube Size. ICDE’02.

• Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous
multidimensional aggregates. SIGMOD’97.

