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Data Preprocessing

• Why preprocess the data?
• Data cleaning 
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy 

generation
• Summary
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Why Data Preprocessing?

• Data in the real world is dirty
– incomplete: lacking attribute values, lacking certain 

attributes of interest, or containing only aggregate 
data

• e.g., occupation=“”

– noisy: containing errors or outliers
• e.g., Salary=“-10”

– inconsistent: containing discrepancies in codes or 
names

• e.g., Age=“42” Birthday=“03/07/1997”
• e.g., Was rating “1,2,3”, now rating “A, B, C”
• e.g., discrepancy between duplicate records
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Why Is Data Dirty?

• Incomplete data comes from
– n/a data value when collected
– different consideration between the time when the 

data was collected and when it is analyzed.
– human/hardware/software problems

• Noisy data comes from the process of data
– collection
– entry
– transmission

• Inconsistent data comes from
– Different data sources
– Functional dependency violation
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Why Is Data Preprocessing 
Important?

• No quality data, no quality mining results!
– Quality decisions must be based on quality data

• e.g., duplicate or missing data may cause incorrect or even 
misleading statistics.

– Data warehouse needs consistent integration of 
quality data

• Data extraction, cleaning, and transformation 
comprises the majority of the work of building a 
data warehouse. —Bill Inmon
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Multi-Dimensional Measure 
of Data Quality

• A well-accepted multidimensional view:
– Accuracy
– Completeness
– Consistency
– Timeliness
– Believability
– Value added
– Interpretability
– Accessibility

• Broad categories:
– intrinsic, contextual, representational, and 

accessibility.
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Major Tasks in Data 
Preprocessing

• Data cleaning
– Fill in missing values, smooth noisy data, identify or remove 

outliers, and resolve inconsistencies
• Data integration

– Integration of multiple databases, data cubes, or files
• Data transformation

– Normalization and aggregation
• Data reduction

– Obtains reduced representation in volume but produces the 
same or similar analytical results

• Data discretization
– Part of data reduction but with particular importance, especially 

for numerical data
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Data Preprocessing

• Why preprocess the data?
• Data cleaning
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy 

generation
• Summary
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Data Cleaning

• Importance
– “Data cleaning is one of the three biggest problems in 

data warehousing”—Ralph Kimball
– “Data cleaning is the number one problem in data 

warehousing”—DCI survey

• Data cleaning tasks
– Fill in missing values
– Identify outliers and smooth out noisy data 
– Correct inconsistent data
– Resolve redundancy caused by data integration
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Missing Data

• Data is not always available
– E.g., many tuples have no recorded value for several 

attributes, such as customer income in sales data
• Missing data may be due to 

– equipment malfunction
– inconsistent with other recorded data and thus 

deleted
– data not entered due to misunderstanding
– certain data may not be considered important at the 

time of entry
– not register history or changes of the data

• Missing data may need to be inferred.
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How to Handle Missing 
Data?

• Ignore the tuple: usually done when class label is 
missing (assuming the tasks in classification—not 
effective when the percentage of missing values per 
attribute varies considerably.

• Fill in the missing value manually: tedious + infeasible?
• Fill in it automatically with

– a global constant : e.g., “unknown”, a new class?! 
– the attribute mean
– the attribute mean for all samples belonging to the same class: 

smarter
– the most probable value: inference-based such as Bayesian 

formula or decision tree
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Noisy Data

• Noise: random error or variance in a measured variable
• Incorrect attribute values may due to

– faulty data collection instruments
– data entry problems
– data transmission problems
– technology limitation
– inconsistency in naming convention 

• Other data problems which requires data cleaning
– duplicate records
– incomplete data
– inconsistent data
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How to Handle Noisy Data?

• Binning method:
– first sort data and partition into (equi-depth) bins
– then one can smooth by bin means,  smooth by bin 

median, smooth by bin boundaries, etc.
• Clustering

– detect and remove outliers
• Combined computer and human inspection

– detect suspicious values and check by human (e.g., 
deal with possible outliers)

• Regression
– smooth by fitting the data into regression functions
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Simple Discretization
Methods: Binning

• Equal-width (distance) partitioning:
– Divides the range into N intervals of equal size: uniform grid
– if A and B are the lowest and highest values of the attribute, the 

width of intervals will be: W = (B –A)/N.
– The most straightforward, but outliers may dominate 

presentation
– Skewed data is not handled well.

• Equal-depth (frequency) partitioning:
– Divides the range into N intervals, each containing approximately 

same number of samples
– Good data scaling
– Managing categorical attributes can be tricky.
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Binning Methods for Data 
Smoothing

• Sorted data (e.g., by price)
– 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

• Partition into (equi-depth) bins:
– Bin 1: 4, 8, 9, 15
– Bin 2: 21, 21, 24, 25
– Bin 3: 26, 28, 29, 34

• Smoothing by bin means:
– Bin 1: 9, 9, 9, 9
– Bin 2: 23, 23, 23, 23
– Bin 3: 29, 29, 29, 29

• Smoothing by bin boundaries:
– Bin 1: 4, 4, 4, 15
– Bin 2: 21, 21, 25, 25
– Bin 3: 26, 26, 26, 34
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Cluster Analysis
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Regression

x

y

y = x + 1

X1

Y1

Y1’
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Data Preprocessing

• Why preprocess the data?
• Data cleaning 
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy 

generation
• Summary
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Data Integration

• Data integration: 
– combines data from multiple sources into a coherent store

• Schema integration
– integrate metadata from different sources
– Entity identification problem: identify real world entities from

multiple data sources, e.g., A.cust-id ≡ B.cust-#
• Detecting and resolving data value conflicts

– for the same real world entity, attribute values from different 
sources are different

– possible reasons: different representations, different scales, e.g., 
metric vs. British units
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Handling Redundancy in Data 
Integration

• Redundant data occur often when integration of 
multiple databases
– The same attribute may have different names in 

different databases
– One attribute may be a “derived” attribute in another 

table, e.g., annual revenue
• Redundant data may be able to be detected by 

correlational analysis
• Careful integration of the data from multiple 

sources may help reduce/avoid redundancies 
and inconsistencies and improve mining speed 
and quality
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Data Transformation

• Smoothing: remove noise from data
• Aggregation: summarization, data cube 

construction
• Generalization: concept hierarchy climbing
• Normalization: scaled to fall within a small, 

specified range
– min-max normalization
– z-score normalization
– normalization by decimal scaling

• Attribute/feature construction
– New attributes constructed from the given ones

CS590D:  Data Mining
Chris Clifton

January 18, 2005
Data Preparation
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Data Transformation: 
Normalization

• min-max normalization

• z-score normalization

• normalization by decimal scaling
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Z-Score (Example)

-.5543.873.00
-.582-0.300.50
-.4970.240.82
-.71-5-0.970.10
.47600.220.81
.20450.500.98

-.2322-0.170.58
-.87-14-0.020.67
-.44100.040.70
-.3018-0.090.63
-.0532-0.800.20
3.87250-0.070.64
-.3515-0.790.21
-.5350.400.92
-.488-0.220.55
-.05320.200.80

470-0.720.25
.555-0.270.52

55.9sdev.11400.59sdev-0.140.60
34.3Avg-.26200.68Avg-0.840.18

v’vv’v
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Data Preprocessing

• Why preprocess the data?
• Data cleaning 
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy 

generation
• Summary
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Data Reduction Strategies

• A data warehouse may store terabytes of data
– Complex data analysis/mining may take a very long time to run 

on the complete data set
• Data reduction 

– Obtain a reduced representation of the data set that is much 
smaller in volume but yet produce the same (or almost the same) 
analytical results

• Data reduction strategies
– Data cube aggregation
– Dimensionality reduction — remove unimportant attributes
– Data Compression
– Numerosity reduction — fit data into models
– Discretization and concept hierarchy generation
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Data Cube Aggregation

• The lowest level of a data cube
– the aggregated data for an individual entity of interest
– e.g., a customer in a phone calling data warehouse.

• Multiple levels of aggregation in data cubes
– Further reduce the size of data to deal with

• Reference appropriate levels
– Use the smallest representation which is enough to 

solve the task
• Queries regarding aggregated information 

should be answered using data cube, when 
possible
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Dimensionality Reduction

• Feature selection (i.e., attribute subset selection):
– Select a minimum set of features such that the probability 

distribution of different classes given the values for those 
features is as close as possible to the original distribution given 
the values of all features

– reduce # of patterns in the patterns, easier to understand
• Heuristic methods (due to exponential # of choices):

– step-wise forward selection
– step-wise backward elimination
– combining forward selection and backward elimination
– decision-tree induction
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Initial attribute set:
{A1, A2, A3, A4, A5, A6}

A4 ?

A1? A6?

Class 1 Class 2 Class 1 Class 2

> Reduced attribute set:  {A1, A4, A6}

Example of
Decision Tree Induction

CS590D 33

Data Compression

• String compression
– There are extensive theories and well-tuned algorithms
– Typically lossless
– But only limited manipulation is possible without expansion

• Audio/video compression
– Typically lossy compression, with progressive refinement
– Sometimes small fragments of signal can be reconstructed 

without reconstructing the whole
• Time sequence is not audio

– Typically short and vary slowly with time
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Data Compression

Original Data Compressed 
Data

lossless

Original Data
Approximated 

lossy
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Wavelet 
Transformation 

• Discrete wavelet transform (DWT): linear signal 
processing, multiresolutional analysis

• Compressed approximation: store only a small fraction of 
the strongest of the wavelet coefficients

• Similar to discrete Fourier transform (DFT), but better 
lossy compression, localized in space

• Method:
– Length, L, must be an integer power of 2 (padding with 0s, when 

necessary)
– Each transform has 2 functions: smoothing, difference
– Applies to pairs of data, resulting in two set of data of length L/2
– Applies two functions recursively, until reaches the desired 

length

Haar2 Daubechie4
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DWT for Image 
Compression

• Image

Low Pass       High Pass

Low Pass       High Pass

Low Pass    High Pass
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Principal Component 
Analysis 

• Given N data vectors from k-dimensions, find c ≤
k  orthogonal vectors that can be best used to 
represent data 
– The original data set is reduced to one consisting of N 

data vectors on c principal components (reduced 
dimensions) 

• Each data vector is a linear combination of the c 
principal component vectors

• Works for numeric data only
• Used when the number of dimensions is large
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X1

X2

Y1

Y2

Principal Component Analysis
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Numerosity Reduction

• Parametric methods
– Assume the data fits some model, estimate 

model parameters, store only the parameters, 
and discard the data (except possible outliers)

– Log-linear models: obtain value at a point in 
m-D space as the product on appropriate 
marginal subspaces 

• Non-parametric methods
– Do not assume models
– Major families: histograms, clustering, 

sampling 
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Regression and Log-Linear 
Models

• Linear regression: Data are modeled to fit 
a straight line
– Often uses the least-square method to fit the 

line

• Multiple regression: allows a response 
variable Y to be modeled as a linear 
function of multidimensional feature vector

• Log-linear model: approximates discrete 
multidimensional probability distributions
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Regress Analysis and Log-
Linear Models

• Linear regression: Y = α + β X
– Two parameters , α and β specify the line and are to 

be estimated by using the data at hand.
– using the least squares criterion to the known values 

of Y1, Y2, …, X1, X2, ….
• Multiple regression: Y = b0 + b1 X1 + b2 X2.

– Many nonlinear functions can be transformed into the 
above.

• Log-linear models:
– The multi-way table of joint probabilities is 

approximated by a product of lower-order tables.
– Probability:  p(a, b, c, d) = αab βacχad δbcd
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Histograms

• A popular data reduction 
technique

• Divide data into buckets 
and store average (sum) 
for each bucket

• Can be constructed 
optimally in one 
dimension using dynamic 
programming

• Related to quantization 
problems. 0
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Clustering

• Partition data set into clusters, and one 
can store cluster representation only

• Can be very effective if data is clustered 
but not if data is “smeared”

• Can have hierarchical clustering and be 
stored in multi-dimensional index tree 
structures

• There are many choices of clustering 
definitions and clustering algorithms, 
further detailed in Chapter 8
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Sampling

• Allow a mining algorithm to run in complexity that is 
potentially sub-linear to the size of the data

• Choose a representative subset of the data
– Simple random sampling may have very poor performance in the 

presence of skew

• Develop adaptive sampling methods
– Stratified sampling: 

• Approximate the percentage of each class (or subpopulation of 
interest) in the overall database 

• Used in conjunction with skewed data

• Sampling may not reduce database I/Os (page at a 
time).
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SRSWOR

(simple random

sample without 

replacement)

SRSWR

Raw Data

Sampling
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Sampling

Raw Data Cluster/Stratified Sample
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Hierarchical Reduction

• Use multi-resolution structure with different degrees of 
reduction

• Hierarchical clustering is often performed but tends to 
define partitions of data sets rather than “clusters”

• Parametric methods are usually not amenable to 
hierarchical representation

• Hierarchical aggregation 
– An index tree hierarchically divides a data set into partitions by 

value range of some attributes
– Each partition can be considered as a bucket
– Thus an index tree with aggregates stored at each node is a 

hierarchical histogram
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Data Preprocessing

• Why preprocess the data?
• Data cleaning 
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy 

generation
• Summary
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Discretization

• Three types of attributes:
– Nominal — values from an unordered set
– Ordinal — values from an ordered set
– Continuous — real numbers

• Discretization: 
– divide the range of a continuous attribute into 

intervals
– Some classification algorithms only accept categorical 

attributes.
– Reduce data size by discretization
– Prepare for further analysis
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Discretization and Concept 
hierachy

• Discretization
– reduce the number of values for a given 

continuous attribute by dividing the range of 
the attribute into intervals. Interval labels can 
then be used to replace actual data values

• Concept hierarchies
– reduce the data by collecting and replacing 

low level concepts (such as numeric values 
for the attribute age) by higher level concepts 
(such as young, middle-aged, or senior)

CS590D 52

Discretization and Concept Hierarchy 
Generation for Numeric Data

• Binning (see sections before)
• Histogram analysis (see sections before)
• Clustering analysis (see sections before)
• Entropy-based discretization
• Segmentation by natural partitioning



25

CS590D 53

Definition of Entropy

• Entropy 

• Example:  Coin Flip
– AX = {heads, tails}
– P(heads) = P(tails) = ½
– ½ log2(½) = ½ * - 1
– H(X) = 1

• What about a two-headed coin?
• Conditional Entropy:

2( ) ( ) log ( )
Xx A

H X P x P x
∈

= −∑

( | ) ( ) ( | )
Yy A

H X Y P y H X y
∈

= ∑
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Entropy-Based 
Discretization

• Given a set of samples S, if S is partitioned into two 
intervals S1 and S2 using boundary T, the entropy after 
partitioning is

• The boundary that minimizes the entropy function over 
all possible boundaries is selected as a binary 
discretization.

• The process is recursively applied to partitions obtained 
until some stopping criterion is met, e.g.,

• Experiments show that it may reduce data size and 
improve classification accuracy

1 2
1 2

| | | |
( , ) ( ) ( )

| | | |
H S T H H

S S
S SS S= +

( ) ( , )H S H T S δ− >
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Segmentation by Natural 
Partitioning

• A simply 3-4-5 rule can be used to segment 
numeric data into relatively uniform, “natural”
intervals.
– If an interval covers 3, 6, 7 or 9 distinct values at the 

most significant digit, partition the range into 3 equi-
width intervals

– If it covers 2, 4, or 8 distinct values at the most 
significant digit, partition the range into 4 intervals

– If it covers 1, 5, or 10 distinct values at the most 
significant digit, partition the range into 5 intervals
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Example of 3-4-5 Rule

(-$4000 -$5,000)

(-$400 - 0)

(-$400 -
-$300)

(-$300 -
-$200)

(-$200 -
-$100)

(-$100 -
0)

(0 - $1,000)

(0 -
$200)

($200 -
$400)

($400 -
$600)

($600 -
$800) ($800 -

$1,000)

($2,000 - $5, 000)

($2,000 -
$3,000)

($3,000 -
$4,000)

($4,000 -
$5,000)

($1,000 - $2, 000)

($1,000 -
$1,200)

($1,200 -
$1,400)

($1,400 -
$1,600)

($1,600 -
$1,800) ($1,800 -

$2,000)

msd=1,000 Low=-$1,000 High=$2,000Step 2:

Step 4:

Step 1: -$351 -$159 profit $1,838 $4,700

Min             Low (i.e, 5%-tile) High(i.e, 95%-0 tile)        Max

count

(-$1,000  - $2,000)

(-$1,000 - 0) (0 -$ 1,000)

Step 3:

($1,000 - $2,000)
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Concept Hierarchy Generation 
for Categorical Data

• Specification of a partial ordering of attributes 
explicitly at the schema level by users or experts
– street<city<state<country

• Specification of a portion of a hierarchy by 
explicit data grouping
– {Urbana, Champaign, Chicago}<Illinois

• Specification of a set of attributes. 
– System automatically generates partial ordering by 

analysis of the number of distinct values
– E.g., street < city <state < country

• Specification of only a partial set of attributes
– E.g., only street < city, not others
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Automatic Concept Hierarchy 
Generation

• Some concept hierarchies can be automatically 
generated based on the analysis of the number of 
distinct values per attribute in the given data set 
– The attribute with the most distinct values is placed at the lowest 

level of the hierarchy
– Note: Exception—weekday, month, quarter, year

country

province_or_ state

city

street

15 distinct values

65 distinct values

3567 distinct values

674,339 distinct values



28

CS590D 59

Data Preprocessing

• Why preprocess the data?
• Data cleaning 
• Data integration and transformation
• Data reduction
• Discretization and concept hierarchy 

generation
• Summary
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Summary

• Data  preparation is a big issue for both 
warehousing and mining

• Data preparation includes
– Data cleaning and data integration
– Data reduction and feature selection
– Discretization

• A lot a methods have been developed but 
still an active area of research
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A Sample Data Cube

Total annual sales
of  TV in U.S.A.Date

Pro
du

ct

C
ou

nt
rysum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum
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Cuboids Corresponding to 
the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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Browsing a Data Cube

• Visualization
• OLAP 

capabilities
• Interactive 

manipulation
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Typical OLAP Operations
• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction

• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed data, or 
introducing new dimensions

• Slice and dice:

– project and select

• Pivot (rotate):

– reorient the cube, visualization, 3D to series of 2D planes.

• Other operations

– drill across: involving (across) more than one fact table

– drill through: through the bottom level of the cube to its back-end 
relational tables (using SQL)
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Efficient Data Cube 
Computation

• Data cube can be viewed as a lattice of cuboids  
– The bottom-most cuboid is the base cuboid

– The top-most cuboid (apex) contains only one cell

– How many cuboids in an n-dimensional cube with L 
levels?

• Materialization of data cube
– Materialize every (cuboid) (full materialization), none 

(no materialization), or some (partial materialization)

– Selection of which cuboids to materialize
• Based on size, sharing, access frequency, etc.

)1
1

( +∏
=

=
n

i iLT
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Cube Operation

• Cube definition and computation in DMQL
define cube sales[item, city, year]: sum(sales_in_dollars)

compute cube sales

• Transform it into a SQL-like language (with a new 
operator cube by, introduced by Gray et al.’96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year

• Compute the following Group-Bys
(date, product, customer),
(date,product),(date, customer), (product, customer),
(date), (product), (customer)
() 

(item)(city)

()

(year)

(city, item) (city, year) (item, year)

(city, item, year)
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Cube Computation: ROLAP-
Based Method

• Efficient cube computation methods
– ROLAP-based cubing algorithms (Agarwal et al’96)
– Array-based cubing algorithm (Zhao et al’97)
– Bottom-up computation method (Beyer & Ramarkrishnan’99)
– H-cubing technique (Han, Pei, Dong & Wang:SIGMOD’01)

• ROLAP-based cubing algorithms 
– Sorting, hashing, and grouping operations are applied to the 

dimension attributes in order to reorder and cluster related tuples

– Grouping is performed on some sub-aggregates as a “partial 

grouping step”

– Aggregates may be computed from previously computed 

aggregates, rather than from the base fact table
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Cube Computation: ROLAP-
Based Method (2)

• This is not in the textbook but in a research paper
• Hash/sort based methods (Agarwal et. al. VLDB’96)

– Smallest-parent: computing a cuboid from the smallest, 
previously computed cuboid

– Cache-results: caching results of a cuboid from which other 
cuboids are computed to reduce disk I/Os

– Amortize-scans: computing as many as possible cuboids at the 
same time to amortize disk reads

– Share-sorts: sharing sorting costs cross multiple cuboids when 
sort-based method is used

– Share-partitions: sharing the partitioning cost across multiple 
cuboids when hash-based algorithms are used
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Multi-way Array Aggregation 
for Cube Computation

• Partition arrays into chunks (a small subcube which fits in memory). 

• Compressed sparse array addressing: (chunk_id, offset)

• Compute aggregates in “multiway” by visiting cube cells in the order 
which minimizes the # of times to visit each cell, and reduces 
memory access and storage cost.

What is the best 
traversing order 
to do multi-way 
aggregation?

A

B
29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60
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Multi-way Array Aggregation 
for Cube Computation

A

B

29 30 31 32

1 2 3 4
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13 14 15 16
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a2 a3
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Multi-way Array Aggregation 
for Cube Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

44
28 56

40
24 52

36
20

60

B
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Multi-Way Array Aggregation 
for Cube Computation (Cont.)

• Method: the planes should be sorted and 
computed according to their size in ascending 
order.
– See the details of Example 2.12 (pp. 75-78)
– Idea: keep the smallest plane in the main memory, 

fetch and compute only one chunk at a time for the 
largest plane

• Limitation of the method: computing well only for 
a small number of dimensions
– If there are a large number of dimensions, “bottom-up 

computation” and iceberg cube computation methods 
can be explored
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Indexing OLAP Data: 
Bitmap Index

• Index on a particular column
• Each value in the column has a bit vector: bit-op is fast
• The length of the bit vector: # of records in the base table
• The i-th bit is set if the i-th row of the base table has the value for 

the indexed column
• not suitable for high cardinality domains

Cust Region Type
C1 Asia Retail
C2 Europe Dealer
C3 Asia Dealer
C4 America Retail
C5 Europe Dealer

RecID Retail Dealer
1 1 0
2 0 1
3 0 1
4 1 0
5 0 1

RecID Asia Europe Am erica
1 1 0 0
2 0 1 0
3 1 0 0
4 0 0 1
5 0 1 0

Base table Index on Region Index on Type
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Indexing OLAP Data: Join 
Indices

• Join index: JI(R-id, S-id) where R (R-id, …) 
⊳⊲ S (S-id, …)

• Traditional indices map the values to a list of 
record ids
– It materializes relational join in JI file and 

speeds up relational join — a rather costly 
operation

• In data warehouses, join index relates the 
values of the dimensions of a start schema to 
rows in the fact table.
– E.g. fact table: Sales and two dimensions city

and product
• A join index on city maintains for each 

distinct city a list of R-IDs of the tuples 
recording the Sales in the city 

– Join indices can span multiple dimensions
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Efficient Processing OLAP 
Queries

• Determine which operations should be performed on the 

available cuboids:

– transform drill, roll, etc. into corresponding SQL and/or OLAP 

operations, e.g, dice = selection + projection

• Determine to which materialized cuboid(s) the relevant 

operations should be applied.

• Exploring indexing structures and compressed vs. dense 

array structures in MOLAP
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Iceberg Cube

• Computing only the cuboid cells whose count
or other aggregates satisfying the condition:

HAVING COUNT(*) >= minsup

• Motivation
– Only a small portion of cube cells may be “above the water’’ in a 

sparse cube

– Only calculate “interesting” data—data above certain threshold

– Suppose 100 dimensions, only 1 base cell.  How many 
aggregate (non-base) cells if count >= 1?  What about count >= 
2?
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Bottom-Up Computation 
(BUC)

• BUC (Beyer & Ramakrishnan, 
SIGMOD’99) 

• Bottom-up vs. top-down?—
depending on how you view it!

• Apriori property:
– Aggregate the data,                                   

then move to the next level
– If minsup is not met, stop!

• If minsup = 1 ⇒ compute full 
CUBE!
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Partitioning    

• Usually, entire data set can’t fit in
main memory

• Sort distinct values, partition into blocks
that fit

• Continue processing
• Optimizations

– Partitioning
• External Sorting, Hashing, Counting Sort

– Ordering dimensions to encourage pruning
• Cardinality, Skew, Correlation

– Collapsing duplicates
• Can’t do holistic aggregates anymore!
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Drawbacks of BUC

• Requires a significant amount of memory
– On par with most other CUBE algorithms though

• Does not obtain good performance with dense CUBEs

• Overly skewed data or a bad choice of dimension ordering reduces
performance

• Cannot compute iceberg cubes with complex measures
CREATE CUBE Sales_Iceberg AS

SELECT month, city, cust_grp,

AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND

COUNT(*) >= 50
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Non-Anti-Monotonic 
Measures

• The cubing query with avg is non-anti-

monotonic! 

– (Mar, *, *, 600, 1800) fails the HAVING clause

– (Mar, *, Bus, 1300, 360) passes the clause

………………

520540HDEduVanMar

25001500LaptopBusMonFeb

12801160CameraEduTorJan

1200800TVHldTorJan

485500PrinterEduTorJan

PriceCostProdCust_grpCityMonth

CREATE CUBE Sales_Iceberg AS

SELECT month, city, cust_grp,
AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND
COUNT(*) >= 50
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Top-k Average

• Let (*, Van, *) cover 1,000 records
– Avg(price) is the average price of those 1000 sales

– Avg50(price) is the average price of the top-50 sales 
(top-50 according to the sales price

• Top-k average is anti-monotonic
– The top 50 sales in Van. is with avg(price) <= 800 �

the top 50 deals in Van. during Feb. must be with 
avg(price) <= 800

………………

PriceCostProd
Cust_gr

p
CityMonth
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Binning for Top-k Average

• Computing top-k avg is costly with large k
• Binning idea

– Avg50(c) >= 800
– Large value collapsing: use a sum and a count to 

summarize records with measure >= 800
• If count>=800, no need to check “small” records

– Small value binning: a group of bins
• One bin covers a range, e.g., 600~800, 400~600, etc.

• Register a sum and a count for each bin
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Quant-info for Top-k Average 
Binning

• Accumulate quant-info for cells to compute 
average iceberg cubes efficiently
– Three pieces: sum, count, top-k bins
– Use top-k bins to estimate/prune descendants
– Use sum and count to consolidate current cell

avg()

Not anti-
monotoni

c

real avg 50()

Anti-monotonic, 
but 

computationally 
costly

Approximate avg 50()

Anti-monotonic, can 
be computed 

efficiently

strongestweakest
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Discussion: Other Issues

• Computing iceberg cubes with more complex measures? 
– No general answer for holistic measures, e.g., median, mode, 

rank

– A research theme even for complex algebraic functions, e.g.,  
standard_dev, variance

• Dynamic vs . static computation of iceberg cubes
– v and k are only available at query time

– Setting reasonably low parameters for most nontrivial cases

• Memory-hog? what if the cubing is too big to fit in 
memory?—projection and then cubing
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Condensed Cube

• W. Wang, H. Lu, J. Feng, J. X. Yu, Condensed Cube: An Effective 

Approach to Reducing Data Cube Size. ICDE’02.

• Icerberg cube cannot solve all the problems

– Suppose 100 dimensions, only 1 base cell with count = 10.  How many 
aggregate (non-base) cells if count >= 10? 

• Condensed cube

– Only need to store one cell (a1, a2, …, a100, 10), which represents all the 

corresponding aggregate cells

– Adv.

• Fully precomputed cube without compression

– Efficient computation of the minimal condensed cube
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