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Association Rules
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Mining Association Rules in 
Large Databases

• Association rule mining
• Algorithms for scalable mining of (single-

dimensional Boolean) association rules in 
transactional databases

• Mining various kinds of association/correlation 
rules 

• Constraint-based association mining
• Sequential pattern mining
• Applications/extensions of frequent pattern 

mining
• Summary
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What Is Association Mining?

• Association rule mining:
– Finding frequent patterns, associations, correlations, or causal

structures among sets of items or objects in transaction 
databases, relational databases, and other information 
repositories.

– Frequent pattern: pattern (set of items, sequence, etc.) that 
occurs frequently in a database [AIS93]

• Motivation: finding regularities in data
– What products were often purchased together? — Beer and 

diapers?!
– What are the subsequent purchases after buying a PC?
– What kinds of DNA are sensitive to this new drug?
– Can we automatically classify web documents?
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Why Is Association Mining 
Important?

• Foundation for many essential data mining tasks
– Association, correlation, causality
– Sequential patterns, temporal or cyclic association, 

partial periodicity, spatial and multimedia association
– Associative classification, cluster analysis, iceberg 

cube, fascicles (semantic data compression)

• Broad applications
– Basket data analysis, cross-marketing, catalog 

design, sale campaign analysis
– Web log (click stream) analysis, DNA sequence 

analysis, etc.
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Basic Concepts:
Association Rules

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id • Itemset X={x1, …, xk}

• Find all the rules X�Y with 
min confidence and support
– support, s, probability that 

a transaction contains X∪Y
– confidence, c, conditional 

probability that a 
transaction having X also 
contains Y.

Let  min_support = 50%,    
min_conf  = 50%:

A � C  (50%, 66.7%)
C � A  (50%, 100%)

Customer
buys diaper

Customer
buys both

Customer
buys beer
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Mining Association Rules:
Example

For rule A ⇒ C:
support = support({A}∪{C}) = 50%
confidence = support({A}∪{C})/support({A}) = 

66.6%

Min. support 50%
Min. confidence 50%

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id

50%{A, C}

50%{C}

50%{B}

75%{A}

SupportFrequent pattern
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Mining Association Rules:
What We Need to Know

• Goal:  Rules with high support/confidence
• How to compute?

– Support:  Find sets of items that occur 
frequently

– Confidence:  Find frequency of subsets of 
supported itemsets

• If we have all frequently occurring sets of 
items (frequent itemsets), we can compute 
support and confidence!
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Mining Association Rules in 
Large Databases

• Association rule mining
• Algorithms for scalable mining of (single-

dimensional Boolean) association rules in 
transactional databases

• Mining various kinds of association/correlation 
rules 

• Constraint-based association mining
• Sequential pattern mining
• Applications/extensions of frequent pattern 

mining
• Summary
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Apriori: A Candidate Generation-
and-Test Approach

• Any subset of a frequent itemset must be frequent
– if {beer, diaper, nuts} is frequent, so is {beer, diaper}
– Every transaction having {beer, diaper, nuts} also contains {beer, 

diaper} 

• Apriori pruning principle: If there is any itemset which is 
infrequent, its superset should not be generated/tested!

• Method: 
– generate length (k+1) candidate itemsets from length k frequent 

itemsets, and
– test the candidates against DB

• Performance studies show its efficiency and scalability
• Agrawal & Srikant 1994, Mannila, et al. 1994

10

Frequency ≥ 50%, Confidence 100%:
A � C
B � E

BC � E
CE � B
BE � C

The Apriori Algorithm—An Example

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

B, E40

A, B, C, E30

B, C, E20

A, C, D10

ItemsTid

1{D}

3{E}

3{C}

3{B}

2{A}

supItemset

3{E}

3{C}

3{B}

2{A}

supItemset

{C, E}

{B, E}

{B, C}

{A, E}

{A, C}

{A, B}

Itemset
1{A, B}
2{A, C}
1{A, E}
2{B, C}
3{B, E}
2{C, E}

supItemset

2{A, C}
2{B, C}
3{B, E}
2{C, E}

supItemset

{B, C, E}

Itemset

2{B, C, E}
supItemset
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The Apriori Algorithm

• Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in 
Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;
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Important Details of Apriori

• How to generate candidates?
– Step 1: self-joining Lk

– Step 2: pruning

• How to count supports of candidates?

• Example of Candidate-generation
– L3={abc, abd, acd, ace, bcd}

– Self-joining: L3*L3

• abcd from abc and abd

• acde from acd and ace

– Pruning:
• acde is removed because ade is not in L3

– C4={abcd}
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How to Generate Candidates?

• Suppose the items in Lk-1 are listed in an order

• Step 1: self-joining Lk-1

insert into Ck

select p.item 1, p.item 2, …, p.item k-1, q.item k-1

from Lk-1 p, Lk-1 q

where p.item 1=q.item 1, …, p.item k-2=q.item k-2, p.item k-1 < q.item k-1

• Step 2: pruning
∀ itemsets c in C k do

∀ (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck
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How to Count Supports of 
Candidates?

• Why counting supports of candidates a problem?
– The total number of candidates can be very huge

– One transaction may contain many candidates

• Method:
– Candidate itemsets are stored in a hash-tree

– Leaf node of hash-tree contains a list of itemsets and counts

– Interior node contains a hash table

– Subset function: finds all the candidates contained in a 
transaction
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Example: Counting Supports of 
Candidates

1,4,7

2,5,8

3,6,9
Subset function

2 3 4
5 6 7

1 4 5
1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 2 + 3 5 6

1 3 + 5 6
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Efficient Implementation of Apriori 
in SQL

• Hard to get good performance out of pure SQL (SQL-92) 
based approaches alone

• Make use of object-relational extensions like UDFs, 
BLOBs, Table functions etc.

– Get orders of magnitude improvement

• S. Sarawagi, S. Thomas, and R. Agrawal. Integrating 

association rule mining with relational database systems: 
Alternatives and implications. In SIGMOD’98
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Challenges of Frequent 
Pattern Mining

• Challenges
– Multiple scans of transaction database

– Huge number of candidates

– Tedious workload of support counting for candidates

• Improving Apriori: general ideas

– Reduce passes of transaction database scans

– Shrink number of candidates

– Facilitate support counting of candidates

18

DIC: Reduce Number of Scans

• Once both A and D are 
determined frequent, the 
counting of AD begins

• Once all length-2 subsets of 
BCD are determined frequent, 
the counting of BCD begins

ABCD

ABC ABD ACD BCD

AB AC BC AD BD CD

A B C D

{}

Itemset lattice

Transactions

1-itemsets
2-itemsets

…
Apriori

1-itemsets
2-items

3-itemsDIC
S. Brin R. Motwani, J. Ullman, 
and S. Tsur. Dynamic itemset 
counting and implication rules 

for market basket data. In 
SIGMOD’97
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Partition: Scan Database Only 
Twice

• Any itemset that is potentially frequent in DB 
must be frequent in at least one of the partitions 
of DB
– Scan 1: partition database and find local frequent 

patterns
– Scan 2: consolidate global frequent patterns

• A. Savasere, E. Omiecinski, and S. Navathe. An 
efficient algorithm for mining association in large 
databases. In VLDB’95
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Sampling for Frequent 
Patterns

• Select a sample of original database, mine 
frequent patterns within sample using Apriori

• Scan database once to verify frequent itemsets
found in sample, only borders of closure of 
frequent patterns are checked
– Example: check abcd instead of ab, ac, …, etc.

• Scan database again to find missed frequent 
patterns

• H. Toivonen. Sampling large databases for 
association rules. In VLDB’96
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DHP: Reduce the Number of 
Candidates

• A k-itemset whose corresponding hashing 
bucket count is below the threshold cannot be 
frequent
– Candidates: a, b, c, d, e
– Hash entries: {ab, ad, ae} {bd, be, de} …
– Frequent 1-itemset: a, b, d, e
– ab is not a candidate 2-itemset if the sum of count of 

{ab, ad, ae} is below support threshold

• J. Park, M. Chen, and P. Yu. An effective hash-
based algorithm for mining association rules. In 
SIGMOD’95
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Eclat/MaxEclat and VIPER: 
Exploring Vertical Data Format

• Use tid-list, the list of transaction-ids containing an itemset

• Compression of tid-lists
– Itemset A: t1, t2, t3, sup(A)=3

– Itemset B: t2, t3, t4, sup(B)=3

– Itemset AB: t2, t3, sup(AB)=2

• Major operation: intersection of tid-lists

• M. Zaki et al. New algorithms for fast discovery of association rules. 
In KDD’97

• P. Shenoy et al. Turbo-charging vertical mining of large databases. 
In SIGMOD’00
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Bottleneck of Frequent-pattern 
Mining

• Multiple database scans are costly
• Mining long patterns needs many passes of 

scanning and generates lots of candidates
– To find frequent itemset i1i2…i100

• # of scans: 100

• # of Candidates: (100
1) + (100

2) + … + (1
1
0
0
0

0) = 2100-1 = 
1.27*1030 !

• Bottleneck: candidate-generation-and-test
• Can we avoid candidate generation?

CS590D:  Data Mining
Prof. Chris Clifton

January 27, 2005
Association Rules
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Mining Frequent Patterns 
Without Candidate Generation

• Grow long patterns from short ones using 

local frequent items

– “abc” is a frequent pattern

– Get all transactions having “abc”: DB|abc

– “d” is a local frequent item in DB|abc � abcd

is a frequent pattern

27

Construct FP-tree from a 
Transaction Database

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} { f, c, a, m, p}
200 {a, b, c, f, l, m, o} { f, c, a, b, m}
300 {b, f, h, j, o, w} { f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} { f, c, a, m, p}

1. Scan DB once, find 
frequent 1-itemset 
(single item pattern)

2. Sort frequent items in 
frequency descending 
order, f-list

3. Scan DB again, 
construct FP-tree

F-list=f-c-a-b-m-p
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Benefits of the FP-tree 
Structure

• Completeness 
– Preserve complete information for frequent pattern 

mining
– Never break a long pattern of any transaction

• Compactness
– Reduce irrelevant info—infrequent items are gone
– Items in frequency descending order: the more 

frequently occurring, the more likely to be shared
– Never be larger than the original database (not count 

node-links and the count field)
– For Connect-4 DB, compression ratio could be over 

100
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Partition Patterns and 
Databases

• Frequent patterns can be partitioned into 
subsets according to f-list
– F-list=f-c-a-b-m-p
– Patterns containing p
– Patterns having m but no p
– …
– Patterns having c but no a nor b, m, p
– Pattern f

• Completeness and non-redundency
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Find Patterns Having P From P-
conditional Database

• Starting at the frequent item header table in the FP-tree
• Traverse the FP-tree by following the link of each frequent item p
• Accumulate all of transformed prefix paths of item p to form p’s

conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:2, c:2

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4

c 4
a 3
b 3
m 3
p 3
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From Conditional Pattern-bases to 
Conditional FP-trees

• For each pattern-base
– Accumulate the count for each item in the base
– Construct the FP-tree for the frequent items of the pattern base

m-conditional pattern base:
fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent 
patterns relate tom

m, 

fm, cm, am, 

fcm, fam, cam, 

fcam

����
����

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item  frequency  head 
f 4

c 4
a 3
b 3
m 3
p 3
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Recursion: Mining Each 
Conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

33

A Special Case: Single Prefix Path 
in FP-tree

• Suppose a (conditional) FP-tree T has a shared single prefix-path P

• Mining can be decomposed into two parts

– Reduction of the single prefix path into one node

– Concatenation of the mining results of the two parts

����

a2:n2

a3:n3

a1:n1

{}

b1:m1
C1:k1

C2:k2 C3:k3

b1:m1
C1:k1

C2:k2 C3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =
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Mining Frequent Patterns With 
FP-trees

• Idea: Frequent pattern growth
– Recursively grow frequent patterns by pattern and 

database partition

• Method 
– For each frequent item, construct its conditional 

pattern-base, and then its conditional FP-tree
– Repeat the process on each newly created 

conditional FP-tree 
– Until the resulting FP-tree is empty, or it contains only 

one path—single path will generate all the 
combinations of its sub-paths, each of which is a 
frequent pattern
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Scaling FP-growth by DB 
Projection

• FP-tree cannot fit in memory?—DB 
projection

• First partition a database into a set of 
projected DBs

• Then construct and mine FP-tree for each 
projected DB

• Parallel projection vs. Partition projection
techniques
– Parallel projection is space costly
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Partition-based Projection

• Parallel projection needs 
a lot of disk space 

• Partition projection 
saves it

Tran. DB 
fcamp
fcabm
fb
cbp
fcamp

p-proj DB 
fcam
cb

fcam

m-proj DB 
fcab
fca

fca

b-proj DB 
f
cb

…

a-proj DB
fc
…

c-proj DB
f
…

f-proj DB 
…

am-proj DB 
fc
fc
fc

cm-proj DB 
f
f
f

…
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FP-Growth vs. Apriori: Scalability 
With the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u
n
 t
im

e
(s

e
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K
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FP-Growth vs. Tree-Projection: 
Scalability with the Support Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

R
u

n
ti

m
e 

(s
ec

.)

D2 FP-growth

D2 TreeProjection

Data set T25I20D100K
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Why Is FP-Growth the Winner?

• Divide-and-conquer: 
– decompose both the mining task and DB according to the 

frequent patterns obtained so far

– leads to focused search of smaller databases

• Other factors
– no candidate generation, no candidate test

– compressed database: FP-tree structure

– no repeated scan of entire database 

– basic ops—counting local freq items and building sub FP-tree, 
no pattern search and matching
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Implications of the 
Methodology 

• Mining closed frequent itemsets and max-patterns

– CLOSET (DMKD’00)

• Mining sequential patterns

– FreeSpan (KDD’00), PrefixSpan (ICDE’01)

• Constraint-based mining of frequent patterns

– Convertible constraints (KDD’00, ICDE’01)

• Computing iceberg data cubes with complex measures 

– H-tree and H-cubing algorithm (SIGMOD’01)
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Max-patterns

• Frequent pattern {a1, …, a100} � (100
1) + 

(100
2) + … + (1

1
0

0
0
0) = 2100-1 = 1.27*1030 

frequent sub-patterns!
• Max-pattern: frequent patterns without 

proper frequent super pattern
– BCDE, ACD are max-patterns
– BCD is not a max-pattern

A,C,D,F30

B,C,D,E,20

A,B,C,D,E10

ItemsTid

Min_sup=2
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MaxMiner: Mining Max-
patterns

• 1st scan: find frequent items
– A, B, C, D, E

• 2nd scan: find support for 
– AB, AC, AD, AE, ABCDE
– BC, BD, BE, BCDE
– CD, CE, CDE, DE,

• Since BCDE is a max-pattern, no need to check 
BCD, BDE, CDE in later scan

• R. Bayardo. Efficiently mining long patterns from 
databases. In SIGMOD’98

A,C,D,F30

B,C,D,E,20

A,B,C,D,E10

ItemsTid

Potential 
max-patterns
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Frequent Closed Patterns

• Conf(ac�d)=100% � record acd only
• For frequent itemset X, if there exists no 

item y s.t. every transaction containing X 
also contains y, then X is a frequent 
closed pattern
– “acd” is a frequent closed pattern

• Concise rep. of freq pats
• Reduce # of patterns and rules
• N. Pasquier et al. In ICDT’99

c, e, f50

a, c, d, f40

c, e, f30

a, b, e20

a, c, d, e, f10

ItemsTID

Min_sup=2
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Mining Frequent Closed Patterns: 
CLOSET

• Flist: list of all frequent items in support ascending order

– Flist: d-a-f-e-c

• Divide search space

– Patterns having d

– Patterns having d but no a, etc.

• Find frequent closed pattern recursively

– Every transaction having d also has cfa � cfad is a frequent 

closed pattern

• J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining 

Frequent Closed Itemsets", DMKD'00.

c, e, f50
a, c, d, f40
c, e, f30
a, b, e20
a, c, d, e, f10

ItemsTID

Min_sup=2
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Mining Frequent Closed 
Patterns: CHARM

• Use vertical data format: t(AB)={T1, T12, …}

• Derive closed pattern based on vertical intersections
– t(X)=t(Y): X and Y always happen together

– t(X)⊂t(Y): transaction having X always has Y

• Use diffset to accelerate mining
– Only keep track of difference of tids

– t(X)={T1, T2, T3}, t(Xy )={T1, T3} 

– Diffset(Xy, X)={T2}

• M. Zaki. CHARM: An Efficient Algorithm for Closed Association Rule Mining, 
CS-TR99-10, Rensselaer Polytechnic Institute

• M. Zaki, Fast Vertical Mining Using Diffsets, TR01-1, Department of 
Computer Science, Rensselaer Polytechnic Institute
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Visualization of Association Rules: 
Pane Graph

CS590D 47

Visualization of Association Rules: Rule Graph
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Mining Association Rules in 
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean) 

association rules in transactional databases

• Mining various kinds of association/correlation rules

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary
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Mining Various Kinds of Rules or 
Regularities

• Multi-level, quantitative association rules, 

correlation and causality, ratio rules, sequential 

patterns, emerging patterns, temporal 

associations, partial periodicity

• Classification, clustering, iceberg cubes, etc.



25

50

Multiple-level Association 
Rules

• Items often form hierarchy
• Flexible support settings: Items at the lower level 

are expected to have lower support.
• Transaction database can be encoded based on 

dimensions and levels
• explore shared multi-level mining

uniform support

Milk
[support = 10%]

2% Milk 
[support = 6%]

Skim Milk 
[support = 4%]

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 3%

reduced support
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ML/MD Associations with Flexible 
Support Constraints

• Why flexible support constraints?
– Real life occurrence frequencies vary greatly

• Diamond, watch, pens in a shopping basket

– Uniform support may not be an interesting model

• A flexible model
– The lower-level, the more dimension combination, and the long 

pattern length, usually the smaller support

– General rules should be easy to specify and understand

– Special items and special group of items may be specified 
individually and have higher priority
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Multi-dimensional Association

• Single-dimensional rules:

buys(X, “milk”)  ⇒ buys(X, “bread”)

• Multi-dimensional rules: ≥ 2 dimensions or predicates

– Inter-dimension assoc. rules (no repeated predicates)

age(X,”19-25”)  ∧ occupation(X,“student”) ⇒ buys(X,“coke”)

– hybrid-dimension assoc. rules (repeated predicates)

age(X,”19-25”) ∧ buys(X, “popcorn”) ⇒ buys(X, “coke”)

• Categorical Attributes

– finite number of possible values, no ordering among values

• Quantitative Attributes

– numeric, implicit ordering among values
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Multi-level Association: 
Redundancy Filtering

• Some rules may be redundant due to “ancestor”
relationships between items.

• Example

– milk ⇒ wheat bread    [support = 8%, confidence = 70%]

– 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]

• We say the first rule is an ancestor of the second rule.

• A rule is redundant if its support is close to the 
“expected” value, based on the rule’s ancestor.
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Multi-Level Mining: Progressive 
Deepening

• A top-down, progressive deepening approach:
– First mine high-level frequent items:

milk (15%), bread (10%)
– Then mine their lower-level “weaker” frequent 

itemsets:
2% milk (5%), wheat bread (4%)

• Different min_support threshold across multi-
levels lead to different algorithms:
– If adopting the same min_support across multi-levels

then toss t if any of t’s ancestors is infrequent.
– If adopting reduced min_support at lower levels

then examine only those descendents whose ancestor’s 
support is frequent/non-negligible.
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Techniques for Mining MD 
Associations

• Search for frequent k-predicate set:
– Example: {age, occupation, buys} is a 3-predicate set
– Techniques can be categorized by how age are treated

1. Using static discretization of quantitative attributes
– Quantitative attributes are statically discretized by using 

predefined concept hierarchies

2. Quantitative association rules
– Quantitative attributes are dynamically discretized into 

“bins”based on the distribution of the data

3. Distance-based association rules
– This is a dynamic discretization process that considers the 

distance between data points
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Static Discretization of 
Quantitative Attributes

• Discretized prior to mining using concept hierarchy.

• Numeric values are replaced by ranges.

• In relational database, finding all frequent k-predicate sets will 

require k or k+1 table scans.

• Data cube is well suited for mining.

• The cells of an n-dimensional 

cuboid correspond to the 

predicate sets.

• Mining from data cubes

can be much faster.

(income)(age)

()

(buys)

(age, income) (age,buys) (income,buys)

(age,income,buys)

Quantitative Association 
Rules

• Numeric attributes are dynamically discretized
– Such that the confidence or compactness of the rules mined is 

maximized

• 2-D quantitative association rules: Aquan1 ∧ Aquan2 ⇒ Acat

• Cluster “adjacent”
association rules
to form general 
rules using a 2-D 
grid

• Example

age(X,”30-34”) ∧∧∧∧ income(X,”24K -
48K”) 

⇒⇒⇒⇒ buys(X,”high resolution TV”)
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Mining Distance-based 
Association Rules

• Binning methods do not capture the semantics of interval 
data

• Distance-based partitioning, more meaningful 
discretization considering:
– density/number of points in an interval
– “closeness” of points in an interval

Price($)
Equi-width
(width $10)

Equi-depth
(depth 2)

Distance-
based

7 [0,10] [7,20] [7,7]
20 [11,20] [22,50] [20,22]
22 [21,30] [51,53] [50,53]
50 [31,40]
51 [41,50]
53 [51,60]
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Interestingness Measure: 
Correlations (Lift)

• play basketball ⇒ eat cereal [40%, 66.7%]  is misleading

– The overall percentage of students eating cereal is 75% which is higher 

than 66.7%.

• play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate, 

although with lower support and confidence

• Measure of dependent/correlated events: lift

500020003000Sum(col.)

12502501000Not cereal

375017502000Cereal

Sum (row)Not basketballBasketbal
l

,

( )

( ) ( )A B

P A B
corr

P A P B

∪=
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Mining Association Rules in 
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean) 

association rules in transactional databases

• Mining various kinds of association/correlation rules 

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary
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Constraint-based Data 
Mining

• Finding all the patterns in a database 
autonomously? — unrealistic!
– The patterns could be too many but not focused!

• Data mining should be an interactive process 
– User directs what to be mined using a data mining 

query language (or a graphical user interface)

• Constraint-based mining
– User flexibility: provides constraints on what to be 

mined
– System optimization: explores such constraints for 

efficient mining—constraint-based mining
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Constraints in Data Mining

• Knowledge type constraint: 
– classification, association, etc.

• Data constraint — using SQL-like queries 
– find product pairs sold together in stores in Vancouver in Dec.’00

• Dimension/level constraint
– in relevance to region, price, brand, customer category

• Rule (or pattern) constraint
– small sales (price  < $10) triggers big sales (sum > $200)

• Interestingness constraint
– strong rules: min_support ≥ 3%, min_confidence ≥ 60%
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Constrained Mining vs. Constraint-
Based Search

• Constrained mining vs. constraint-based search/reasoning
– Both are aimed at reducing search space
– Finding all patterns satisfying constraints vs. finding some (or 

one) answer in constraint-based search in AI
– Constraint-pushing vs. heuristic search
– It is an interesting research problem on how to integrate them

• Constrained mining vs. query processing in DBMS
– Database query processing requires to find all
– Constrained pattern mining shares a similar philosophy as 

pushing selections deeply in query processing
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Constrained Frequent Pattern Mining: 
A Mining Query Optimization Problem

• Given a frequent pattern mining query with a set of constraints C, 
the algorithm should be
– sound: it only finds frequent sets that satisfy the given 

constraints C
– complete: all frequent sets satisfying the given constraints C are 

found
• A naïve solution

– First find all frequent sets, and then test them for constraint 
satisfaction

• More efficient approaches:
– Analyze the properties of constraints comprehensively 
– Push them as deeply as possible inside the frequent pattern 

computation.

CS590D:  Data Mining
Prof. Chris Clifton

February 1, 2005
Association Rules
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Anti-Monotonicity in Constraint-
Based Mining

• Anti-monotonicity
– When an itemset S violates the constraint, 

so does any of its superset 

– sum(S.Price) ≤ v is anti-monotone

– sum(S.Price) ≥ v is not anti-monotone

• Example. C: range(S.profit) ≤ 15 is anti-
monotone
– Itemset ab violates C

– So does every superset of ab

TransactionTID

a, b, c, d, f10

b, c, d, f, g, h20

a, c, d, e, f30

c, e, f, g40

TDB (min_sup=2)

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem

68

Which Constraints Are Anti-
Monotone?

nosupport(S) ≤≤≤≤ ξξξξ

norange(S) ≥≥≥≥ v

nosum(S) ≥≥≥≥ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

nocount(S) ≥≥≥≥ v

nomax(S) ≥≥≥≥ v

yesmax(S) ≤≤≤≤ v
yesmin(S) ≥≥≥≥ v

nomin(S) ≤≤≤≤ v
yesS ⊆⊆⊆⊆ V

noS ⊇⊇⊇⊇ V

yessupport(S) ≥≥≥≥ ξξξξ
convertibleavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====,  ≤≤≤≤,  ≥≥≥≥ }

yesrange(S) ≤≤≤≤ v

yessum(S) ≤≤≤≤ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

yes count(S) ≤≤≤≤ v

Nov ∈∈∈∈ S

AntimonotoneConstraint



34

CS590D 69

Monotonicity in Constraint-
Based Mining

• Monotonicity

– When an intemset S satisfies the 
constraint, so does any of its superset 

– sum(S.Price) ≥ v is monotone

– min(S.Price) ≤ v  is monotone

• Example. C: range(S.profit) ≥ 15
– Itemset ab satisfies C

– So does every superset of ab

TransactionTID

a, b, c, d, f10

b, c, d, f, g, h20

a, c, d, e, f30

c, e, f, g40

TDB (min_sup=2)

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem
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Which Constraints Are 
Monotone?

yessupport(S) ≤≤≤≤ ξξξξ

yesrange(S) ≥≥≥≥ v

yessum(S) ≥≥≥≥ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

yescount(S) ≥≥≥≥ v

yesmax(S) ≥≥≥≥ v

nomax(S) ≤≤≤≤ v
nomin(S) ≥≥≥≥ v

yesmin(S) ≤≤≤≤ v
noS ⊆⊆⊆⊆ V

yesS ⊇⊇⊇⊇ V

nosupport(S) ≥≥≥≥ ξξξξ
convertibleavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====,  ≤≤≤≤,  ≥≥≥≥ }

norange(S) ≤≤≤≤ v

nosum(S) ≤≤≤≤ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

nocount(S) ≤≤≤≤ v

yesv ∈∈∈∈ S
MonotoneConstraint
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Succinctness

• Succinctness:

– Given A1, the set of items satisfying a succinctness constraint C, 

then any set S satisfying C is based on A1 , i.e., S contains a 

subset belonging to A1

– Idea: Without looking at the transaction database, whether an 
itemset S satisfies constraint C can be determined based on the 

selection of items

– min(S.Price) ≤ v is succinct

– sum(S.Price) ≥ v is not succinct

• Optimization: If C is succinct, C is pre-counting pushable

72

Which Constraints Are 
Succinct?

nosupport(S) ≤≤≤≤ ξξξξ

norange(S) ≥≥≥≥ v

nosum(S) ≥≥≥≥ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

weaklycount(S) ≥≥≥≥ v

yesmax(S) ≥≥≥≥ v

yesmax(S) ≤≤≤≤ v
yesmin(S) ≥≥≥≥ v

yesmin(S) ≤≤≤≤ v

yesS ⊆⊆⊆⊆ V

yesS ⊇⊇⊇⊇ V

nosupport(S) ≥≥≥≥ ξξξξ
noavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====,  ≤≤≤≤,  ≥≥≥≥ }

norange(S) ≤≤≤≤ v

nosum(S) ≤≤≤≤ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

weaklycount(S) ≤≤≤≤ v

yesv ∈∈∈∈ S
SuccinctConstraint
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The Apriori Algorithm —
Example

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Naïve Algorithm: Apriori + 
Constraint 

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint: 

Sum{S.price < 5}
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The Constrained Apriori Algorithm: Push an 
Anti-monotone Constraint Deep

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint: 

Sum{S.price < 5}
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The Constrained Apriori Algorithm: 
Push a Succinct Constraint Deep

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint: 

min{S.price <= 1 }
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Converting “Tough”
Constraints

• Convert tough constraints into anti-
monotone or monotone by properly 
ordering items

• Examine C: avg(S.profit) ≥≥≥≥ 25
– Order items in value-descending order

• <a, f, g, d, b, h, c, e>

– If an itemset afb violates C

• So does afbh, afb*

• It becomes anti-monotone!

TransactionTID

a, b, c, d, f10

b, c, d, f, g, h20

a, c, d, e, f30

c, e, f, g40

TDB (min_sup=2)

-10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem
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Convertible Constraints

• Let R be an order of items

• Convertible anti-monotone
– If an itemset S violates a constraint C, so does every 

itemset having S as a prefix w.r.t. R

– Ex. avg(S) ≥≥≥≥ v w.r.t. item value descending order

• Convertible monotone
– If an itemset S satisfies constraint C, so does every 

itemset having S as a prefix w.r.t. R

– Ex. avg(S) ≤≤≤≤ v w.r.t. item value descending order
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Strongly Convertible 
Constraints

• avg(X) ≥≥≥≥ 25 is convertible anti-monotone w.r.t. 
item value descending order R: <a, f, g, d, b, h, 
c, e>
– If an itemset af violates a constraint C, so 

does every itemset with af as prefix, such as 
afd

• avg(X) ≥≥≥≥ 25 is convertible monotone w.r.t. item 
value ascending order R-1: <e, c, h, b, d, g, f, a>
– If an itemset d satisfies a constraint C, so 

does itemsets df and dfa, which having d as 
a prefix

• Thus, avg(X) ≥≥≥≥ 25 is strongly convertible -10h

20g

30f

-30e

10d

-20c

0b

40a

ProfitItem
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What Constraints Are Convertible?

……

NoNoYes
sum(S) ≥≥≥≥ v (items could be of any 

value, v ≤≤≤≤ 0)

NoYesNo
sum(S) ≥≥≥≥ v (items could be of any 

value, v ≥≥≥≥ 0)

NoYesNo
sum(S) ≤≤≤≤ v (items could be of any 

value, v ≤≤≤≤ 0)

NoNoYes
sum(S) ≤≤≤≤ v (items could be of any 

value, v ≥≥≥≥ 0)

YesYesYesmedian(S) ≤≤≤≤ , ≥≥≥≥ v

YesYesYesavg(S) ≤≤≤≤ , ≥≥≥≥ v

Strongly 
convertible

Convertible 
monotone

Convertible 
anti-monotoneConstraint
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Combing Them Together—A 
General Picture

noyesnosupport(S) ≤≤≤≤ ξξξξ

noyesnorange(S) ≥≥≥≥ v

noyesnosum(S) ≥≥≥≥ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

weaklyyesnocount(S) ≥≥≥≥ v

yesyesnomax(S) ≥≥≥≥ v

yesnoyesmax(S) ≤≤≤≤ v
yesnoyesmin(S) ≥≥≥≥ v

yesyesnomin(S) ≤≤≤≤ v
yesnoyesS ⊆⊆⊆⊆ V

yesyesnoS ⊇⊇⊇⊇ V

nonoyessupport(S) ≥≥≥≥ ξξξξ
noconvertibleconvertibleavg(S) θθθθ v, θθθθ ∈∈∈∈ { ====,  ≤≤≤≤,  ≥≥≥≥ }

nonoyesrange(S) ≤≤≤≤ v

nonoyessum(S) ≤≤≤≤ v ( a  ∈∈∈∈ S, a ≥≥≥≥ 0 )

weaklynoyes count(S) ≤≤≤≤ v

yesyesnov ∈∈∈∈ S
SuccinctMonotoneAntimonotoneConstraint
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Classification of Constraints

Convertible
anti-monotone

Convertible
monotone

Strongly
convertible

Inconvertible

Succinct

Antimonotone
Monotone
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Mining With Convertible 
Constraints

• C: avg(S.profit) ≥≥≥≥ 25
• List of items in every transaction in value 

descending order R: 
<a, f, g, d, b, h, c, e>
– C is convertible anti-monotone w.r.t. R

• Scan transaction DB once
– remove infrequent items

• Item h in transaction 40 is dropped
– Itemsets a and f are good

TransactionTID

a, f, d, b, c10

f, g, d, b, c20

a, f, d, c, e30

f, g, h, c, e40

TDB (min_sup=2)

-10h

20g

10d

30f

-30e

-20c

0b

40a

ProfitItem

CS590D

Can Apriori Handle Convertible 
Constraint?

• A convertible, not monotone nor anti-
monotone nor succinct constraint cannot 
be pushed deep into the an Apriori 
mining algorithm
– Within the level wise framework, no direct 

pruning based on the constraint can be 
made

– Itemset df violates constraint C: avg(X)>=25
– Since adf satisfies C, Apriori needs df to 

assemble adf, df cannot be pruned
• But it can be pushed into frequent-

pattern growth framework!

-10h

20g

30f

-30e

10d

-20c

0b

40a

ValueItem
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Mining With Convertible 
Constraints

• C: avg(X)>=25, min_sup=2

• List items in every transaction in value descending order R: 
<a, f, g, d, b, h, c, e>

– C is convertible anti-monotone w.r.t. R

• Scan TDB once

– remove infrequent items

• Item h is dropped

– Itemsets a and f are good, …

• Projection-based mining

– Imposing an appropriate order on item projection

– Many tough constraints can be converted into (anti)-
monotone

TransactionTID

a, f, d, b, c10

f, g, d, b, c20

a, f, d, c, e30

f, g, h, c, e40

TDB (min_sup=2)

-10h

20g

10d

30f

-30e

-20c

0b

40a

ValueItem
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Handling Multiple Constraints

• Different constraints may require different or even 
conflicting item-ordering

• If there exists an order R s.t. both C1 and C2 are 
convertible w.r.t. R, then there is no conflict between the 
two convertible constraints

• If there exists conflict on order of items

– Try to satisfy one constraint first

– Then using the order for the other constraint to mine frequent 
itemsets in the corresponding projected database
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Mining Association Rules in 
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean) 

association rules in transactional databases

• Mining various kinds of association/correlation rules 

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary
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Sequence Databases and 
Sequential Pattern Analysis

• Transaction databases, time-series databases vs. sequence 

databases

• Frequent patterns vs. (frequent) sequential patterns 

• Applications of sequential pattern mining

– Customer shopping sequences: 

• First buy computer, then CD-ROM, and then digital camera, within 3 
months.

– Medical treatment, natural disasters (e.g., earthquakes), science & 
engineering processes, stocks and markets, etc.

– Telephone calling patterns, Weblog click streams

– DNA sequences and gene structures
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What Is Sequential Pattern 
Mining?

• Given a set of sequences, find the 
complete set of frequent subsequences

A sequence database

A sequence : < (ef) (ab)  (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence 
of <<a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a 
sequential pattern

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID
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Challenges on Sequential 
Pattern Mining

• A huge number of possible sequential patterns 
are hidden in databases

• A mining algorithm should 
– find the complete set of patterns, when possible, 

satisfying the minimum support (frequency) threshold

– be highly efficient, scalable, involving only a small  
number of database scans

– be able to incorporate various kinds of user-specific 
constraints 
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Studies on Sequential Pattern 
Mining

• Concept introduction and an initial Apriori-like algorithm
– R. Agrawal & R. Srikant. “Mining sequential patterns,” ICDE’95

• GSP—An Apriori-based, influential mining method (developed at 
IBM Almaden)
– R. Srikant & R. Agrawal.  “Mining sequential patterns: Generalizations 

and performance improvements,” EDBT’96
• From sequential patterns to episodes (Apriori-like + constraints)

– H. Mannila, H. Toivonen & A.I. Verkamo. “Discovery of frequent 
episodes in event sequences,” Data Mining and Knowledge Discovery, 
1997

• Mining sequential patterns with constraints
– M.N. Garofalakis, R. Rastogi, K. Shim: SPIRIT: Sequential Pattern 

Mining with Regular Expression Constraints. VLDB 1999
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A Basic Property of Sequential 
Patterns: Apriori

• A basic property: Apriori (Agrawal & Sirkant’94) 
– If a sequence S is not frequent 
– Then none of the super-sequences of S is frequent
– E.g, <hb> is infrequent � so do <hab> and <(ah)b>

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID Given support threshold
min_sup =2 
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GSP—A Generalized Sequential 
Pattern Mining Algorithm

• GSP (Generalized Sequential Pattern) mining algorithm
– proposed by Agrawal and Srikant, EDBT’96

• Outline of the method
– Initially, every item in DB is a candidate of length-1
– for each level (i.e., sequences of length-k) do

• scan database to collect support count for each 
candidate sequence

• generate candidate length-(k+1) sequences from 
length-k frequent sequences using Apriori 

– repeat until no frequent sequence or no candidate 
can be found

• Major strength: Candidate pruning by Apriori

94

Finding Length-1 Sequential 
Patterns

• Examine GSP using an example 
• Initial candidates: all singleton 

sequences
– <a>, <b>, <c>, <d>, <e>, <f>, 

<g>, <h>
• Scan database once, count support 

for candidates

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2 

1<h>

1<g>

2<f>

3<e>

3<d>

4<c>

5<b>

3<a>

SupCand
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Generating Length-2 Candidates

<ff><fe><fd><fc><fb><fa><f>

<ef><ee><ed><ec><eb><ea><e>

<df><de><dd><dc><db><da><d>

<cf><ce><cd><cc><cb><ca><c>

<bf><be><bd><bc><bb><ba><b>

<af><ae><ad><ac><ab><aa><a>

<f><e><d><c><b><a>

<f>

<(ef)><e>

<(df)><(de)><d>

<(cf)><(ce)><(cd)><c>

<(bf)><(be)><(bd)><(bc)><b>

<(af)><(ae)><(ad)><(ac)><(ab)><a>

<f><e><d><c><b><a>

51 length-2
Candidates

Without Apriori 
property,
8*8+8*7/2=92 
candidates

Apriori prunes 
44.57% candidates
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Generating Length-3 Candidates and 
Finding Length-3 Patterns

• Generate Length-3 Candidates 
– Self-join length-2 sequential patterns

• Based on the Apriori property
• <ab>, <aa> and <ba> are all length-2 sequential 

patterns � <aba> is a length-3 candidate
• <(bd)>, <bb> and <db> are all length-2 sequential 

patterns � <(bd)b> is a length-3 candidate
– 46 candidates are generated

• Find Length-3 Sequential Patterns 
– Scan database once more, collect support counts for 

candidates
– 19 out of 46 candidates pass support threshold
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The GSP Mining Process

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. 
pat.

2nd scan: 51 cand. 19 length-2 seq. 
pat. 10 cand. not in DB at all

3rd scan: 46 cand. 19 length-3 seq. 
pat. 20 cand. not in DB at all

4th scan: 8 cand. 6 length-4 seq. 
pat. 

5th scan: 1 cand. 1 length-5 seq. 
pat. 

Cand. cannot pass 
sup. threshold

Cand. not in DB at all

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

min_sup =2 

CS590D 100

Bottlenecks of GSP

• A huge set of candidates could be generated

– 1,000 frequent length-1 sequences generate
length-2 candidates!

• Multiple scans of database in mining

• Real challenge: mining long sequential patterns

– An exponential number of short candidates

– A length-100 sequential pattern needs 1030

candidate sequences!

500,499,1
2

9991000
10001000 =×+×

30100
100

1

1012
100

≈−=







∑

=i i
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FreeSpan: Frequent Pattern-Projected 
Sequential Pattern Mining

• A divide-and-conquer approach

– Recursively project a sequence database into a set of smaller 
databases based on the current set of frequent patterns

– Mine each projected database to find its patterns
• J. Han J. Pei, B. Mortazavi-Asi, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan: 

Frequent pattern-projected sequential pattern mining. In KDD’00.

f_list: b:5, c:4, a:3, d:3, e:3, f:2

All seq. pat. can be divided into 6 subsets:
•Seq. pat. containing item f
•Those containing e but no f 
•Those containing d but no e nor f
•Those containing a but no d, e or f 
•Those containing c but no a, d, e or f
•Those containing only item b

Sequence Database SDB
< (bd) c b (ac) >
< (bf) (ce) b (fg) >
< (ah) (bf) a b f >
< (be) (ce) d >
< a (bd) b c b (ade) >
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From FreeSpan to PrefixSpan: 
Why?

• Freespan:
– Projection-based: No candidate sequence needs to 

be generated

– But, projection can be performed at any point in the 
sequence, and the projected sequences do will not 
shrink much

• PrefixSpan
– Projection-based 

– But only prefix-based projection: less projections and 
quickly shrinking sequences
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Prefix and Suffix (Projection)

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of 
sequence <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>

<(_c)(ac)d(cf)><ab>
<(_bc)(ac)d(cf)><aa>

<(abc)(ac)d(cf)><a>

Suffix (Prefix-Based Projection)Prefix
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Mining Sequential Patterns by 
Prefix Projections

• Step 1: find length-1 sequential patterns
– <a>, <b>, <c>, <d>, <e>, <f>

• Step 2: divide search space. The complete set of 
seq. pat. can be partitioned into 6 subsets:
– The ones having prefix <a>;
– The ones having prefix <b>;
– …
– The ones having prefix <f>

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID
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Finding Seq. Patterns with 
Prefix <a>

• Only need to consider projections w.r.t. <a>
– <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, 

<(_b)(df)cb>, <(_f)cbc>

• Find all the length-2 seq. pat. Having prefix <a>: <aa>, 
<ab>, <(ab)>, <ac>, <ad>, <af>
– Further partition into 6 subsets

• Having prefix <aa>;

• …

• Having prefix <af>
<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID
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Completeness of PrefixSpan

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

sequenceSID

SDB

Length-1 sequential patterns

<a>, <b>, <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>

<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

<b>-projected database …

Having prefix <b>

Having prefix <c>, …, <f>

… …
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Efficiency of PrefixSpan

• No candidate sequence needs to be generated

• Projected databases keep shrinking

• Major cost of PrefixSpan: constructing projected 

databases

– Can be improved by bi-level projections
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Optimization Techniques in 
PrefixSpan

• Physical projection vs. pseudo-projection 

– Pseudo-projection may reduce the effort of 

projection when the projected database fits in 

main memory

• Parallel projection vs. partition projection

– Partition projection may avoid the blowup of 

disk space
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Speed-up by Pseudo-
projection

• Major cost of PrefixSpan: projection
– Postfixes of sequences often appear 

repeatedly in recursive projected databases
• When (projected) database can be held in main 

memory, use pointers to form projections

– Pointer to the sequence

– Offset of the postfix

s=<a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: ( , 2)

s|<ab>: ( , 4)
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Pseudo-Projection vs. Physical 
Projection

• Pseudo-projection avoids physically copying 
postfixes
– Efficient in running time and space when database 

can be held in main memory

• However, it is not efficient when database 
cannot fit in main memory
– Disk-based random accessing is very costly

• Suggested Approach:
– Integration of physical and pseudo-projection
– Swapping to pseudo-projection when the data set fits 

in memory
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PrefixSpan Is Faster than GSP 
and FreeSpan
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Effect of Pseudo-Projection
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Mining Association Rules in 
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean) 

association rules in transactional databases

• Mining various kinds of association/correlation rules 

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary
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Associative Classification

• Mine association possible rules (PR) in form of 
condset � c
– Condset: a set of attribute-value pairs

– C: class label

• Build Classifier
– Organize rules according to decreasing precedence 

based on confidence and support

• B. Liu, W. Hsu & Y. Ma. Integrating classification and 
association rule mining. In KDD’98
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Spatial and Multi-Media Association: A 
Progressive Refinement Method

• Why progressive refinement?
– Mining operator can be expensive or cheap, fine or 

rough
– Trade speed with quality: step-by-step refinement.

• Superset coverage property: 
– Preserve all the positive answers—allow a positive 

false test but not a false negative test.

• Two- or multi-step mining:
– First apply rough/cheap operator (superset coverage)
– Then apply expensive algorithm on a substantially 

reduced candidate set (Koperski & Han, SSD’95).

119

Progressive Refinement 
Mining of Spatial Associations

• Hierarchy of spatial relationship:
– “g_close_to”: near_by, touch, intersect, contain, etc.
– First search for rough relationship and then refine it.

• Two-step mining of spatial association:
– Step 1: rough spatial computation (as a filter) 

• Using MBR or R-tree for rough estimation.

– Step2: Detailed spatial algorithm (as refinement)
• Apply only to those objects which have passed the rough 

spatial association test (no less than min_support)
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Correlations with color, spatial relationships, etc. 
From coarse to Fine Resolutionmining

Mining Multimedia 
Associations
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Further Evolution of 
PrefixSpan

• Closed- and max- sequential patterns

– Finding only the most meaningful (longest) sequential 

patterns

• Constraint-based sequential pattern growth

– Adding user-specific constraints

• From sequential patterns to structured patterns

– Beyond sequential patterns, mining structured 

patterns in XML documents
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Closed- and Max- Sequential 
Patterns

• A closed- sequential pattern is a frequent sequence s where there is 

no proper super-sequence of s sharing the same support count with 

s

• A max- sequential pattern is a sequential pattern p s.t. any proper 

super-pattern of p is not frequent
• Benefit of the notion of closed sequential patterns

– {<a1 a2 … a50>, <a1 a2 … a100>}, with min_sup = 1 
– There are 2100 sequential patterns, but only 2 are closed

• Similar benefits for the notion of max- sequential-patterns
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Methods for Mining Closed-
and Max- Sequential Patterns

• PrefixSpan or FreeSpan can be viewed as projection-

guided depth-first search

• For mining max- sequential patterns, any sequence 

which does not contain anything beyond the already 

discovered ones will be removed from the projected DB
– {<a1 a2 … a50>, <a1 a2 … a100>}, with min_sup = 1 
– If we have found a max-sequential pattern <a1 a2 …

a100>, nothing will be projected in any projected DB
• Similar ideas can be applied for mining closed-

sequential-patterns
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Constraint-Based Sequential 
Pattern Mining

• Constraint-based sequential pattern mining

– Constraints: User-specified, for focused mining of desired patterns

– How to explore efficient mining with constraints? — Optimization 

• Classification of constraints

– Anti-monotone: E.g., value_sum(S) < 150, min(S) > 10 

– Monotone: E.g., count (S) > 5, S ⊇ {PC, digital_camera}

– Succinct: E.g., length(S) ≥ 10, S � {Pentium, MS/Office, MS/Money} 

– Convertible:  E.g., value_avg(S) < 25, profit_sum (S) > 160, 
max(S)/avg(S) < 2, median(S) – min(S) > 5

– Inconvertible: E.g., avg(S) – median(S) = 0 
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Sequential Pattern Growth for 
Constraint-Based Mining

• Efficient mining with convertible constraints
– Not solvable by candidate generation-and-test methodology

– Easily push-able into the sequential pattern growth framework

• Example: push avg(S) < 25 in frequent pattern growth 
– project items in value (price/profit depending on mining semantics) 

ascending/descending order for sequential pattern growth

– Grow each pattern by sequential pattern growth 

– If  avg(current_pattern) � 25, toss the current_pattern
• Why?—future growths always make it bigger

• But why not candidate generation?—no structure or ordering in growth
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From Sequential Patterns to 
Structured Patterns

• Sets, sequences, trees and other structures

– Transaction DB: Sets of items 
• {{i1, i2, …, im}, …}

– Seq. DB: Sequences of sets: 
• {<{i1, i2}, …, {im, in, ik}>, …}

– Sets of Sequences: 
• {{<i1, i2>, …, <im, in, ik>}, …}

– Sets of trees (each element being a tree): 
• {t1, t2, …, tn}

• Applications:  Mining structured patterns in XML documents
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Mining Association Rules in 
Large Databases

• Association rule mining

• Algorithms for scalable mining of (single-dimensional Boolean) 

association rules in transactional databases

• Mining various kinds of association/correlation rules 

• Constraint-based association mining

• Sequential pattern mining

• Applications/extensions of frequent pattern mining

• Summary
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Frequent-Pattern Mining: 
Achievements

• Frequent pattern mining—an important task in data mining
• Frequent pattern mining methodology

– Candidate generation & test vs. projection-based (frequent-pattern 
growth)

– Vertical vs. horizontal format
– Various optimization methods: database partition, scan reduction, hash 

tree, sampling, border computation, clustering, etc.
• Related frequent-pattern mining algorithm: scope extension

– Mining closed frequent itemsets and max-patterns (e.g., MaxMiner, 
CLOSET, CHARM, etc.)

– Mining multi-level, multi-dimensional frequent patterns with flexible 
support constraints 

– Constraint pushing for mining optimization
– From frequent patterns to correlation and causality
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Frequent-Pattern Mining: 
Applications

• Related problems which need frequent pattern mining
– Association-based classification
– Iceberg cube computation
– Database compression by fascicles and frequent 

patterns
– Mining sequential patterns (GSP, PrefixSpan, 

SPADE, etc.)
– Mining partial periodicity, cyclic associations, etc.
– Mining frequent structures, trends, etc.

• Typical application examples
– Market-basket analysis, Weblog analysis, DNA 

mining, etc.
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Frequent-Pattern Mining: 
Research Problems

• Multi-dimensional gradient analysis: patterns regarding 
changes and differences 
– Not just counts—other measures, e.g., avg(profit)

• Mining top-k frequent patterns without support constraint

• Mining fault-tolerant associations
– “3 out of 4 courses excellent” leads to A in data mining

• Fascicles and database compression by frequent pattern 
mining

• Partial periodic patterns

• DNA sequence analysis and pattern classification
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