Al in NLP and Code Generation

Tianyi Zhang Nov 28, 2022

CS 57700: Natural Language Processing CS 59300: Human-Al Interaction

Tianyi Zhang

Assistant Professor of Computer Science

Interactive Intelligent Systems Lab

LWSN 3154H • tianyi@purdue.edu • https://tianyi-zhang.github.io/

Research Interests: HCI, SE, AI

In IIS, we develop interactive intelligent systems to:

- improve the productivity of programmers and domain experts
 - Interactive program synthesis and program repair
 - Knowledge acquisition from Stack Overflow
 - Interactive web scraping and data labeling for data scientists
- improve the robustness, transparency, and fairness of ML
 - Declarative testing and traffic scene generation for autonomous driving
 - Interactive model debugging for RNNs and transformers
 - Interactive visual analytics for detecting biases and Out-of-Distribution (OOD) errors

Natural Language Processing

Human-Human Communication

Human-Machine Communication

Natural Language Processing

NLP is a branch of artificial intelligence that concerns with **the interactions between computers and human languages**, in particular how to enable computers **analyze**, **understand**, and **generate** human languages in both written and spoken contexts.

Eliza (1964)

1 - 1								
1.1	\sim		~	\sim	m	\sim		~
vv			L.,	u				
•••		-	_	_	••••		_	

EEEEEE	LL	IIII	ZZZZZZ	AAA	AAA
EE	LL	ΙI	ZZ	AA	AA
EEEEE	LL	ΙI	ZZZ	AAAA	AAAA
EE	LL	ΙI	ZZ	AA	AA
EEEEEE	LLLLL	IIII	ZZZZZZ	AA	AA

Eliza is a mock Rogerian psychotherapist. The original program was described by Joseph Weizenbaum in 1966. This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you ? YOU: Men are all alike. ELIZA: What is the connection, do you suppose ? YOU: They're always bugging us about something or other. ELIZA: Can you think of a specific example ? YOU: Well, my boyfriend made me come here. ELIZA: Is it important to you that your boyfriend made you come here ? YOU: He says I'm depressed much of the time. ELIZA: I am sorry to hear that you are depressed. YOU: It's true. I am unhappy. ELIZA: Can you explain what made you unhappy ? YOU:

Lunar (1971)

Chemical analysis of rock samples from the moon

database

Natural Language Query

- Give me all analyses for Hydrogen in Sample 10046.
- In which samples has apatite been identified?

geologist

6

- What are the plag analyses for breccias?
- What is the average age of the basalts?

Apple Knowledge Navigator (1987)

NLP after 2010

Customer Service

×

ش Customer Service

What brings you here today?

GitHub Copilot: Your Al Pair Programmer

© OpenAI Microsoft

Galactica: A Language Model for Science

NLP History

- Symbolic NLP (1950s early 1990s)
 - Grammars, rules, ontologies, knowledge base, etc.
- Statistical NLP (1990s 2010s)
 - Learn from a text corpus
 - Hidden markov models, probabilistic grammars, TF-IDF, LDA, SVM, etc.
- Neural NLP (2010s present)
 - Deep neural networks and representation learning

Tasks and Applications in NLP

Understanding

- Sentiment analysis
- Speech recognition
- Topic modeling
- Text classification
- Natural language inference
- Semantic parsing
- Spam detection
- Named entity recognition
- Relation extraction
- etc.

Generation

- Chatbots
- Question answering
- Text summarization
- Image captioning
- Machine translation
- Natural language interfaces
- Code generation
- Text completion
- Creative writing
- etc.

• Text preprocessing

• Lowercase, tokenization, stop words removal, stemming, lemmatization

Original Word	After Stemming
program	program
program <mark>s</mark>	program
program <mark>med</mark>	program
programming	program

Chopping off suffixes based on rules

Original Word	After Lemmatization
is	be
are	be
better	good
programming	program

Reducing each word to its base form

• Part of Speech (POS) Tagging

- Applications of POS tagging
 - Named entity recognition, sentiment analysis, question answering, etc.

• Dependency Parsing

nsubj: nominal subject **dobj**: direct object

det: determiner **nmod**: nominal modifier **case**: prepositions, postpositions, and other case markers

• Dependency Parsing

S

- Text preprocessing
 - Lowercase, tokenization, stop words removal, stemming, lemmatization
- Part of Speech (POS) tagging
- Dependency parsing

- Commonly used in symbolic NLP
- Vectorization Commonly used in statistical and neural NLP

• Bag of Words

• Build a dictionary from a corpus and convert a sentence to an array of 0 and 1

S1: Without music life would be a mistake

S2: Radiohead are a great music band

	without	music	life	would	be	a	mistake	Radiohead	are	great	band
S1	1	1	1	1	1	1	1	0	0	0	0
\$ 2	0	1	0	0	0	1	0	1	1	1	1

• TF-IDF

- Term frequency: how likely to find a word in the corpus?
- Inverse document frequency: how unique is a word in the corpus?

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

tf_{x,y}: frequency of x in y df_x: number of documents containing x

N: total number of documents

	without	music	life	would	be	a	mistake	Radiohead	are	great	band
S1	0.3	0	0.3	0.3	0.3	0	0.3	0	0	0	0
S2	0	0	0	0	0	0	0	0.3	0.3	0.3	0.3

- Word embedding
 - Map words to a high-dimensional space where similar words are close to each other

Jun un per un rowards Da

• Learning word embeddings

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. Arxiv 2013.

- Language models (or contextualized word embeddings)
 - Build a vector for each word conditioned on its context

NLP Libraries and Pre-trained Models

- spaCy
- NLTK
- Stanford CoreNLP
- TextBlob
- Gensim
- Hugging Face

Semantic Parsing

• The task of converting a NL utterance to a logical form, e.g., SQL

Natural Language Query

database

geologist

Semantic Parsing

- Slot-filling systems
 - Rule-based intent detection
 - Template-based code generation
- Neural machine translation (Seq2Seq)
 - Encoder-decoder model architecture
 - Attention-based, e.g., transformers!

Shallow semantic parsing

Deep semantic parsing

Grammar-based Semantic Parsing

- Combinatory Categorical Grammar (CCG)
 - A lexicon and a set of grammar rules

A/B:f B:g	\Rightarrow	A: f(g)
$B:g A \backslash B:f$	\Rightarrow	A: f(g)

Simple functional application rules

A derivation tree of "Utah boarders Idaho"

Azaria et al. Instructable Intelligent Personal Agent. AAAI 2016.

CCG Semantic Parsing

• Combinatory Categorical Grammar (CCG)

• A lexicon and a set of grammar rules

Word	Syntactic Category	Logical Form
set	$((S/PP_StringV)/MutableField)$	(lambda x y (setFieldFromString x y))
to	PP_StringV/StringV	(lambda x x)
subject	FieldName	subject
send	S/InstanceName	(lambda × (send ×))
email	InstanceName	email
set	((S/PP_FieldVal)/MutableField)	(lambda x y (setFieldFromFieldVal x y))
to	PP_FieldVal/FieldVal	(lambda x x)

Azaria et al. Instructable Intelligent Personal Agent. AAAI 2016.

PCCG Semantic Parsing

- Extend CCG with a probabilistic model P(L,T|S)
 - A conditional distribution over possible (L, T) pairs for a given sentence S
- Parameterized by ${m heta}$

$$P(L,T|S;\bar{\theta}) = \frac{e^{\bar{f}(L,T,S)\cdot\bar{\theta}}}{\sum_{(L,T)} e^{\bar{f}(L,T,S)\cdot\bar{\theta}}} \qquad \arg\max_{L} P(L|S;\bar{\theta}) = \arg\max_{L} \sum_{T} P(L,T|S;\bar{\theta})$$

• Handle ambiguity in natural language

Azaria et al. Instructable Intelligent Personal Agent. AAAI 2016.

Neural-based Semantic Parsing

- Encoder: understand the meaning of the input sentence
- Decoder: generate the corresponding logic form

Relation-Aware SQL Generation

• Encode database schemas via a relation-aware transformer

Wang et al. RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers. ACL 2020.

Relation-Aware SQL Generation

- Tree-structured decoder
- Guided by SQL grammar
- Predict a derivation rule at a time, not a token

Wang et al. RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers. ACL 2020.