CS 57100(Artificial Intelligence)

1 Probability
Jasmine and Sarah compete in two different events at the Olympics. Jasmine and Sarah win the race with probability p_{1} and p_{2} respectively. Assuming independence, are these scenarios possible?
i) $\mathrm{P}($ nobody wins $)=\mathrm{P}$ (either one of them wins)
ii) P (nobody wins $)=\mathrm{P}($ either one of them wins $)=\mathrm{P}($ both win $)$

Soln Sketch:
$\mathrm{J}->$ Event Jasmine wins. $\quad=>\mathrm{P}(\mathrm{J})=\mathrm{p}_{1}$
$S->$ Event Sarah wins. $\quad=>P(S)=p_{2}$
Per i), P(Jasmine doesn't win and Sarah doesn't win) $=\mathrm{P}$ (Jasmine wins or Sarah wins)
$P\left(J^{C} \cap S^{C}\right)=P(J \cup S)$
$=>\left(1-p_{1}\right)\left(1-p_{2}\right)=p_{1}+p_{2}-p_{1} p_{2}\left(\right.$ If events A, B are independent, $\mathrm{A}^{\mathrm{C}}, \mathrm{B}^{\mathrm{C}}$ are independent too $)$ $=>1=2 p_{1}+2 p_{2}-2 p_{1} p_{2}$
$p_{1}=\frac{0.5-p_{2}}{1-p_{2}}$ with $0 \leq p_{1} \leq 1 ; 0 \leq p_{2} \leq 1$
Possible!
(1-2x-2y+2xy=0\{0 $1-x \leq 1\}\{0 \leq y \leq 1\}$

Per ii), $\mathrm{P}($ Jasmine doesn't win and Sarah doesn't win) $=\mathrm{P}$ (Jasmine wins or Sarah wins) $=\mathrm{P}$ (Jasmine wins and Sarah wins) $P\left(J^{C} \cap S^{C}\right)=P(J \cup S)=P(J \cap S)$
When you try pairwise solving the equations, you will end up with $p_{1}\left(1-p_{1}\right)=\frac{1}{2}$.
But per this quadratic equation, the roots(i.e. p_{1}) are notreal. Discriminant <0. Hence this scenario is not possible.
2.

Show that for any random variables A and B ,

$$
\operatorname{IfF_{A}}(x) \leq F_{B}(x), \text { then } P(A>x) \geq P(B>x)
$$

for any real x in their domain

Proof sketch:
$P(A>x)=1-P(A \leq x)=1-F_{A}(x) \geq 1-F_{B}(x)=1-P(Y \leq x)=P(Y>x)$

3. Linear Algebra

3.1. Determine whether the following matrix has an inverse without trying to compute the inverse. (Hint: Use determinant)
$\mathrm{A}=$

3	-2	1	0
5	0	2	0
2	-8	-1	0
0	7	0	1

sol) $\operatorname{det}(A)=-10$. A has an inverse.
3.2. Find eigenvalues and eigenvectors of the following matrix.
$B=$

3	-1
0	2

sol) $\operatorname{det}(\mathrm{B}-\lambda \mathrm{I})=(\lambda-3)(\lambda-2)=0$
$\lambda_{1}=3, \lambda_{2}=2$

For $\lambda_{1}=3$, we set eigenvector v_{1} as $\left[\begin{array}{ll}\mathrm{x}_{1} & \mathrm{y}_{1}\end{array}\right]^{\mathrm{T}}$, then $\left(\mathrm{B}-\lambda_{1} \mathrm{I}\right) \mathrm{v}_{1}=0 \rightarrow \mathrm{y}_{1}=0$
Thus, the eigenvector $\mathrm{v}_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$

For $\lambda_{2}=2$, we set eigenvector v_{2} as $\left[\mathrm{x}_{2} \mathrm{y}_{2}\right]^{\mathrm{T}}$, then $\left(\mathrm{B}-\lambda_{2} \mathrm{I}\right) \mathrm{v}_{2}=0 \rightarrow \mathrm{x}_{2}-\mathrm{y}_{2}=0$
Thus, the eigenvector $\mathrm{v}_{2}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$

5. Complexity Theory

Arrange the following functions by increasing order of growth(base here is 2):

$$
n^{0.5}, 2^{\log (n)}, \log (n!), \log (\log (n)), n!, 2^{2^{n}}, n \log (n), n^{-1},(\log (n))^{2}, 10000
$$

$$
\frac{1}{n}<10000<\log (\log (n))<(\log (n))^{2}<n^{0.5}<2^{\log (n)}<\log (n!)<n \log (n)<n!<2^{2^{n}}
$$

$\underline{\log (\mathrm{n}!)<\mathrm{n} \log (\mathrm{n}) \text { (see Stirling's Approximation) }}$
6.

Sol) n as the length of a grid \rightarrow solving the problem takes $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$
Setting n as the number of tiles \rightarrow we have $\operatorname{sqrt}(\mathrm{n}+1)$ as the length of a grid \rightarrow solving the problem takes $\mathrm{O}\left(\mathrm{c}^{\text {sqrt(}}\right.$ (+1$)$)

Still exponential

7. Convexity and Concavity

Find the convex and concave intervals for the following functions
4.1. $f(x)=3 x 3-18 x 2+12 x+8$
4.2. $f(x)=e x$
sol)
4.1. $f^{\prime}(x)=9 x^{2}-36 x+12$
$f^{\prime \prime}(x)=18 x-36$
We find $f^{\prime \prime}(x)=0$ where $x=2$. Since $f(x)$ goes to $+\infty$ as x goes to $+\infty$. Thus the function is convex after the inflection point, and concave before the inflection point.
Convex interval: $(2,+\infty)$, Concave interval: $(-\infty, 2)$
4.2. $f^{\prime}(x)=f^{\prime \prime}(x)=e^{x}$

There's no inflection point since there's no x value that makes $f^{\prime \prime}(x)=0$. Since $f^{\prime \prime}(x)>0$ for any points in the domain, the function itself is convex.
Convex interval: $(-\infty,+\infty)$, Concave interval: None

