
Usage-Based Schema Matching
Hazem Elmeleegy', Mourad Ouzzani2, and Ahmed Elmagarmid' 2

Department of Computer Science 2Cyber Center
Purdue University, West Lafayette, IN
{hazem,mourad,ake}@cs.purdue.edu

Abstract- Existing techniques for schema matching are
classified as either schema-based, instance-based, or a
combination of both. In this paper, we define a new class of
techniques, called usage-based schema matching. The idea is to
exploit information extracted from the query logs to find
correspondences between attributes in the schemas to be
matched. We propose methods to identify co-occurrence patterns
between attributes in addition to other features such as their use
in joins and with aggregate functions. Several scoring functions
are considered to measure the similarity of the extracted
features, and a genetic algorithm is employed to find the highest-
score mappings between the two schemas. Our technique is
suitable for matching schemas even when their attribute names
are opaque. It can further be combined with existing techniques
to obtain more accurate results. Our experimental study
demonstrates the effectiveness of the proposed approach and the
benefit of combining it with other existing approaches.

I. INTRODUCTION

Schema matching has long been one of the most important,
yet difficult, problems in the area of data integration. With the
exploding number of information systems, the need for
schema matching solutions is growing. In life sciences,
information integration is becoming a bottleneck limiting
what scientists can accomplish. Businesses are relying on
integration more than ever before. In disaster recovery
situations, several entities and authorities need to rapidly
exchange information. Schema matching is a key component
in all such applications. Moreover, many of today's
integration tasks have to cross country boundaries, thus
adding a new dimension to this vexing challenge.
The problem of schema matching is essentially to find

correspondences (matches) between the attributes of two
schemas. The set of generated matches is collectively referred
to as a mapping between the schemas. Much attention has
been paid to this problem in the literature, and many
techniques have been proposed, e.g., [7,10,11,12,12,13].
These techniques are fundamentally divided into two classes
based on the source of information they exploit to make their
matching decisions. On one hand, schema-based techniques
rely on the metadata available for the schemas in terms of
attribute names, descriptions, data types, domains, and
integrity constraints. Instance-based techniques, on the other
hand, rely on the characteristics of the data instances such as

This work was supported by Lilly Endowment, NSF-ITR 0428168,
and US DHS PURVAC.

their format, distribution, entropy, and correlation with
instances of other attributes. Many systems have also been
proposed to utilize a combination of those techniques [6,7,12].
The instance-based technique, proposed in [11], tackled the
problem of schema matching with opaque attribute (or
column) names, i.e. when attribute names are unreliable for
matching purposes. This is a very realistic case, especially
when matching multi-lingual schemas. However, the authors
only showed how their technique can match individual tables
and not complete schemas.
In this paper, we propose a new technique for schema

matching, which does not fall in either of the previous two
classes, but rather defines a new class of its own, which we
refer to as usage-based schema matching. The proposed
technique exploits the usage information of the attributes in
the query logs to find matches, in contrast to relying on the
schema information or the data instances. This may be the
only option for schema matching if the information needed by
the two other techniques is not available or not reliable
enough to achieve good matching quality. The proposed
technique first identifies co-occurrence patterns between
attributes and additional features, such as their use in joins and
with aggregate functions. Then, it employs a genetic
algorithm to find the highest-score mappings according to the
scoring function used to measure the similarity between the
features of the matching attributes.
Our technique is suitable for matching schemas even when

their attribute names are opaque or when they have different
layouts. It is applicable to match complete schemas, rather
than individual tables. In addition, our technique can be
combined with other matching techniques using the
combination methods proposed in the literature (e.g., [6]) to
obtain higher-quality matches. In this paper, we
experimentally verify the effectiveness of the usage-based
technique, and show that when combined with simple
matchers like a data type matcher or established matching
techniques like the Similarity Flooding algorithm [13], the
generated matches indeed reach high degrees of accuracy.
The paper makes the following contributions:

1. The description of a new class of techniques for matching
schemas based on the usage of their attributes in the query
logs. In particular, we describe details of two usage-based
matchers (SLUB and ELUB).

2. A prototype implementation of the proposed techniques,
which employs a genetic algorithm to find the highest score
mappings.

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 20 ICDE 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

3. An extensive experimental study showing the effectiveness
of the usage-based schema matching technique and the
benefit of combining it with other techniques, including the
Similarity Flooding algorithm especially when attribute
names are opaque.
In Section II, we discuss the related work. Section III

presents the example that will be used throughout the paper.
The usage based technique is described in Section IV, while
the implementation issues are discussed in Section V.
Experiments and their results are presented in Section VI, and
finally Section VII concludes the paper and suggests
directions for future work.

II. RELATED WORK

Schema matching has been extensively studied over the past
two decades (See [15] for a comprehensive literature survey
until 2001). Cupid [12] combines element-level and structure-
level schema-based techniques to perform schema matching.
Element-level techniques focus on the properties of each
attribute in isolation, while structure-level techniques consider
relationships between attributes. LSD [7] is an extensible
framework, which employs several schema-based and
instance-based matchers, and uses machine learning
approaches to train and combine them. COMA [6] is another
framework for combining matchers, providing several
strategies for aggregating their results. Madhavan et al. [12]
propose the use of a corpus of previously matched schemas to
match a pair of new schemas. Using a corpus of schemas is
also considered by He et al. [10]. However, their focus is on
deep web applications and they follow a holistic approach to
simultaneously find mappings between all the schemas of the
corpus. Kang et al. [11] propose using mutual information
between attributes to match tables of schemas with opaque
attribute names and data values. Similarity Flooding [13] is a
fixpoint computation algorithm for matching schema graphs,
aided by an attribute name matcher. All of these previous
works did not consider using the query logs for schema
matching. Therefore, our work can be seen as either
complementary to them as it can be combined with such
techniques within the same matching framework or the only
alternative if the information required by the previous
techniques is not available or unreliable.
Much work has been focused on generating more complex

types of mappings than finding simple one-to-one attribute
correspondences. The Clio system [1,9] generates SQL-like
mappings based on the attribute correspondences. iMap [5]
focuses on finding complex relations between attributes in
both schemas such as price=rate* (1+tax). More recently,
Bohannon et al. [2] introduced contextual schema matching,
in which a match between a pair of attributes is valid only
when certain conditions are met in the data instances. Warren
et al. [18] proposed a method to find the relation between
attributes in one schema and substrings of multiple attributes
in the second schema. We believe that this body of work can
benefit from our usage-based approach, since more evidence
about these complex relations can be found in the query logs.
Finally, the idea of analyzing query logs has been used

extensively in the area ofself-tuning databases (e.g. [3,4]).

III. THE BOOKSTORES EXAMPLE

As our motivating example, we consider a fictitious
company: AllBooks Inc. AllBooks mission is to provide
online access to bookstores all over the world. One of their
biggest challenges is how to match the schemas of the
numerous bookstores to their own schema; so that the
AllBooks web application can seamlessly forward queries to
and retrieve answers back from each bookstore. The schemas
of the bookstores have different structures, are written in
different languages, and, in many cases, the table and attribute
names are not easily interpretable. Moreover, the owners of
the bookstores were willing to share their schemas, but not to
provide labor for manual schema matching. AllBooks offered
to collect the schemas of the bookstores, and provide each of
them with a software tool that analyzes its query log such that
the output of the analysis is sent back to AllBooks to help in
the schema matching process. The rationale is to use a usage-
based schema matching technique whenever the schema-
based information is of low quality and cannot be relied on.
Fig. 1 shows an example of the schemas of two bookstores

(X-Books and Y-Books), that AllBooks had to deal with.
Although different in layout, the two schemas cover the same
information about the bookstore domain. In particular, they
cover information about books, book authors, customers, and
ordering history. The attribute names in the figure are shown
to be easily interpretable, only for illustration purposes. The
two schemas were derived from the TPC-W benchmark [16],
which gives the specifications for building an online
bookstore. The X-Books schema is a reduced version of the
TPC-W schema, while the Y-Books schema is a modified
version of the X-Books schema. We will be referring to this
example throughout our discussion.

IV. USAGE-BASED SCHEMA MATCHING

The goal of the usage-based schema matching technique is
to exploit similarities in the query patterns to match attributes,
which seem to play the same role in their respective databases.
We are not claiming that the query patterns in the same
domain will always be similar. However, like schema-based
techniques, which will only be effective when the attribute
names share some similarities, usage-based techniques will be
most effective when the query patterns are close to each other;
a requirement that is likely to be met in many situations. For
example, as in Section III, users of many bookstores are
expected to issue similar queries because the semantics of
these queries is entailed by the business activities rather than
by the specifics of the schema design. The same argument
applies to other domains like healthcare, finance, and
scientific databases.
Our proposed technique has two main phases: feature

extraction and matching. The feature extraction phase collects
information from the query logs characterizing the attributes'
roles and their interrelationships. The matching phase
examines several potential mappings, and assigns a score for

21

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

(a) X-Books Schema

Fig. 1 Schemas of the bookstores example

each one of them. The scores are based on how well the
features of the corresponding attributes match. The matching
phase terminates by reporting the highest-score mapping (or
mappings).

A. Feature extraction

During the feature extraction phase, the query log of each
schema is scanned to collect both structure-level and element-
level features. The structure-level features are used by a
Structure-Level Usage-Based matcher (SLUB), whereas the
element-level features are used by an Element-Level Usage-
Based matcher (ELUB).

1) Structure-level features: The structure-level features
capture the usage relationships between attributes of the same
schema. An attribute A appearing in a query Q would
normally have a role in defining Q's answer. A can be part of
the answer (A occurs in the select clause), or it can have a
filtering role (A appears in the where or having clauses), a
grouping role (A occurs in the group by clause), or an
ordering role (A occurs in the order by clause). Furthermore,
if two attributes co-occur in the same query, they potentially
have a usage relationship whose type is defined by the role of
each of them in defining the query's answer. However, in
certain complex queries, we may not consider them to be
related, as will be described shortly.
Since we are considering four possible roles for the

attributes, this results in 16 different types of possible
relationships. The relationship types are referred to as select-
select, select-where, select-groupby, select-orderby, where-
select, etc. Note that with this naming convention, the term
"where" is used to represent both the where and having
clauses.
Based on the 16 types of relationships, we build 16 graphs

GI(V,E1), I E [1,16], where V represents the set of attributes
and El represents the set of relationships of the Ith type
between the attributes. The weights on the edges of the graph
are proportional to the frequency of occurrence of their

corresponding relationship in the query log. They are
calculated as follows. All weights are initially zero. For each
query in the query log, all the relationships between the
query's attributes are identified, and the weights of their
corresponding edges in the graphs are incremented by one.
After scanning the whole query log, all the weights in the
graphs are normalized by dividing each of them by the largest
weight in its own graph. This final normalization step ensures
that the graphs' weights are independent of the size of the
query log.

If we denote the adjacency matrix of GI(V,E1) by a,, then we
only need to maintain the lower triangular matrix of a,, I E
[1,16], since the upper triangular matrices can be induced. For
example, the upper triangular matrix for the select-select
graph is identical to the transpose of its own lower triangular
matrix. Also, the upper triangular matrix for the select-where
graph is identical to the transpose of the lower triangular
matrix for the where-select graph and vice versa.
We now describe the three classes of queries we consider,

and how to identify the usage relationships in each of them:
1. SPJGO: Single-block Select-Project-Join queries with

optional grouping and/or ordering.
2. SPJGO-UEI: SPJGO queries with union, except and/or

intersect.
3. SPJGO-N: SPJGO queries with nested subqueries.
For SPJGO queries, the identification process is

straightforward. Each pair of attributes in the query has a
relationship whose type depends on the two clauses where
each of them occurs. For SPJGO-UEI queries, relationships
are identified separately for each subquery because the
attributes in one subquery do not affect the result of another
subquery. Finally, for the SPJGO-N queries, relationships are
first identified separately for each block, i.e., the blocks of the
outer query and each inner subquery. Then, more relationships
are identified between attributes occurring in different blocks.
In particular, if the inner subquery is in the where or having
clauses of the outer query, then its attributes occurring in the
select, where and having clauses have a direct filtering role

22

(b) Y-Books Schema

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

in the result of the outer query, and therefore they are
considered to be related to all the attributes occurring in the
outer query as if they were occurring in its own where clause.
This is unlike attributes occurring in the group by and order
by clauses of the inner subquery, which do not have any direct
role in the result of the outer query. If the inner subquery is in
the from clause of the outer query, we follow the same
strategy except that the attributes occurring in the select
clause of the inner subquery are not considered to be related to
those of the outer query.
Note that equivalent queries, having different query forms,

may exist in the query logs of both schemas. If the extracted
features from these forms are significantly different, the
matching quality would be negatively affected. However, the
following example shows how the fine-grained usage
relationships we identify are mostly preserved across different
query forms.
Example 4.1 This example shows three equivalent queries on
the X-Books schema for finding book titles whose author's
last name is 'Gray'.
Q: select I-TITLE from Item, Author

where I_A_ID=A_ID and A_LNAME='Gray'

Q2: select I-TITLE from Item
where I_A_ID in(select A-ID from Author

where A_LNAME='Gray')

Q3: select I-TITLE
from Item, (select A-ID from Author

where A_LNAME='Gray')
where I_A_ID=A_ID

TABLE I. CONTRIBUTION OF THE QUERIES OF EXAMPLE 4.1 TO THE SELECT-
WHERE RELATIONSHIP TYPE

select-where A-ID A_LNAME I_A_ID I-TITLE
A_ ID - Q2,Q3,Q4 | |

A_LNAME
I_A_ID
I_TITLE Q],Q2,Q3 Q],Q2,Q3 Q],Q2,Q3, Q4

The identified relationships (or contributions) of the above
three queries to the select-where relationship type are shown
in Table I. The three contributions are almost identical except
that the relationship between A-ID and A_LNAME is identified
for Q2 and Q3 because it occurs in their subqueries, but not
for Qi. While this discrepancy is not considered to be large,
there are cases where the discrepancy between the
contributions of two equivalent queries is larger. Consider the
following two queries Q4a and Q4b, which use a parameter
@1 i st to together perform the same task as any of Qi, Q2 or
Q3.
Q4a: @list = select A-ID from Author

where A_LNAME='Gray'
Q4b: select I-TITLE from Item

where I_A_ID in @list

The contribution of Q4a and Q4b (collectively referred to as
Q4) is shown in Table I. It has three differences from that of
Qi and two differences from that of Q2 and Q3. One
approach to reduce this discrepancy is to identify relationships
at the transaction-level. That is to find queries belonging to

the same transaction and relate their attributes together. In this
example, Q4a and Q4b can be considered to be in the same
transaction. We will then determine that I-TITLE is part of
the final result of the whole transaction and A_LNAME has a
filtering role in it, so the two attributes should have the select-
where relationship. Currently, our implementation does not
take transactions into account. X

2) Element-level features: Element-level features relate to the
way each attribute is used in the query log regardless of the
other attributes. For instance, some real-world schemas do not
specify which attributes are the primary keys and which ones
are the foreign keys. In such cases, the element-level feature
extractor infers that an attribute is potentially a key attribute
(primary or foreign) if it occurs in a join predicate. This
inference becomes unnecessary if the same information could
be directly extracted from the schema. Additionally, the
extractor collects information about the usage of attributes
with aggregate functions. We consider five such functions and
divide them into three equivalence classes: {count}, {min,
max} and { sum, avg}. For each attribute, we record whether it
was used or not with each of these three classes of aggregate
functions. A useful observation is that a potentially key
attribute is highly unlikely to match an attribute that is
aggregated with either sum or avg. It is also possible that the
extractor infers information about the data types of the
attributes based on the operations, functions, and literals they
are used with, or compared to, in the query logs. However,
since the data type information is typically available in the
schemas, it would be pointless to infer it from the query log.
Therefore in our experiments, we limited the element-level
usage-based features to the key and aggregate information
explained above.

B. Matching and scoring functions

The matching problem can be stated as follows. Given two
schemas SI and S2, where SI has n1 attributes {xl, X2...x, } and
S2 has n2 attributes {YI, Y2...Yn2}, and given the features
extracted for each of them; find a mapping m* from the
attributes of SI to those of S2, which gives the highest score
for a particular scoring function. Any mapping m should
provide the following information.

1. The number of matching attributes, denoted by k,
2. The identity of the km matching attributes from each

schema, denoted by {XPI, XP2... XPk } for SI and yp,
Yp2.YPk } for S2.

3. The actual matches connecting each of the km attributes in
SI to only one of the km attributes of S2, i.e., m(xp,)=yq, or
equivalently m(pi)=qj.

The mapping is called one-to-one mapping if nl=n2=km. It is
called onto mapping if nl=km and n2 > nl. Finally, it is called
partial mapping if km < min(nl,n2), which is the most general
case. The size of the space of all possible mappings in the

bymln(n1 ,n)

most general case is given by cC7n(nC,n2 km !
k1n =0

23

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

The challenge of formulating an effective scoring function
to compare between different mappings has been addressed in
[1]. The key idea is to match two tables by building a
complete graph for the attributes of each table, where the
weight on each edge equals the mutual information between
its end nodes. The table matching problem then reduces to
graph matching. The authors proposed two possible scoring
functions to measure the distance between a pair of graphs
given a certain mapping. In particular, they classified the
scoring functions into monotonic and non-monotonic in ki,
and they proposed an example for each class. Monotonic
functions are not suitable for automatically estimating the
correct number of mappings km. If kmt is not known and a
monotonic function is used, the matching algorithm will
conclude that either no attributes match (km =0), or that the
maximum number of attributes match (km =min(n1,n2)),
depending on the direction of monotonicity. Clearly, this is
not the desired behavior for the matching algorithm. Thus, if
the matching algorithm uses a monotonic scoring function, it
has to be provided with a user estimate for km . This way, it

will only consider mappings with km='= However, if it uses
a non-monotonic function, it might be able to automatically
estimate the correct value of ki,, as we will explain shortly.
We adapt the scoring functions proposed in [11] to fit our

context. Firstly, for the structure-level features, we have 16
pairs of graphs rather than one pair, so we assign a weight w,
for the graphs representing the usage relationship of the Ith

16

type, whereE wI 1. Secondly, the scoring functions are
1=1

adjusted to fall in the range [0,1] to make sure they are
comparable to each other when more than one matcher is
combined. Thirdly, for the same reason, the goal should be to
maximize all the scoring functions, rather than a mixture of
maximize and minimize.
We will now present the scoring functions used by the

SLUB and ELUB matchers. We denote the adjacency
matrices of the structure-level feature graphs of SI and S2 as a,
and b, respectively, I E [1,16].

Structure-level monotonic scoring function
16 W km km

fsu (m) 1 - -(a[P][Pi] b[m(p)][m(p)])2 (1)
1=l 1 i=1 j=1

This function uses the Euclidean distance to measure the
dissimilarity between the 16 feature graphs of SI and their
corresponding graphs of S2 given a certain mapping m.
Obviously, as km increases, the dissimilarity can potentially
increase, and consequently the score decreases. Therefore,
when the estimate km is given to the matcher, all occurrences

of km in (1) should be replaced by km. The variable r1 is an

upper bound to the value of the square root, which guarantees
that the score does not exceed 1. Since the elements of a, and
b, are normalized, i.e., they are less than or equal to 1, the

2upper limit for the summation under the square root is km .
Since a, and b, represent sparse graphs, a tighter upper bound
for that summation can be (tll + t12)2, where tl, and t12 are the

sums of nonzero elements in a, and b, respectively. Therefore
r1 is given by min(km, t[i + tl) .

Structure-level non-monotonic scoring function

(2),
16 W km km

mu(m) =y I yE lij (m)
1=1 r, i=l j=i

where

T1ij() , a,[pi][pj] =Oand b1[m(pi)][m(pj)] =0
P (1-aofmli(a,[ip] [pjb]-b [m(pi)][m(pj)]|), otherwise

This function uses the absolute difference between the
corresponding elements in a, and b, given a certain mapping m
to measure the dissimilarity between the graphs. When both
elements are zero (no edge in both graphs), nothing is
contributed to the score. However, if at least one of them is
non-zero, then the mapping is either rewarded or penalized
according to the control variable alij. To explain how alij is
calculated, let /ij be the value multiplied by alij in (3), which
represents the dissimilarity between an element in a, and its
corresponding element in bl. If we consider the distribution of
,81ij across all possible mappings, we may expect that the value
of Aij for m* (call it /3*1i) is among the smallest values in this
distribution (since m * is expected to minimize the
dissimilarity between a, and bl). Therefore if f31,ij is the value
of the g-quantile of fij, for some small value g (e.g.,
ge [0.1,0.3]), then /i*Sij should still be smaller than fl1ij.
Consequently, if we set alij to 1l gli/, the value of 1lij(m*) will
be positive for most combinations of 1, i and j, and therefore
m * is expected to be rewarded the most among other
mappings. Additionally, if any mapping m has a value for km
greater than the correct value, it will have to make wrong
matches between elements of a, and b, whose /31ij is expected
to be greater than fi glij and therefore the value of iKij will be
negative and m will be penalized. Similarly, if a mapping m
has a value for km less than the correct value, it will not be as
rewarded as m*. This way, a matcher using a non-monotonic
scoring function can estimate the correct km.
The drawback of this technique is that when the graphs

being matched are not very close to each other, the value of
/3*Iij can be greater than fi# lij in many cases, which results in
many false positives and false negatives in the produced
matches. In [11], the authors assumed that the value
corresponding to Aij in their problem setting, which they
called the normal distance, is uniformly distributed.
Therefore, they used the average of Aij to calculate their
control variable a. However, using the average can result in
poor results if the distribution of Aij is skewed. To address this
issue, we use quantiles instead of average. Furthermore, they
used a single value a irrespective of which element in the
graph's adjacency matrix is being considered, while we
calculate a different value alij for each graph type and
combination of i and j, which gives a higher accuracy.
The role of r1 in (2) is similar to its role in (1). It guarantees

that the score does not exceed 1, being an upper limit for the
innermost two summations in (2). Observing from (3) that the
maximum value for]lij(m) is 1, then based on an analysis

24

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

similar to that used for (1), r1 is calculated as
min([min(n1,n2)]2, c11+c12), where cl, and C12 are the number of
nonzero elements in a, and b, respectively. Note that
min(nl,n2) is used instead of km so that r1 does not change as
the mapping changes.

Before considering the scoring functions for the ELUB
matcher, we first show how we calculate a score Scoreeu for a
matching pair of attributes from Si and S2 respectively, based
on their element-level features. Table II shows a simple
feature compatibility matrix, which contrasts the features of
the first attribute (rows) to those of the second one (columns).
Scoreeu is initially zero. If both attributes have the same
feature, it is incremented by 1/4. If they have contradicting
features, it is decremented by 1. Scoreeu never exceeds 1.

TABLE 11. ELEMENT-LEVEL USAGE-BASED FEATURE
COMPATIBILITY MATRIX

key
count

mn, max

sum, avg

key count mn, max sum, a
1/4 0 0 -1
0 1/4 0 0
0 0 1/4 0
1 0 0 1/4

We now consider the monotonic and non-monotonic scoring
functions used by the ELUB matcher.

Element-level monotonic scoring function

fe7(m) = maxKO, km
- (1- Scoreeu(pi,m(pi))) (4)

This function calculates the dissimilarity between pairs of
matching attributes in m using Scoreeuw It ensures that the
score is non-negative, and does not exceed 1.

Element-level non-monotonic scoring function

fenu (m) = max, km L(1 - ai (1 - Scoreeu(Pi, m(Pi)))) (5)

This function uses the control variable ai in the same way as
in (3), where /j, here (l-Scoreeu(pi,m(pi))), represents the
dissimilarity between a pair of attributes. It also ensures that
the score is non-negative and does not exceed 1.

To be resilient to the differences in schema layouts, the
matching phase, which uses the scoring function we have
discussed so far, is performed in two steps. In the first step,
only non-foreign-key attributes are matched, while foreign key
attributes are totally ignored. In the second step, foreign keys
are matched, while ensuring that the matches obtained in the
first step are left unchanged. The details of how the two steps
are implemented will be explained in Section V. To see the
intuition for such two steps, consider a group of non-foreign-
key attributes that are frequently queried together. Moreover,
they exist in the same table in SI, but in different tables in S2.
The two-step method, we described, will ensure that the
matching of these attributes will not rely on their relationship
with any foreign keys, which may or may not exist in the

queries depending on the schema layout. For example,
attributes I-TITLE and I_SUBJECT exist in Item table in the
X-Books schema, but in Item and Subject tables
respectively in the Y-Books schema. In our implementation,
we use a conservative approach, where the attributes ignored
in the first step are those which only appear in join predicates,
rather than any general foreign key.

V. IMPLEMENTATION

For feature extraction, we used a free SQL parser [19]. Any
other parser can be used as well. For the matching phase,
since the space of all possible mappings is very large and an
exhaustive search is too expensive, we implemented a genetic
algorithm to find the optimal mapping, as an example of
heuristic optimization methods. Other methods are also
applicable. This section gives the details of the search
algorithm and how several matchers can be combined together
including SLUB, ELUB, and non-usage-based matchers.

A. Genetic search algorithm

Genetic algorithms represent an approximate method for
solving optimization problems [14]. In our search algorithm,
each chromosome (or candidate solution) represents a possible
mapping. Hence, all mappings should have a uniform
representation regardless of the number of matches or the
identity of matched attributes. For this purpose, we introduce
the notion of dummy attributes that are added to each of SI
and S2, such that they both end up with the same number of
attributes n'. Thus, each mapping will contain precisely n'
matches connecting all attributes in both schemas. However, a
match is considered a real match only if it does not involve
dummy attributes. A mapping can now be uniformly
represented as an ordering of the n' attributes of S2 in the form
of (YP1 YP2... YP.) where the real matches are of the form
m(i)=pi, iE [1,n'] and both xi and yp, are non-dummy attributes.
The number of dummy attributes to be added depends on the

scoring function. For a monotonic function, where the
estimate km is given to the algorithm, then exactly n2- km and
nr-km dummy attributes are added to SI and S2 respectively,
leading to n'=nl+n2- km This guarantees that the generated
mappings will contain at least km real matches (in case all
dummy attributes match to non-dummy attributes). However,
since the monotonic functions presented in Section IV-B are
all decreasing in ki, m* will have exactly km real matches.
For a non-monotonic scoring function, then km* is considered
to be zero, i.e., n2 and n1 dummy attributes are added to SI and
S2 respectively. Thus, the generated mappings may contain
any number of real matches in [0, min(n1,n2)], depending on
how many dummy attributes match to non-dummy attributes.
Since the scoring function is non-monotonic in km, m* may
also contain any number of real matches within the same
range.
In the scoring function, used as the fitness function of the

genetic algorithm, only the real matches in the mapping are

25

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

taken into account. Constraints are specified such that only
mappings containing some given matches are considered in
the search space. We use these constraints in the second step
of our matching phase, where the matches obtained for the
non-foreign-key attributes in the first step have to remain
fixed. The constraints are also used when the user has prior
information about some correct matches. We specify
constraints by dividing SI attributes into constrained and non-
constrained attributes. Each constrained SI attribute can only
match a certain S2 attribute, while unconstrained SI attributes
are permitted to match any of the remaining S2 attributes. The
stopping criterion we set is that the highest score encountered
remains unchanged for some fixed number of iterations,
N Iterations.
The backbone of our search algorithm is similar to any

genetic algorithm [14]. Its details are not shown here for the
lack of space. However, the specific algorithms used to
generate new mappings, make crossovers and make
mutations, all while ensuring that the generated mappings
satisfy the constraints, need more elaboration. To form the
initial population and introduce new immigrants, new
mappings are generated. The higher the score of these
mappings, the faster the search algorithm can converge.
Algorithm 1 is designed to fulfill this purpose. It is an iterative
algorithm which starts by matching a random SI attribute to a
random S2 attribute, to which it can match. Then, at each
iteration, it picks an unmatched SI attribute that is related to
those attributes previously matched in SI and matches it to
another unmatched S2 attribute that is also related to the
previously-matched attributes in S2. The pair of attributes are
selected such that (a) they are permitted to match and (b) their
two relations with their predecessors (previously-matched
attributes) are closest to each other compared to the
corresponding relations of any other pair of unmatched
attributes from SI and S2 respectively. This criterion ensures
the relatively high score desired for the generated mapping. If
no such pair is found, then any two random unmatched
attributes are selected, one from each schema, and matched
together, if they are permitted to match. This process
continues until all the n' attributes have been matched. Note
that if the structure-level features are not involved in the
matching phase (i.e., no graphs are involved), Algorithm 1
assumes that all the attributes are unrelated.
Because of the way the number of dummy attributes is

selected, all the mappings generated by Algorithm 1 will have
kin> k. .. When monotonic scoring functions are used, although
the best mapping should have km= k , mappings of
intermediate generations having km> k'm are kept in the
population if they have relatively high scores because they can
later result in finding better mappings having km= k (i.e.,
through mutations and crossovers).
Algorithm 2 is used to generate two child mappings, cl and

c2, from two parent mappings, ml and M2, after crossing them
over, while algorithm 3 generates a child mapping, c, from a
parent mapping, m, after mutating it.

Algorithm 1: Generate New Mapping (m)
Mi: set of matched Si attributes, ie [1,2]
Li: set of S2 attributes permitted to match xi, ie [1,n']
R1i: sum of edge weights from xi to all xje M1 averaged
over the 16 feature graphs of SI, ije [l,n'], i.j
R2.i: sum of edge weights from yi to all yje M2 averaged
over the 16 feature graphs of S2, ije [l,n'], i.j

1- MI=t }; MA2= };
2- for each iteration t
3- if IM1l=n'
4- return m;
5- Find an unmatched SI attribute xi and an unmatched

S2 attribute yjt such that yjtE Lit, RI it>O, R2,jt>0, IRI,it-
R2,jtl<IRi,u-R2,vI, U.it, V.jt, Xu0 MI, YvO M2;

6- if such pair (xit,yjt) does not exist
7- Let xit be any random unmatched SI attribute, yjt

be any random unmatched S2 attribute, yjtE Lit;
8- Let m(it)=jt;
9- Add xit to M1;
10- Addyjt to M2;
11- Remove yjt from Lu, u.it;
Algorithm 2: Make Crossover (ml, M2)

ci: the ith child mapping to be generated, ie [1,2]
1- Copy ml into cl;
2- Randomly divide cl into two parts;
3- Keep the first part of cl unchanged;
4- For the second part, keep the matches for the

constrained SI attributes unchanged;
5- Reorder the matching S2 attributes for the

unconstrained SI attributes in the second part of cl to
follow the ordering of M2;

6- Generate c2 in the same way as cl after switching the
roles of ml and M2;

7- return tC1, C2};

Algorithm 3: Make Mutation (m)
c: the child mapping to be generated

1- Copy m into c;
2- Pick two random unconstrained SI attributes xi and xj;
3- Swap c(xi) and c(xj);
4- return c;

5.2 Integration with other matching techniques

We allow the combination of any number of matching
techniques, whenever applicable, to improve the quality of the
generated mappings. In particular, we follow an aggregation
approach similar to the COMA framework [6], where an
overall score is used to capture the scores of each individual
matcher. In this scenario, each candidate mapping, generated
by the genetic algorithm, is passed to the individual matchers,
which return their individual scores. The genetic algorithm
then calculates a weighted average of the individual scores
and uses it as the fitness value. The overall scoring function
can either be monotonic or non-monotonic, depending on
whether the aggregated individual scoring functions are
themselves monotonic or non-monotonic respectively.
As an example of a non-usage-based matcher, we

implemented a data type matcher to assess the value of
combining it with usage-based matchers. The data type

26

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

information is typically available with each schema or can be
inferred from the query log to a certain degree of accuracy
(See Section IV-A-2). Moreover, the data types used by
different DBMSs are usually very similar. Therefore, in
practice, we would always be able to combine this matcher
with our usage-based matchers. The data type matcher (DT)
considers only three classes of data types: numeric, string and
datetime. For numeric data types it considers the scale and
precision properties, and for the string data types it considers
the length property. It uses a data type compatibility matrix to
calculate a score Scored[for each match between two
attributes from SI and S2 respectively.
The monotonic and non-monotonic scoring functions used

for the DT matcher are exactly similar to (4) & (5)
respectively in Section IV-B, except that Scored[is used
instead of Scoreeu. The monotonic scoring function is:

i km,
fj7 (m) = maxKO,1 km (1 -Scored (Pi, m(pM) (6),

while the non-monotonic scoring function is given by
i km,

fdt(m)= max 0,-k (1- ai (1- Scored, (Pi I M(Pi)))) (7)

VI. EXPERIMENTS AND RESULTS

A. Experimental setup

We build upon the bookstores example described in Section
III. We used the Wisconsin implementation of the TPC-W
benchmark [17] to which we added a query logger
component. After each TPC-W run, two query logs are
generated for the X-Books and the Y-Books schemas
respectively. The attributes which do not appear in the query
logs were not included in these two schemas. Normally, all
schema attributes would be queried, but this is not the case for
TPC-W since it only focuses on certain aspects of the
bookstore business. For example since the integration part
with the banking system is not considered, some attributes of
the credit card transactions do not appear in the query log.
The TPC-W benchmark specifies three types of workload:

browsing mix (B), shopping mix (S), and ordering mix (0).
Read-only web interactions constitute 95%, 80%, and 50% in
browsing, shopping, and ordering mixes respectively, while
the remaining percentage is for read-write web interactions.
We generated query logs for both schemas corresponding to

the three workload mixes. In each run, 30 emulated browsers
submit requests to the bookstore application simultaneously
for about 3 hours. The size of the generated query logs range
from 10,120 to 17,819 queries. These sizes are large enough
to guarantee that the logs are representative of the workload.
The logged queries are mostly SPJGO queries with a few
SPJGO-N queries. In the TPC-W implementation, two
additional tables were used to capture the shopping cart
information. We added them to the schemas of X-Books and
Y-Books, such that the total number of attributes in each
schema became 44 and 46 respectively. The correct number of
matching attributes is 41.

In the experiments, we use the average F-measure (J) metric
to measure the average quality for all the mappings generated
with the same highest score under varying conditions. We
study the effects of combining several matchers, changing the
quality of attribute names (when schema-based techniques are
combined with usage-based techniques), changing the types of
usage relationships used, changing the parameter k,i (when
monotonic scoring functions are used), changing the
parameter g (when non-monotonic scoring functions are
used), and using query logs of the same workload type versus
the two most different types (BB and BO). We compare our
technique to a hypothetical optimal matcher assumed to
always return the correct mapping as one of its highest-score
mappings. Note that because some attributes may be
indistinguishable to the matcher (e.g. they have the same data
type when only a data type matcher is used), some incorrect
mappings may have the same score as the correct mapping.
Thus, f values for that optimal matcher are not necessarily 1.
For the comparison with established techniques, we use the

Similarity Flooding (SF) algorithm [13], which is available as
open source. We could not compare our technique to that of
[11] (being also independent from the attribute name
information) because it only considered matching individual
tables rather than complete schemas as in our case.
In the graphs, we use "m" and "n" to denote monotonic and

non-monotonic scoring functions respectively. The weights
for relationship types, wl, were set to 1/16, Eli[1,16]. The
number of iterations, N Iterations, for which the highest-score
mapping should remain unchanged before the genetic
algorithm stops (stopping criterion), was set to 500. The initial
population size was set to 50. Throughout the experiments, the
average total number of iterations required was 2305.

B. Effect of combining different matchers

In this experiment, we show the impact of combining three
basic matchers, namely SLUB, DT and ELUB, according to
eight different combinations of weights, including the cases
where they are used individually, in pairs, or all three
together. For monotonic scoring functions, a correct estimate
ki. for kmt is used, and for non-monotonic scoring functions,
the parameter g is set to 0.2 (Recall from Section IV-B that g
controls how mappings are rewarded/penalized).
Figures 2 and 3 show the f values when the eight
combinations of matchers are used. The best results are
obtained when SLUB is combined with DT, where thef value
reaches up to 0.8. This figure is very close to what the optimal
matcher could achieve: 0.83. When used individually, SLUB
achieves higher accuracy than DT and ELUB, as its f value
reaches 0.7 when similar query logs are used (B and B, or
simply BB) and 0.5 when the most different query logs are
used (B and 0, or simply BO). We also observe that using a
non-monotonic scoring function makes the matcher more
sensitive to the discrepancies between the two query logs
compared to the case when a monotonic scoring function is
used. This was expected because of the drawback of non-
monotonic scoring functions, discussed in Section IV-B.

27

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

(1, 0, 0) (.6,.2,.2) (.6,.4,w) (.6,0,.4) (0,.5,.5) (0,1,0) (0,0,1)
Matcher weights (SLUB, DT, ELUB)

* optimal I m DOn

(1,0,0) (.6,.2,.2) (.6,.4,) (.6,0,.4) (.3,.3,.3) (0,.5,.5) (0,1,0) (0,0,1
Matcher weights (SLUB, DT, ELUB))

Fig. 2 Effect of combining matchers (BB
query logs)

*-Bds - Bac * B -ec B -s

Fig. 3 Effect of combining matchers (BO
query logs) Fig. 4 Effect of varying pExact

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of usage relationship types (R)

*-optimal-BB _m-BB optimal-BO +m-BO

0.9

0.7 _
0.6 -= +

0.3-
0.2-
0.1

0 5 0 5 20 25 30 35 40 45 50
Error in estimate of km^ (%)

Fig. 5 Effect of usage relationship types Fig. 6 Effect of varying km.. Fig. 7 Effect of varying g

ELUB proved to be more useful with the BO query logs as it
improved the accuracy when combined with each of DT and
SLUB separately (e.g. (1,0,0) vs (.6,0,.4)). However, when
combined with them together, the accuracy was not
significantly improved (e.g. (.6,.4.0) vs (.3,.3,.3)). In general,
the value ELUB can add in a combination of matchers
depends on the discriminative power of the other matchers
and the richness of the query logs in terms of element-level
features. When used separately, ELUB gave almost the same

accuracy both with BB and BO query logs. The reason is that
the same element-level features are preserved in both types of
query logs.

C. Effect of the quality of attribute names

In this experiment, we compare the matching quality of the
usage-based approach to that of SF. We study the impact of
the attribute naming quality when the following combinations
of matchers are used: SF, SLUB, (SLUB, SF), (SLUB, DT,
ELUB), and (SLUB, DT, ELUB, SF). When used in
combination, matchers are assigned equal weights. To vary
the quality of attribute names, we considered that a percentage
of the attribute names of the target schema are random strings;
i.e., they cannot be matched to the attributes of the source

schema, while the remaining percentage (pExact) represent
exact matches to those of the source schema.
Fig. 4 shows the f values when pExact varies from 0% to
100%. The monotonic scoring function is used and the query

logs of both schemas are considered to be different (BO). The
f value increases as pExact increases only when SF is used.
Otherwise, it remains constant, since SF is the only matcher
that depends on the attribute names. The f value for SF is
lower than those of SLUB and (SLUB, DT, ELUB) when
pExact is less than 20% and 60% respectively. This reflects
the superiority of the usage-based technique when the
attribute names are unreliable: the case where the usage-based

technique is needed the most. We also note that if similar
query logs were used (BB), the previous two figures would
have been 60% and 60% respectively, since SLUB performs
better with BB query logs (See Fig. 2). Furthermore, as long
as pExact is less than 80%, the combination of all matchers
provides the highest accuracy compared to any single matcher
or subset of matchers. This shows how schema-based and
usage-based matchers can reinforce each other when used in
combination. When pExact is 80% or greater (almost the ideal
case for SF), SF performs the best because the attribute name
information becomes highly reliable, making the combination
with other matchers counter-productive. We finally note that
SF manages to find some correct matches even when all
attribute names do not match (pExact=0%) because SF does
not solely depend on attribute names, but it also exploits the
structural similarities in the two schemas.

D. Effect of usage relationship types

In this experiment, we study the impact of using a subset of
the usage relationship types as opposed to using all of them.
We ranked the relationship types based on the connectivity of
their source and target graphs by counting the number of
edges in both graphs for each relationship type. This ranking
(Table III) gives an indication of the discriminative power of
the different types of relationships. Fig. 5 shows the f values
when SLUB is used with only the top R relationship types,
where R is varied from 1 to 16. The relationship types are

always given equal weights.
We use the monotonic scoring function and consider both

BB and BO query logs. The ranking of relationship types is
considered both when it is descending in the total number of
edges (as in Table III) and when it is ascending in that
number. As expected, the figure shows that, in general, the
more relationship types are used, the more effective the
matcher is. This is because each type of relationships may

28

04:-

0 20 40 60 80 00
pExact (%)

+*-optimal-BB -n-BB +-*optimal-BO +n-BO

_0.90 =
0.8 a a

X 0.7 ..

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

*E optimal *mm [I n ---*- (SF)
(SLUB,DT,ELUB)

. .T..

(SLUB) * (SLUB,SF)
(SLUB,DT,ELUB,SF)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

provide additional evidences as to which attributes match.
Also, when the descending ranking is used, f converges to its
highest values much faster than the ascending case, as the
most discriminative types of relationships are considered first
in the case of the descending ranking.

TABLE III. RANKING OF USAGE RELATIONSHIPS

Usage relationship type Total no. of edges Rank
select-select 339 1
where-select 91 2
select-where 91 3
where-where 62 4
orderby-select 18 5
select-orderby 18 6

groupby-groupby 17 7
groupby-select 17 8
select-groupby 17 9
orderby-where 10 10
groupby-where 10 11
where-orderby 10 12
where-groupby 10 13
orderby-orderby 9 14
orderby-groupby 5 15
groupby-orderby 5 16

E. Effect of the parameter km*

Fig. 6 shows the f values when the matcher uses a
monotonic scoring function and the error in the estimate km*
varies from 0% to 50%. The matcher is a combination of
SLUB, DT and ELUB with weights 0.6, 0.2 and 0.2
respectively. Interestingly, the accuracy does not sharply
deteriorate as the error inkiincreases. For instance, the f
value for a 25% error is almost 0.6, which is very reasonable,
considering that 25% error means that the matcher is
explicitly instructed to return 25% fewer matches than the
correct number of matches. Fig. 5 also confirms that a
matcher using a monotonic function is not very sensitive to
discrepancies in the query logs, since the BB and BO curves
are not far from each other. For the optimal matcher, the BB
and BO curves coincide because, in our experiment setting,
the B and 0 query logs, are similar in terms of which
attributes are indistinguishable to the matcher and which
attributes are not.

F. Effect of the parameter g

Fig. 7 shows the effect of varying the parameter g on the f
values when the matcher uses a non-monotonic function. The
specific matcher used is also a combination of SLUB, DT and
ELUB with weights 0.6, 0.2 and 0.2 respectively. As
expected, the matcher performs better with BB query logs
compared to BO query logs. In the former case, the f values
remain at their peak for a big range of g (0.2-0.7), while in the
later case they peak when g is less than 0.3. Generally, a small
g can result in penalizing correct mappings, while a large g
can result in rewarding erroneous mappings, which leads in
both cases to a lower accuracy.

VII. CONCLUSIONS

We introduced a new class of techniques, usage-based
schema matching, where the usage information in the query
logs is used to find correspondences between the attributes of
two schemas. Our experimental study demonstrated the
effectiveness of the proposed technique and the value of
combining it with other matchers, including the Similarity
Flooding algorithm. The results showed that when the
attribute name information is of low quality, usage-based
techniques outperform schema-based techniques. However,
when combined together, the matching quality improves on
average compared to using either technique in isolation.
While this paper was focusing on relational schemas and

SQL, a natural next step would be to investigate the
applicability of our approach in an XML context with a query
language like XQuery. Furthermore, building a repository of
query logs obtained from real world systems can be very
useful in studying the effectiveness of any technique that
relies on query log analysis, such as ours. Finally, it would be
interesting to study the possibility of using the query logs to
discover Global-As-View (GAV) or Local-As-View (LAV)
mappings, where a table in one schema is expressed as a view
over the other schema.

REFERENCES

[1] Y. An et al. A semantic approach to discovering schema
mapping expressions. In ICDE, 2007.
[2] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting
context into schema matching. In VLDB, 2006.
[3] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: a relaxation-based approach. In SIGMOD 2005.
[4] B. Dageville et al. Automatic SQL tuning in Oracle 10g. In
VLDB, 2004.
[5] R. Dhamankar et al. iMAP: discovering complex semantic
matches between database schemas. In SIGMOD, 2004.
[6] H. Do and E. Rahm. COMA - A system for flexible
combination of schema matching approaches. In VLDB, 2002.
[7] A. Doan et al. Reconciling schemas of disparate data sources: A
machine learning approach. In SIGMOD, 2001.
[8] L. Haas et al. Clio grows up: from research prototype to
industrial tool. In SIGMOD, 2005.
[9] B. He and K. Chang. Statistical schema matching across web
query interfaces. In SIGMOD, 2003.
[10] J. Kang and J. Naughton. On schema matching with opaque
column names and data values. In SIGMOD, 2003.
[11] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-
based schema matching. In ICDE, 2005.
[12] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema
matching with Cupid. In VLDB, 2001.
[13] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:
a versatile graph matching algorithm. In ICDE, 2002.
[14] M. Mitchell, Introduction to Genetic Algorithms, MIT Press,
Cambridge, MA, 1996.
[15] E. Rahm and P. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4), 2001.
[16] The TPC-W benchmark. http:llwww.tpc.org/tpcw
[17] http://www.ece.wisc.edu/-pharm/tpcw.shtml
[18] R. Warren and F. Tompa. Multi-colunm substring matching for
database schema translation. In VLDB, 2006.
[19] http://www.experlog.com/gibello/zql/

29

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 2, 2009 at 19:05 from IEEE Xplore. Restrictions apply.

