CS542: Distributed Database Systems 1/26/2009

PURDUE

CS54200:  Distributed
Database Systems

Timestamp Ordering
28 January 2009
Prof. Chris Clifton

Timestamp Ordering

A
b,

» The key idea for serializability is to ensure
that conflicting operations are not executed in
an inconsistent order.

« 2PL ensures this by not allowing new locks to
be acquired once a lock is released.

* In timestamp ordering (TO), we predetermine
an order and enforce it for conflicting
operations.

* The order is based upon timestamps
assigned to each txn.

Prof. Chris Clifton 1



CS542: Distributed Database Systems

Timestamp Ordering

The TM assigns each txn, T, a unique

timestamp, ts(Ti).

No two txns share a timestamp.

A TO scheduler enforces:

1O Rulerif pfx] and g/x] are conflicting
operations, then the DM processes p,[x]
before q/x] iff ts(T;) < ts(T)).

Serializability

ra
i

« Theorem: If H is a history representing an

execution produced by a TO scheduler, then
H is serializable.

Proof: Consider SG(H).

If T;2 T, is an edge in SG(H), then there must
exist conflicting operations p/x] and q;/x]in H
such that p/x] < g;/x].

Hence by the TO rule, ts(T)) < ts(T)).

If thereisacycle TT22 72> ... 2 Tn 2 T1in
SG(H), then by induction, ts(T,) < ts(T,)!!!

Prof. Chris Clifton

1/26/2009



CS542: Distributed Database Systems

Basic TO

For each operation, we pass it to the DM as

long as it is not too late!

An operation is too late if a conflicting
operation with a larger timestamp has already
been sent to the DM.

If an operation is too late, the earlier
operation cannot be undone, then the txn is
aborted.

The aborted txn is restarted with a new
timestamp — why?
This avoids cyclic restart.

Implementing Basic TO

How to determine that an operation is too

late?

Maintain for each data item x, the maximum
timestamp of a txn whose Read (Write) for x
has been sent to the DM.

Let this be stored in max_r(w)_scheduled[x].

When p[x] is received, check ts(T) with
max_q_scheduled[x] for all operations g that
conflict with p.

If ts(T)) is less than any of these, T; is too late.

Otherwise, schedule p,-[xt], l%pdate
max_p_scheduled[x] to ts(T)).

Prof. Chris Clifton

1/26/2009



CS542: Distributed Database Systems

Timing

It is important for the scheduler to ensure that
all scheduled operations on a given object
are processed in the correct order.

It must ensure that the DM acknowledges the
completion of all conflicting operations before
scheduling the next one.

The scheduler maintains counts of pending
operations of each type, and a queue of
pending operations for each object.

=

Basic TO

An operation p;[x] is accepted for scheduling if

ts(T,) > max_q_scheduled[x] for all q that conflict
with p.
Otherwise, p;[x] is rejected, and T, is aborted.

If for all types g that conflict with p, there is no
pending operation on x, and there are no waiting q
type operations on x, then pi[x] is scheduled.
Otherwise p;[x] is inserted into the waiting Q.

When the DM acks an operation’s completion,
schedule all possible opns on x at the head of Q.

Prof. Chris Clifton

1/26/2009



CS542: Distributed Database Systems

TO does not even ensure recoverability!

Strict TO

How can we enforce stricthness?

In the check for pending operations being
processed by the DM, for write operations,
we consider them pending until the DM
acknowledges the abort or commit.

Thus a write operation “locks” the item
until the txn commits or aborts.

TO does NOT suffer from deadlocks.

How do these two compare?

Strict TO = Strict 2PL?

They are not equal.

E.g. rofX] wslX] c3 wily] ¢4 roly] wolz] ¢,

This history can be produced by a Strict TO
scheduler if ts(T,) <ts(T,) < ts(T).

This cannot be produced by a 2PL scheduler:
T, must release its read lock on x before
w,[x] but may not set its read lock on y until
after w,[y] — not allowed by 2PL!

10

Prof. Chris Clifton

1/26/2009



CS542: Distributed Database Systems

TO Variants

Distributed TO: How can TO be modified for
distributed sites?

Simple — nothing special needed as long as ....
Timestamps are unique across sites!
Easy to enforce this.

Much better than distributed 2PL — no need for
inter-site communication, unlike 2PL which
requires communication for deadlocks.
Conservative TO: delay operations. Make
assumptions about the system or timestamps.

Serialization Graph Testing

Maintain a version of the SG and check for
acyclicity.

Basis SGT: Upon receivingF,{x] add a node
for T, if ne_cessagy; add T,>TTor each q/x]
that conflicts and has been scheduled
previously.

If graph has a cycle — must reject p;, abort T,
remove the node for T,

Otherwise, if all conflicting operations have
been processed by DM, schedule p;/x].

Must keep track of what operations have
been scheduled for each transaction!!

12

Prof. Chris Clifton

1/26/2009



CS542: Distributed Database Systems

Deleting Nodes

When can nodes be deleted?

Upon commitment? NO

e XIWqXIwo [y T]e,wolx]wo[y 2]c,. . . w [xjw,[yk]c,
followed by w,,,/[z].

In order to accept w,,,[z], z must not be any
of x, y1, y2, ..., yk. Thus the scheduler has to
remember all writes of T1,...,Tk!

Can delete a committed txn if it is a source =
it cannot be involved in any cycles. WHY?

13

Certifiers

Extremely aggressive schedulers — no checks are
done until absolutely necessary.

Can be based upon 2PL, TO, or SGT.

Schedule without checks until a txn wants to
commit, at that time determine if allowing the txn
to commit makes the execution non-serializable.

If so, abort, otherwise commit.
May lead to too many aborts if contention is high.
Can be very efficient if contention is low.

14

A

=y

Prof. Chris Clifton

1/26/2009



