CS542: Distributed Database Systems

PURDUE

CS54200: . Distributed
Database Systems

Replicated Data
16 January, 2009
Prof. Chris Clifton

Replicated Data

» Thus far, we have assumed that there is only
a single copy of each data item.

» This copy is placed at one of the sites, which
is responsible for concurrency control and
recovery for that data item.

 However, for a data item that is accessed
often from different sites, this could lead to a
significant amount of communication.

* Moreover, when a sites fails, all data residing
on that site becomes unavailable.

A

=y

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

Replication

To increase availability of data, and to reduce
communication for remote data, data can be
replicated.

From the user’s point of view, replication (like
distribution, physical and logical organization of
data), should be transparent.

l.e. the user should not be aware that some (or
all) data items are replicated, and should see no
difference in performance.

The user can be a programmer or an end user.

.

1 Copy Serializability

The correctness definition for replicated
databases is therefore that it should behave as
though all transactions are executed in a serial
manner on a single copy database.

'1I'gis is the notion of one copy serializability, I.e.
R.

The user must be given a one copy view of the
database.

How is this achieved?

Read-only is easy. For writes we must manage
carefully!

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

Write-All approach

This is the obvious first solution:

— Reads can be satisfied by any copy in the system,

— Writes must all modify every copy of the data item
being written.

This is a very effective solution — it completely

eliminates the problem of multiple copies, and

gives each txn the correct view. HOWEVER

It is very poor in terms of performance and
progress:
— Failures have a crippling effect on transactions!

Write-All-Available

Allow a txn to proceed even though
failures make it impossible to write all
copies of the data.

Allow the txn to simply write to every site
that is available. Those that are down can
be ignored.

Thus some copies of the data may be out
of sync, |.e. may not contain the latest
updates.

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

5 Example

*
o {4

» Consider the following execution. Note that multiple
copies are marked using the upper case subscripts.

WolXal WolXgl Wolycl Co rilycl WilXal €1 FalXal Wolycl C2
+ T, reads copy xg from T,, even though it should
have read from BI',.

» Thus the above history is not equivalent to T7,7,T,.

* Is it equivalent to some other serial one-copy
history?

* NO!' wylyd] <rilycl < wylycl, there is no other
equiva(fent serial execution.

» This is interesting, because the execution actually
seems to be a serial execution of the transactions!!!

Example (contd.)

« So what has gone wrong?

» The problem is that the write by T, into x, did not
update all copies of x — xz in particular.

» This could only mean that site B must have been

down when T, wrote x, and must have recovered

before T, read x.

|.e. the failures must have been as such:

WolXal WolXal WolYcl Co rilycl failg wilxa] ¢; Recoverg

rolXg] Wolycl C;

Thus the problem is that T, read a copy at a site that

had failed and upon recovery did not re-sync with

the other sites! Fixing this is still not enough!!

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

PURDUE

CS54200: Distributed
Database Systems

Replicated Data
18 January, 2009
Prof. Chris Clifton

Assumptions

+ Again, we will assume the same model for the
database.

where copies are stored.
» Failures are assumed to be fail stop.
* We begin by ignoring communication failures.

A correctly executes each read/write of x, from
site B, and B receives the acknowledgement.

* The TM now maps all reads onto a read of some
copy, and all writes onto a write on all (available)
coples. It uses directories of copies to determine

« Thus a copy x, at a site A is available to site B if

10

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

L2 Assumptions.

g - .'-‘
£
!

Therefore site failures are detectable.

The timing of updating multiple copies can vary:

— Immediate: as soon as the write is received.

— Deffered: could delay the updating of copies. Update
copies only upon commitment or abortion. Intentions
lists can be piggybacked with VOTE_REQ msgs.

Delayed updating results in

— Fewer messages

— Cheaper aborts

— Delayed commitment

— Delayed detection of conflicting operations. Can be
solved by using a primary copy approach.

=% Replicated Data History.

e 2

 Let h(') be a function that maps

— ri{x] 2 rix,] for some copy x, of x.
—wx] 3 WX, ..., wlX,], for some copies of
X

—C; 2 C;
—a; 2 a;

12

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

Replicated Data History

* A complete replicated data (RD) history H
over T={T,, ..., T} is a partial order with
ordering relation < where:

— H=h(U., , T, for some translation function h;,

— For each T, and all operations p,q;in T, if p;<q,
then every operation in h(p;) is related by <to
every operation in h(q,).

— For every rj[x,] there is at least one w;[x,] < r[x,]

— All pairs of conflicting operations are related by <,

where two operations conflict if they operate on
the same copy and at least one is a write; and

— If wx] < ri[x] and h(r[x])= rix,] then w/x,] must be
in h(w/x]).

13

Given txns {T,, T;, T, T3} EXa m ple

W, [X]

T = ¢, T,= wy[x] —r[x] —w,[y] —cC,
w7 o
rs [X
T — T3= C3
1= Xl —wi[x] —c rsly]

The following is an example of an RD history:

Wy [Xa] Wy [X,]

r1[XB] / \‘01 _—>r3[XA]
wo [xg \ J \W1 [xg] / \ c
3

Woltel _»Co—w, lxel —rofial —_wolyd ~,

wo [yol / \Wz [yol / \

r3 [ypl

14

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

Reads-From Relationship

Let H be an RD history.

Txn T; reads-x-from T, in H if for some copy x, T;
reads-x,-from T, , that s, if w/x,] < r[x,] and
no w,[x,] (k <> i) falls between these
operations.

Since reads-from are unique on copies,
and a txn reads only one copy, then reads-
from relationships on data items are
unique too.

15

Serialization Graph

A

Consider only complete histories with committed
transactions only.

|.e. we assume recoverable execution.
What does that mean for replicated data?

An RD history H, is recoverable if whenever T,
reads (any copy) from T;in H and ¢;is in H, then
ciisin Hand cj<c.

The Serialization graph is generated as before,
except that conflicting operations are now
defined on copies rather than data items.

16

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

Serialization Graph

*
o {4

Fa

]

» Let H be an RD history involving transaction T, If
SG(H) is acyclic and for some x, w/[x] <; ri[x],
then T, reads-x-from T;in H.

* Proof:
— From conditions (2) and (5) on RD histories, w[x] <;
ri{x] implies that for some copy x, of x, w,[x,] < ri[x,].
— Suppose, T;didn’t read x from T;in H. Then there
must exist some w,[x,] (k<>i) in H such that w//x,] <
WilXal < FilXal.
— But then SG(H) is acyclic.

17

Serializability

* Acyclicity of the serialization graph does NOT
guarantee serializability for RD histories.

+ A history is serializable if it is equivalentto a 1C
history.

» The same order for conflicting operations does
not work since the conflicting operation in the
RD history and the 1C history are not the same.

* View equivalence is more natural for RD
histories since the reads-from-relationships and
final writes behave similarly in both types of
histories.

18

Prof. Chris Clifton

2/16/2009

CS542: Distributed Database Systems

RD history equivalence

+ Given an RD history H, define wjx,] to be a
final write for x, in H if a; is not in H and for all
wilx,] in H (j <>i), either ajis in H, or wjx,] <
WX 4].

 Two RD histories are equivalent if they are
view equivalent, that is, they have the same
reads-from relationships and final writes.

19

RD history equivalence

e 2

* An RD history H over T is equivalent to a 1C
history H,; over T if

1. H and H,; have the same reads-from
relationships on data items (i.e., T; reads-x-
from T, in H iff the same holds in H,;), and

2. For each final write wfx]in H,o, wfx,] is a
final write in H for some copy x,0f x.

An RD history is one-copy serializable (1SR) if it is
equivalent to a serial 1C history.

20

Prof. Chris Clifton

2/16/2009

10

CS542: Distributed Database Systems

Examples
ol i 2~ i
Wy [xgl J W, [xg] / \
Wo [yC] ,VCO_'WZ XB] —>r2[XB] —)} [yC] \02 /
W [yl / \ W2 [yol \\r{[yol

« Is 1SR, itis equivalentto T, T, T, T,

* But,
WO{XA] Wolxg] WolYcl Co rilycl Wilxal €4 ro[xg] Wolyc] ¢, is
not.

 However, it is a serial history!!

» Thus not every serial RD history is 1SR.

21

Final Writes

» Let Hbe an RD history over T, with acyclic
SG(H). Let H,; be a serial 1C hlstory over T
such that the order of transactions in Hcis
consistent with SG(H). If wix] is a final wrlte for
xin H,c , then every write, w/x,], by T;into

some copy x, of x is a final write for X4 0N

* Proof:

— Suppose w//x] is a final write for x in H,c. Let w)[x,] be
any write into x by T;in H. If wix,] is not a final write,
then there is some W[XA] (j <> i) such that a; is not in
H and wifx,] < wix,].

— Thus T; 2 T;is in SG(H), so T; precedes T;in H.

— > ag;is noti |n H;. and wx] < wjx]in H,¢,
confradicting the choice of w [x] as a final write.

22

Prof. Chris Clifton

2/16/2009

11

CS542: Distributed Database Systems 2/16/2009

Serializability

o {4

=

« Thus we can ignore final writes — they
must be the same.

« Theorem: Let H be an RD history. If H has
the same reads-from relationships as a
serial 1C history H,;, where the order of

transactions in H,; is consistent with
SG(H), then His 1SR.

23

PURDUE

C3S54200: Distributed
Database Systems

Replicated Data
20 January, 2009
Prof. Sunil Prabhakar

Prof. Chris Clifton 12

CS542: Distributed Database Systems

oy Serializability

« Thus we can ignore final writes — they
must be the same.

« Theorem: Let H be an RD history. If H has
the same reads-from relationships as a
serial 1C history H,;, where the order of

transactions in H,. is consistent with
SG(H), then His 1SR.

25

Graphs for 1SR histories

* How can we modify the serialization graphs to
identify exactly the set of 1SR histories?

* The problem arises from the failure and recovery
of sites:
— A failed site will not be updated
— Upon recovery it has inconsistent data.

* How can we capture the effects of these failures
and recoveries in the serialization graph?

26

Prof. Chris Clifton

2/16/2009

13

CS542: Distributed Database Systems

T,=

This is not a 1SR history! But SG is acyclic:

Example

Wold T,= nly —w,] —c,

Co
wo [y] -

Ti= rnxl —w[y] —c¢

The following RD history can occur with 2PL on copies:

Wy [Xal

i >\ y

Wy [yel
WO[yD] / \r2[yD] —_— XAl_’W2[XB] — G

T,
T, —
~ T

ry [Xal —>yDl—>W1[YC] — Gy

27

The problem

« In the example there were no recoveries, thus by

ensuring that a recovering site synchronizes
before it is accessed, we would still have non-
1SR histories!

We are failing to capture the conflict at the item
level by considering only conflicts at the copy
level.

sz
i

Note that two conflicting operations must contain

a write which must write all (available) copies.
Without failures the conflict is detected.

28

Prof. Chris Clifton

2/16/2009

14

CS542: Distributed Database Systems

Replicated Data SG

Try to synchronize two transactions that
access a conflicting item.
Define: n; precedes n, , i.e., n;<<n,, in a
directed graph, if there is a path from n, to n, .
A replicated data serialization graph (RDSG)
for H is SG(H) with enough edges added such
that for all data items, x:
1. If T,and T, write x, then either T, << T, or T, << T,

2. If Tjreads-x from T, T, writes some copy of x (k <>,
k<>j),and T; << T,, then T;<< T,

29

RDSG

A graph that satisfies condition 1 induces a write
order for H.

If it satisfies condition 2 it induces a read order
for H.

Given a history H, the RDSG(H) is not unique.

The write order ensures that every pair of txns
that write into the same item (even if they don'’t
write the same copy).

Write and read order ensure that every pair of
txns that read and write the same item.

30

Prof. Chris Clifton

2/16/2009

15

CS542: Distributed Database Systems

Example.

The example enforces a write order.

However it does not enforce a read order:
— Since T, reads-x-from T,, T, writes x, and T, 2 T,,

we add T, 2 T, to RDSG(H);
— Since T,reads-y-from T,, T, writes y, and T, 2 T,, we
add T, 2 T, to the RDSG(H).
T,
Ty //j
\ T,
Now RDSG(H) has a cycle, as required.

31

1SR

Theorem: Let H be an RD history. If H has an
acyclic RDSG, then H is 1SR.

Proof:

— Let H,=T,,, ...T,, be a serial 1C history where T, ...,
T,, is a topological sort of RDSG(H).

— Since RDSG(H) contains SG(H), His 1SR if H and H,
have the same reads-from relationships.

— Assume that T, reads-x-from T;in H. Suppose, by way
of contradiction, that T; reads-x-from T, in Hs.

— If k=j, then T; must read-x-from T, in H too since
SG(H) is acyclic = k <>j.

32

Prof. Chris Clifton

2/16/2009

16

CS542: Distributed Database Systems

Proof (cont)

— Since T, reads-x-from T;in H, T; 2 T;is in RDSG(H),
so T; precedes T;in Hg.

— Since the RDSG induces both a read and write order,
we have that either T, << T;or T; << T,.

— Thus either T, precedes T, (which precedes Tj) or T,
follows T;in Hj, both contradict that T; reads-x-from T,
in H,.

— Now assume T, reads-x-from T;in H,. By the definition
of RD histories and the reads- from relatlonshlp T;
reads-x-from some txn in H, say T,. By the above T;
reads-x-from T, in Hs. Since the reads-from relation is
unique, T,=T,.

33

#s=5 Atomicity of Failures and

Recovery

Another alternative, is to ensure that all transactions
view failures and recoveries consistently.

Atomicity of failure:
Wo [Xal

b \\ y,

Wolvel _,

ry [Xal —>yDl—>W1[YJ — C;

WO[YD] / r2[yD] - XAl—’WZ[XB] — G

T, sees the failures as: yD| = T, xA| but
T, sees the failures as: xA| 2 T, 2 yD|

34

Prof. Chris Clifton

2/16/2009

17

CS542: Distributed Database Systems

T &
o

Atomicity of Failures

We want all transactions to agree on when the
failures occurred.

There can be no serial ordering of the failures
and T,, T, that is consistent with the views of T,
and T,.

We want to synchronize the recognition of
failures of sites with the read and write
operations that are taking place.

Certain views of failures may be troublesome
and should not be allowed.

35

Atomicity of Recoveries

We require that each copy be initialized
before it is read a copies txn can be used

for this.

After initialization, all txns need to be
informed about the new copy so that they
can write it too.

This has to be done carefully:

36

Prof. Chris Clifton

2/16/2009

18

CS542: Distributed Database Systems 2/16/2009

5 Example

Wy [Xa]
\ riXa —— wyXg] — C;— I3lxgl — C;

Col .1, [xA]}v; X — Cp —s r3[y/
wo el / T~ S

This is an incorrect history. The only equivalent serial history is:

Wo [Xal Wolycl Co rilxal wilxgl Cq rp[Xal Wol[Xal Wolycl €, rafXgl rslyd s

Which is not equivalent to T,T,T,T;. T, should write x and y and T,
Should read these values.

37

L3 Atomic Recoveries

* The problem is that T, should have updated the
new copy of x, xB.

» Since T, knew about xB, and executed before
T>.

* In terms of recoveries,
— Theviewof T,is: xB 1 2 T,
— The view of T, is: T, 2 xB?
— Since T, executes before T,, this is inconsistent!!

+ We want all txns to have a consistent view of the
recovery of copies.

38

Prof. Chris Clifton 19

CS542: Distributed Database Systems

Failure-Recovery SG

« Assume that once a copy fails, it never
recovers!!

» Given an RD history H over transactions {7, ..

T}, afailure-recovery serialization graph
(FRSG) for H is a directed graph with nodes N
and edges E where:

"

- N={T,, ..., T} U{create[x,] | x is a data item, and x,

is a copy of x} U {fail[x]}
- E={T;2 T;| T;2T;is in SG(H)} U E1 U E2 U E3,

where E -{create [x,] 2 T;| T, reads or writes x,};
E2 ={T,2 fail[x,] | T reads X},

E3={T, 2 create[xA] or fail[x,] = T;| T;writes

some copy of x, but not x,}.

39

53 Example

For the following RD history:

N,

WO[yC] —

Wo [y / rlyol — XAl,_’WZ[XB] — Cp
The following is a FRSG:

create[x,] fail [Xa]
create [xg] \\ / fail [xg]
fail [y]

create [y]

Iy [Xal —>yDl,—>W1[yCJ — G

T S
create [yp] z fail [yl

40

Prof. Chris Clifton

2/16/2009

20

CS542: Distributed Database Systems

1SR

Theorem: Let H be an RD history. If H has an
acyclic FRSG, then H is 1SR.

Proof:

— Let H=T, ...T;, be a serial 1C history where T;,,
T, is a topologlcal sort of FRSG(H).

- Slnce FRSG(H) contains SG(H), His 1SR if H and H,
have the same reads-from relationships.

— Assume that T reads-x,-from T;in H. Hence T, 2 T
in FRSG(H), and T; precedes T in Hs.

— Let T, be any other transaction that writes x.

— If T, writes xA, then since T, reads-xA-from T, either
T, > TorT, > T, must be in FRSG(H).

41

Proof (contd.)

— If T, does not write xA, by defn of FRSG, either T, 2
create[xA] or fail[xA] = Tk.

— In the former case, since create[xA]>T, T, precedes
T;in FRSG(H).

— In the latter case, since T; 2 fail[xA], T;precedes T, in
the FRSG(H).

— Hence, if T, writes x, either T, precedes T, or follows
T;in the FRSG and H,.

— Thus T, reads-x-from T;in H..

— Now, suppose T, reads-x-from T;in H,. By the defn of
RD history, T, reads x-from some txn in H, say T,. By
the above, T, 'reads-x-from T, in H,. Since reads from
relatlonshlps are unique, T,=T,.

42

Prof. Chris Clifton

2/16/2009

21

CS542: Distributed Database Systems 2/16/2009

=5} Communication Failures
« Thus far, we have ignored communication
failures!

 These can lead to non-serializable
executions if network partitions result from
the failures.

« Handled by the use of quorums — ensuring
that only one of the partitions handles
transactions.

* There are several alternatives for
enforcing quorums.

43

Prof. Chris Clifton 22

