
CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 1

CS54200: Distributed

Database Systems

Recovery

30 January 2009

Prof. Chris Clifton

Recovery

• The DBMS must be able to withstand various
types of failures while ensuring Atomicity and
Durability of transactions.

• The DBMS runs on a computer with volatile
(RAM) and stable storage (disks).

• There are three types of failures in
centralized systems:
– Transaction Failures – txn aborts (semantic)

– System Failures – loss of volatile data

– Media Failures – loss of stable storage

2

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 2

DM Architecture

3

Read,

Write

Fetch, Flush

Read,

Write

Scheduler

Transaction

Manager (TM)

Cache

Manager (CM)
CacheStable DB

Recovery

Manager (RM)

Data Manager

Read, Write, Commit, Abort

Restart

Read, Write

Volatile StorageStable Storage

Read, Write

Read, Write, Commit, Abort

Read, Write, Commit, Abort

T1 T2 … Tn

Log

Recovery

• We will focus on system failures.

• Following the failure, the DBMS is restarted.

• At the start of recovery, the contents of volatile
storage are discarded.

• The stable storage is potentially inconsistent

• A CONSISTENT database state corresponding
to exactly the set of txns that had committed (as
far as the DM is concerned) must be
reconstructed, i.e. C(H).

• This reconstruction uses only data in stable
storage – Stable DB and the LOG.

4

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 3

Assumptions

• Writes to stable storage by CM are atomic.

• Disk granularity matches data granularity.

• Scheduler ensures a strict serializable
execution.

• In-place updating: there is only one copy of each
data item on secondary storage.

• Shadowing: multiple copies are stored, along
with a directory that points to the appropriate
copy.

• The stable DB is the one pointed to by a special
directory.

5

Shadowing

6

x

y

z

y

z

x

y

z

x

y

z

Directory 1

Directory 2

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 4

Cache

7

Slot

Number

Dirty

Bit

Data

Value

1 1 “xcvx”

2

…

0

…

98798

…

Data

Item

Slot

Number

x 2

y

…

1

…

Cache
Cache

Directory

Cache Manager

• Has the following operations:
– Flush cache slot I

– Fetch item (page) x

– Pin a slot

– Unpin a slot

• Several cache replacement algorithms can be
used
– LRU

– FIFO

– Etc.

8

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 5

Recovery Manager

• The RM must execute read, write, commit, and
abort operations atomically! I.e. equivalent to a
serial execution of these operations.

• Strict, serializable execution implies that the last
committed value of any data item is given by the
last value written by a committed txn.

• Also, we use before-images and after-images:
– The before image of x wrt Ti is the value of x just

before Ti wrote into it;

– The after image of x wrt Ti is the value of x written by
Ti.

9

Log

• The log is a sequential record on stable memory of
the execution maintained by the recovery manager
to ensure that it can recover from system failures.

• Physical logging: record modified bits [Ti,x,v]

• Entries are in the same order as the execution of
operations.

• Logical logging: may be cheaper to record just the
logical operation – has other difficulties (more later).

• RM also maintains commit, abort and active lists.

10

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 6

CS54200: Distributed

Database Systems

Recovery

2 February 2009

Prof. Chris Clifton

Recovery Methods

One solution: undo logging (immediate

modification)

due to: Hansel and Gretel, 782 AD

• Improved in 784 AD to durable undo

logging

(Be thorough in your literature search -

Ariadne deserves earlier credit)

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 7

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 13

Basic Idea: Logging

 Record REDO and UNDO information, for
every update, in a log.

 Sequential writes to log (put it on a separate disk).

 Minimal info (diff) written to log, so multiple
updates fit in a single log page.

 Log: An ordered list of REDO/UNDO actions

 Log record contains:

<XID, pageID, offset, length, old data, new data>

 and additional control info (which we’ll see soon).

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 14

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

 Must force the log record for an update before the
corresponding data page gets to disk.

 Must write all log records for a Xact before commit.

 #1 guarantees Atomicity.

 #2 guarantees Durability.

 Exactly how is logging (and recovery!) done?

 We’ll study the ARIES algorithms.

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 8

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 15

WAL &
the Log

 Each log record has a unique Log Sequence
Number (LSN).

 LSNs always increasing.

 Each data page contains a pageLSN.

 The LSN of the most recent log record
for an update to that page.

 System keeps track of flushedLSN.

 The max LSN flushed so far.

 WAL: Before a page is written,

 pageLSN flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

T1: Read (A,t); t t 2 A=B
Write (A,t);
Read (B,t); t t 2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>

16 <T1, B, 8>

16

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 9

A: 8
B: 8

One “complication”

• Log is first written in memory

• Not written to disk on every action

memory

DB

Log
A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

16

BAD STATE
1

One “complication”

• Log is first written in memory

• Not written to disk on every action

memory

DB

Log
A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16

BAD STATE
2

<T1, B, 8>
<T1, commit>

..
.

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 10

Undo logging rules

(1) For every action generate undo log

record (containing old value)

(2) Before x is modified on disk, log

records pertaining to x must be

on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all

writes of transaction must be

reflected on disk

Fall 2007 Chris Clifton - CS541

Recovery rules: Undo logging

• For every Ti with <Ti, start> in log:

- If <Ti,commit> or <Ti,abort>

in log, do nothing

- Else For all <Ti, X, v> in log:

write (X, v)

output (X)

Write <Ti, abort> to log

IS THIS CORRECT??

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 11

Recovery rules: Undo logging

(1) Let S = set of transactions with <Ti,
start> in log, but no <Ti, commit> (or <Ti,
abort>) record in log

(2) For each <Ti, X, v> in log,

in reverse order (latest earliest) do:

- if Ti S then - write (X, v)

- output (X)

(3) For each Ti S do

- write <Ti, abort> to log

What if failure during recovery?

No problem! Undo idempotent

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 12

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 27

The Big Picture:
What’s Stored Where

DB

Data pages

each

with a

pageLSN

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

RAM

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

master record

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 28

Simple Transaction Abort

 For now, consider an explicit abort of a Xact.

 No crash involved.

 We want to “play back” the log in reverse
order, UNDOing updates.

 Get lastLSN of Xact from Xact table.

 Can follow chain of log records backward via the
prevLSN field.

 Before starting UNDO, write an Abort log record.
• For recovering from crash during UNDO!

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 13

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 29

Abort, cont.

 To perform UNDO, must have a lock on data!

 No problem!

 Before restoring old value of a page, write a CLR:

 You continue logging while you UNDO!!

 CLR has one extra field: undonextLSN
• Points to the next LSN to undo (i.e. the prevLSN of the record

we’re currently undoing).

 CLRs never Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

 At end of UNDO, write an “end” log record.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 30

Transaction Commit

 Write commit record to log.

 All log records up to Xact’s lastLSN are
flushed.

 Guarantees that flushedLSN lastLSN.

 Note that log flushes are sequential, synchronous
writes to disk.

 Many log records per log page.

 Commit() returns.

 Write end record to log.

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 14

Redo logging (deferred modification)

T1: Read(A,t); t t 2; write (A,t);

Read(B,t); t t 2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>
<T1, commit>

output

16

Redo logging rules

(1) For every action, generate redo log

record (containing new value)

(2) Before X is modified on disk (DB),

all log records for transaction that

modified X (including commit) must

be on disk

(3) Flush log at commit

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 15

Recovery rules: Redo logging

• For every Ti with <Ti, commit> in log:

– For all <Ti, X, v> in log:

Write(X, v)

Output(X)

IS THIS CORRECT??

Recovery rules: Redo logging

(1) Let S = set of transactions with

<Ti, commit> in log

(2) For each <Ti, X, v> in log, in forward

order (earliest latest) do:

- if Ti S then Write(X, v)

Output(X) optional

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 16

Recovery is very, very SLOW !

Redo log:

First T1 wrote A,B Last

Record Committed a year ago Record

(1 year ago) STILL need to redo after crash!!

...

Crash

Solution: Checkpoint (simple version)

Periodically:

(1) Do not accept new transactions

(2) Wait until all transactions finish

(3) Flush all log records to disk (log)

(4) Flush all buffers to disk (DB) (do not discard buffers)

(5) Write “checkpoint” record on disk (log)

(6) Resume transaction processing

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 17

Example: what to do at recovery?

Redo log (disk):
<

T
1
,A

,1
6
>

<
T
1
,c

o
m

m
it
>

C
h
e
ck

p
o
in

t

<
T
2
,B

,1
7
>

<
T
2
,c

o
m

m
it
>

<
T
3
,C

,2
1
>

Crash
...

Key drawbacks:

• Undo logging: cannot bring backup DB

copies up to date

• Redo logging: need to keep all modified

blocks in memory

until commit

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 18

Solution: undo/redo logging!

Update <Ti, Xid, New X val, Old X val>

page X

Rules

• Page X can be flushed before or

after Ti commit

• Log record flushed before corresponding

updated page (WAL)

• Flush at commit (log only)

Fall 2007 Chris Clifton - CS541

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 19

Non-quiesce checkpoint

L
O
G

for
undo dirty buffer

pool pages
flushed

Fall 2007 Chris Clifton - CS541

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

.........
..
.

Examples what to do at recovery

time?

no T1 commit

L

O

G

Fall 2007 Chris Clifton - CS541

T1,-
a

...
Ckpt
T1

...
Ckpt
end

...
T1-
b

...

 Undo T1 (undo a,b)

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 20

Example

L
O
G

Fall 2007 Chris Clifton - CS541

...
T1
a

... ...
T1
b

... ...
T1
c

...
T1
cmt

...
ckpt-
end

ckpt-s
T1

 Redo T1: (redo b,c)

Recovery process:

• Backwards pass (end of log latest checkpoint start)

– construct set S of committed transactions

– undo actions of transactions not in S

• Undo pending transactions

– follow undo chains for transactions in

(checkpoint active list) - S

• Forward pass (latest checkpoint start end of log)

– redo actions of S transactions
backward pass

forward pass
start
check-
point

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 21

CS54200: Distributed

Database Systems

Recovery

4 February 2009

Prof. Chris Clifton

Fuzzy Checkpointing

• Cache consistent checkpoint can be further
improved by reducing the amount of data
flushed.

• Flush only those slots that have not been
flushed since the previous (penultimate)
checkpoint.

• Expect that normal cache replacement will
have more time to flush dirty cache slots
quicker checkpoint.

• Of course, now recovery has to go back a
little further!

59

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 22

Recovery

• Restart redoes just those updates of txns

in commit list that come after the

penultimate checkpoint

• Undoes the updates of those txns that are

either in the active (but not commit) list, or

are in the abort list and follow the

penultimate checkpoint marker in the abort

list.

60

Idempotence of Restart

• Recovery must be resilient to failure too.

• I.e. if there is a failure during recovery, when we

start recovery again, the recovered state should

be no different than if the second failure had not

taken place.

• Therefore, the restart procedure should not

modify the stable DB or log in a manner that will

affect subsequent recovery – even temporarily.

66

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 23

Optimizations

• To reduce the amount of work restart has to do,
we can avoid certain undo/redo operations.

• During backward scan for [Ti,x,v] in AL, need
not undo this operation if:
– A1: Ti’s abort lies between CKPT and CKPT’, but x is

not among the dirty items at CKPT.

– A2: Ti’s abort record lies between CKPT and CKPT’,
and x was in a dirty cache slot at CKPT, but its stable-
LSN (saved in CKPT) is greater than the LSN of Ti’s
abort record.

94

Optimizations

• In the forward scan, [Ti,x,v], where Ti is in CL, need
not be redone if:
– C1: Ti’s update record lies between CKPT and CKPT’, but

x is not in the list of dirty cache slots at CKPT; or

– C2: Ti’s update record lies between CKPT and CKPT’, x is
in the list of data items in dirty cache slots at CKPT, but its
stable-LSN is greater than the LSN of the update record at
hand.

• RM can improve performance in case of multiple
failures by appending two CKPT records at the end
of recovery. No work needs to be done upon
successive recovery unless new operations have
been processed.

95

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 24

Logical Logging

• Logical logging can significantly reduce the
amount of storage needed for the log, e.g. add
entry 5 to B-tree, adding a record to a file.

• We must be able to log, undo, and redo each
logical operation.

• However, multiple undo/redo of logical
operations are not equivalent – we must be
careful!!

• Could be solved by implementing undo/redo
such that they are idempotent – not always
possible.

96

Alternative 2

• Another alternative is to save a copy of the
stable DB at the last checkpoint.

• Restart essentially replays operations from
the checkpoint:
– It begins with the checkpoint DB state, and

• Undoes all updates that precede the CKPT, but were
by txns that were active at CKPT and did not commit;

• Redoes update records that follow CKPT by committed
txns.

– From strictness this is exactly what we want.

• IBM system R used this with shadowing.

97

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 25

Alternative 3

• Another solution is to save LSNs in the stable
DB.

• Each data item on stable DB saves the LSN of
the last update applied to it by an active or
committed txn.

• For performance, we chain back the updates for
each data item in the log (as well as for each
txn).

• New algo: LSN-based logical logging.

• Assume logical logging with fuzzy checkpointing;
strict executions;

98

LSN-based Logical Logging

• RM-Write:

– Create an update record, U

– save current LSN(x) in U

– Update x, set LSN(x) LSN(U).

• RM-Abort:

– Upon undo for record U restore LSN(x) prev

LSN(x) saved in U.

• Restart scans back from the end of the log for

undo, and fwd from CKPT’ to redo, as before.

99

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 26

Backward Scan

• In backward scan of restart, when dealing with an

update record U by Ti (aborted) for x:

– Fetch x and examine LSN(x)

– If LSN(x)=LSN(U) (x is in the same state after U was

applied), then undo U, set LSN(x) to the value stored in U.

– If LSN(x) < LSN(U) (x does not contain U’s update) – do

not undo U.

– If LSN(x) > LSN(U): x contains a later update (V) – which

was not undone, so V follows U and must have committed

(o/w LSN(x) must have been set to LSN(U) as above). By

strictness, U must have been undone before V was

applied, thus no need to undo U.

100

Forward Scan

• Backward scan ends as with physical logging.

• Forward scan begins at CKPT’, and processes
each update record U of committed txns.
– If LSN(x) < LSN(U), then U hasn’t been applied

redo U

– If LSN(x) = LSN(U), then U has been applied, need
not redo.

– If LSN(x) > LSN(U), then a later committed (cannot be
an aborted or active txn – why?) update has been
applied, so no need to redo.

• LSNs in stable DB can help with physical logging
too.

101

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 27

No-Undo/No-Redo RM!!

• We want to ensure that:

– Updates of committed txns are stable before commit

– Updates of uncommitted txns are not!

• I.e. we want the commit operation to atomically

insert all updates of a txn to the stable DB and

mark the txn as commited.

• How can this be done?

• Solution: SHADOWINGSHADOWING

109

110

x

y

z

x

y

z

Directory 0

MASTER 0

w1[y] w2[x]

x

y

z

Directory 1

y1

x2

c1

y1

x2

T1

T2

c2

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 28

No-Undo/No-Redo Algorithm

• Let Db represent the current stable DB, D0, D1

are the two possibilities.

• For each txn Ti, there is a directory Di.

• Di[x] refers to the pointer for x in Di.

• Master pointer, directories must be stable.

• RM-Write(Ti,x,v):
– Write v into new location on stable storage, save

address in Di[x].

– Ack

111

No-Undo/No-Redo Algorithm

• RM-Read(Ti,x):
– If Ti has written x, return from Di[x].

– Otherwise, return from Db[x].

• RM-Commit(Ti):
– For each x updated by Ti: D-b[x] Di[x], where b

is the current value of Master.

– Master -b

– For each x updated by Ti: D-b[x] Di[x], where b
is the (new) value of Master.

– Discard Di.

– Acknowledge Commit.

112

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 29

No-Undo/No-Redo Algorithm

• RM-Abort(Ti):

– Add Ti to the abort list.

– Acknowledge

• Restart

– Copy Db into D-b

– Free storage for active txn directories and
their copies

– Acknowledge end of restart

113

Media Failure

• So far, we have relied on the stable storage to
bail us out.

• What happens in there is a disk crash – I.e. a
Media Failure?

• A Media failure results in the loss of all or part of
the stable storage (stable DB and stable LOG).

• Nothing is peculiar to Databases for such
failures:
– We can solve (avoid) by using redundancy (RAID,

mirroring, etc.).

– Archiving: idea similar to checkpointing.

114

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 30

Archiving

• Similar to checkpoint: archive vs. stable CKPT.

• Stable (regular) CKPT:

– Update the log to indicate what is in stable DB

– Update the stable DB to includes updates that are

only in cache.

• Archive CKPT:

– Update the log to indicate what is in the archive DB

– Update the achive DB to include updates that are only

in stable DB and cache.

118

DB Dump + Log

Fall 2007 Chris Clifton - CS541

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 31

When can log be discarded?

Fall 2007 Chris Clifton - CS541

check-
point

db
dump

last
needed
undo

not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

log

time

