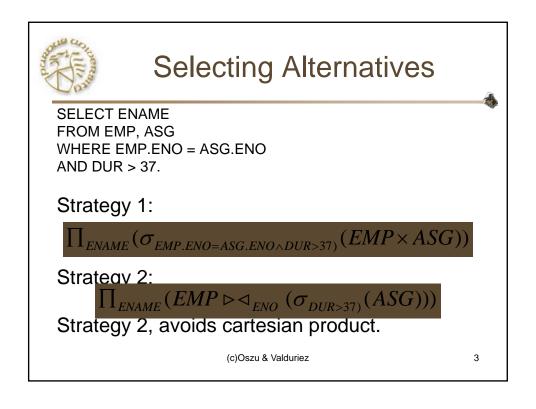


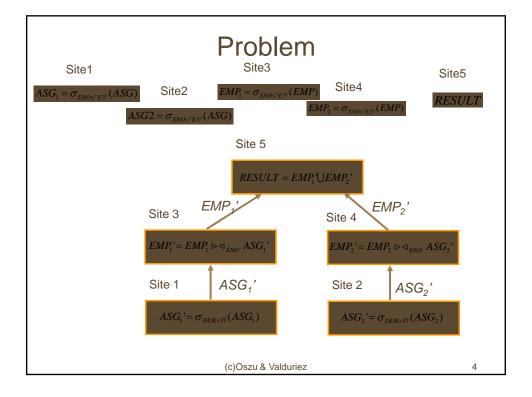
Introduction

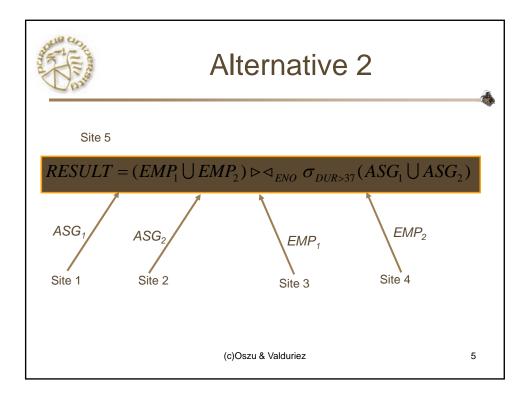
- Query Processing
 - Converting user commands from the query language (SQL) to low level data manipulation commands.
 - SQL is declarative it describes the properties of the result, not the operations to produce it.
- Query Optimization
 - Determining the "best" or a good execution plan for the query.

(c)Oszu & Valduriez

2







Cost of Alternatives

- Size(EMP) = 400; size(ASG)=1000
- Tuple access cost (TAC) = 1unit; tuple xfer cost (TXC) =10units

Strategy 1

- Produce ASG': (10+10)*TAC = 20
- Transfer ASG': (10+10)*TXC = 200
- Produce EMP': (10+10)*TAC*2 = 40
- Transfer EMP' to result site: (10+10)*TXC = 200
- Total COST = 460.

(c)Oszu & Valduriez

6

Cost of alternatives (cont)

- Strategy 2
 - Transfer EMP to site 5: 400*TXC = 4000
 - Transfer ASG to site 5: 1000*TXC = 10,000
 - Produce ASG': 1000*TAC = 1,000
 - Join EMP and ASG': 400*20*TAC = 8,000
 - TOTAL COST = 23,000!!

(c)Oszu & Valduriez

7

Query Optimization Objectives

- Minimize a cost function
 - I/O cost + CPU cost + communication cost
- These may have different weights in different distributed environments
- Wide area networks
 - Communication cost will dominate
 - Low bandwidth
 - · Low speed
 - · High protocol overhead
 - Most algorithms ignore all other cost components

(c)Oszu & Valduriez

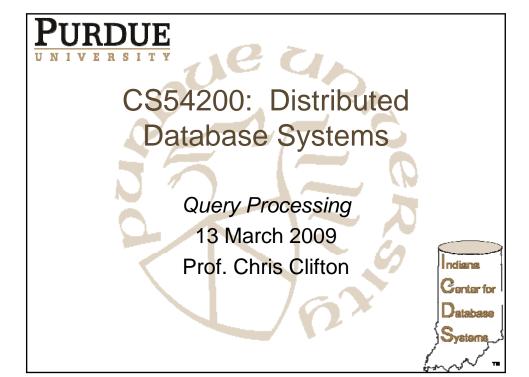
8

Query Optimization Objectives

- Local area networks
 - Communication cost not that dominant
 - Total cost function should be considered
- Can also maximize throughput.

(c)Oszu & Valduriez

9



Co	omplexity of Relational Operators			
	Operation	Complexity		
Assume Relations of cardinality <i>n</i> Sequential scan	Select, Project (without duplicate elimination)	O(n)		
	Project (w/ duplicate elimination) Group	$O(n \log n)$		
	Join Semijoin Division Set Operators	$O(n \log n)$		
	Cartesian Product (c)Oszu & Valduriez	$O(n^2)$		

Issues: Types of Optimizers

- Exhaustive Search
 - Cost-based
 - Optimal
 - Combinatorial complexity in # of relations
- Heuristics
 - Not optimal
 - Regroup common sub-expressions
 - Perform selection, projection first
 - Replace a join by a series of semijoins
 - Reorder operations to reduce intermediate relation size
 - Optimize individual operations

(c)Oszu & Valduriez

12

Issues: Optimization Granularity

- Cannot use common intermediate results
- Multiple queries at a time
 - Efficient if many similar queries
 - Decision space is much larger

(c)Oszu & Valduriez

13

Issues: Optimization timing

- Compilation optimize prior to execution
- Difficult to estimate the size of the intermediate results, error propagation
- Can amortize over many executions
- R*
- Dynamic
 - Run time optimization
 - Exact information on the intermediate reln. Sizes
 - Have to reoptimize for multiple executions
 - Distributed INGRES

(c)Oszu & Valduriez

14

Issues: Optimization Timing

- Compile a static algorithm
- If the error in estimate sizes > threshold, reoptimize at runtime
- MERMAID

(c)Oszu & Valduriez

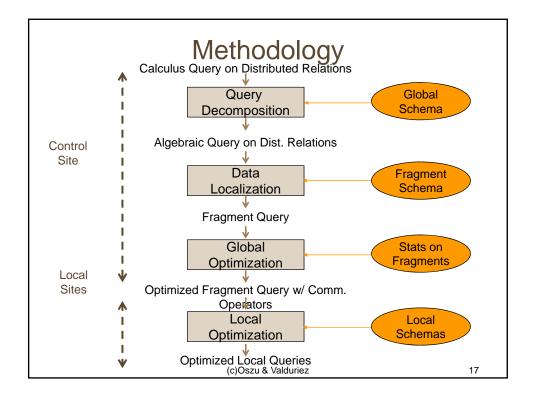
15

Issues: Statistics

- Cardinality
- Size of a tuple
- Fraction of tuples participating in a join
- Attribute
 - Cardinality of domain
 - Actual number of distinct values
- Common assumptions
 - Independence between different attribute values
 - Uniform distribution of attribute values within their domain

(c)Oszu & Valduriez

16



Step 1 – Query Decomposition

- · Input: Calculus query on global relations
- Normalization
 - Manipulate query quantifiers and qualification
- Analysis
 - Detect and reject "incorrect" queries
 - Possible for only a subset or reln. Calculus
- Simplification
 - Eliminate redundant predicates
- Restructuring
 - Calculus query → algebra query
 - More than one translation is possible
 - Use transformation rules.

(c)Oszu & Valduriez

18

Normalization

- Lexical and syntactic analysis
 - Check validity (similar to compilers)
 - Check for attributes and relations
 - Type checking on quantification
- Put into normal form
 - Conjunctive normal form
 - Disjunctive normal form
 - ORs mapped into union
 - ANDs mapped into join or selection

(c)Oszu & Valduriez

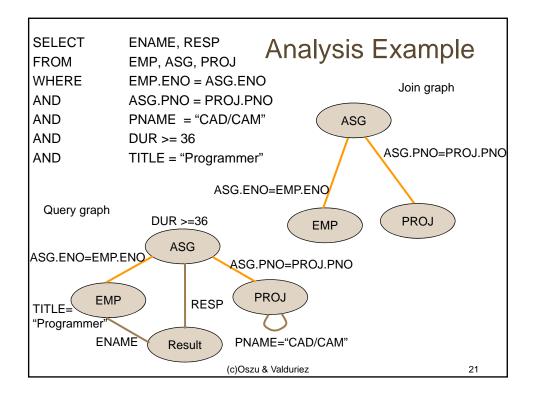
19

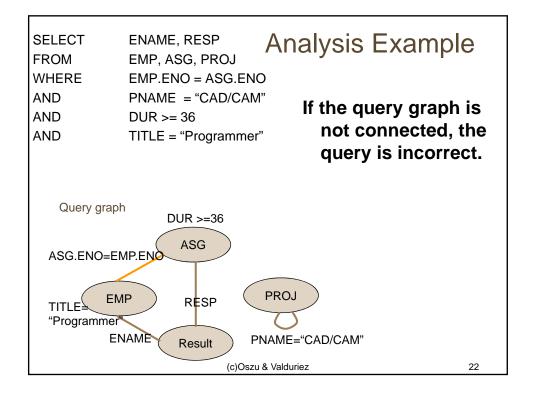
Analysis

- Type incorrect
 - If any of its attribute or relation names are not defined in the global schema
 - If operations are applied to attributes of the wrong type
- Semantically incorrect
 - Components do not contribute to result
 - Only a subset of reln. Calculus can be tested for correctness
 - Those that do not contain disjunction and negation
 - To detect
 - · Connection graph (query graph)
 - · Join graph

(c)Oszu & Valduriez

20





Simplification

- Why simplifiy?
 - Remember the example
- How? Use transformation rules
 - Elimination of redundancy
 - Idempotency rules
 - Application of transitivity
 - Use of integrity rules

(c)Oszu & Valduriez

23

Simplification Example

SELECT TITLE FROM EMP

WHERE EMP.ENAME = "J. DOE"

AND (NOT(EMP.TITLE="Programmer")
AND (EMP.TITLE="Programmer"
OR EMP.TITLE="Elect. Engg.")
AND NOT(EMP.TITLE="Elect. Engg."))

SELECT TITLE FROM EMP

WHERE EMP.ENAME = "J. DOE"

(c)Oszu & Valduriez

24

Restructuring Convert calculus to algebra Make use of query trees (DUR=12 OR DUR) Example - Find names of employees other than J. Doe who worked on the CAD/CAM project for 1 or 2 years. SELECT **ENAME FROM** EMP, ASG, PROJ WHERE EMP.ENO = ASG.ENO AND ASG.PNO = PROJ.PNO **AND** EMP.ENAME<>"J. DOE" **AND** PNAME = "CAD/CAM" **PROJ** ASG **EMP AND** (DUR = 12 OR DUR = 24) (c)Oszu & Valduriez 26

Transformation Rules

Commutativity of binary operators

 $R \times S \iff S \times R$

 $R \rhd \lhd S \Leftrightarrow S \rhd \lhd R$

 $R \cup S \Leftrightarrow S \cup R$

Associativity of binary operators

 $(R \times S) \times T \Leftrightarrow R \times (S \times T)$ $(R \rhd \lhd S) \rhd \lhd T \Leftrightarrow R \rhd \lhd (S \rhd \lhd T)$

Idempotence of Unary operators

 $(\prod_{A'}(\prod_{A'}(R)) \Leftrightarrow \prod_{A'}(R)$ $(\sigma_{p1(A1)}(\sigma_{p2(A2)}(R)) \Leftrightarrow \sigma_{p1(A1) \wedge p2(A2)}(R)$

– Where R[A] and $A' \subseteq A$

Commuting selection with projection

(c)Oszu & Valduriez

27

Transformation Rules

Commuting selection with binary operators

$$\sigma_{p(A)}(R \times S) \Leftrightarrow (\sigma_{p(A)}(R)) \times S$$

$$\sigma_{p(Ai)}(R \bowtie_{Aj,Bk} S) \Leftrightarrow (\sigma_{p(Ai)}(R)) \bowtie_{Aj,Bk} S$$

$$\sigma_{p(Ai)}(R \bigcup S) \Leftrightarrow (\sigma_{p(Ai)}(R)) \bigcup S$$

- Where R_i belongs to R and T
- Commuting projection with binary operators

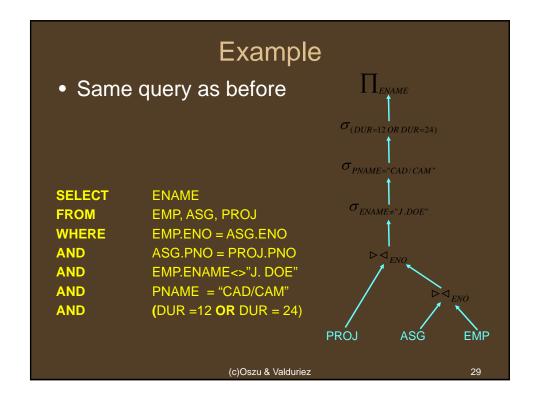
$$\frac{\prod_{C}(R \times S) \Leftrightarrow \prod_{A'}(R) \times \prod_{B'}(S)}{\prod_{C}(R \bowtie_{Aj,Bk} S) \Leftrightarrow \prod_{A'}(R) \bowtie_{Aj,Bk} \prod_{B'}(S)}$$

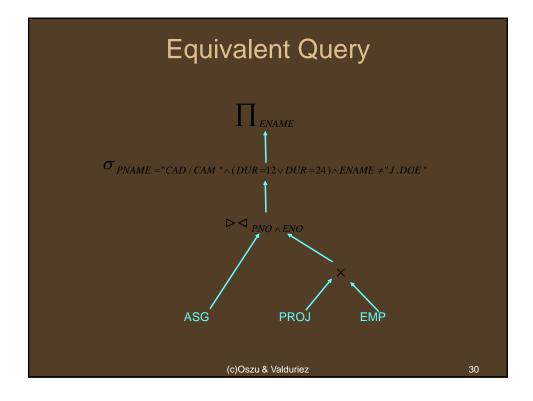
$$\frac{\prod_{C}(R \cup S) \Leftrightarrow \prod_{C}(R) \cup \prod_{C}(S)}{\prod_{C}(R \cup S) \Leftrightarrow \prod_{C}(R) \cup \prod_{C}(S)}$$

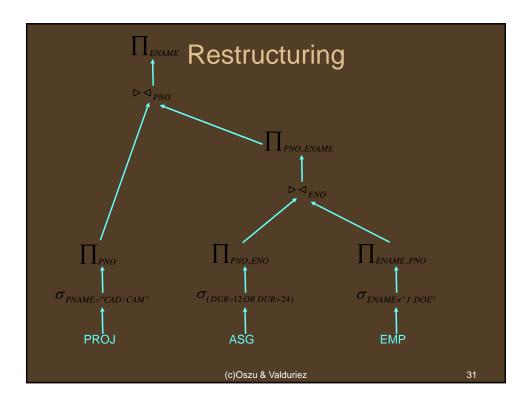
- Where R[A] and S[B]; where $C = A \cup B'$ $A' \subseteq A$ $B' \subseteq B$

(c)Oszu & Valduriez

28





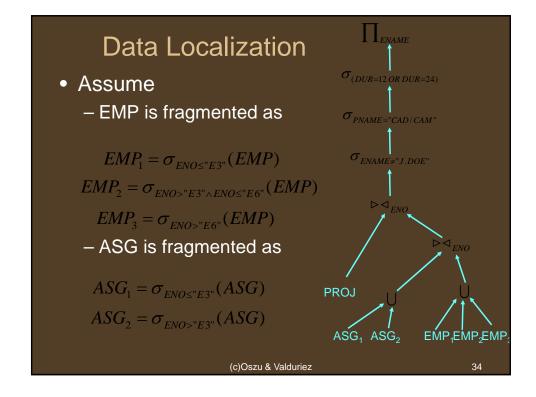


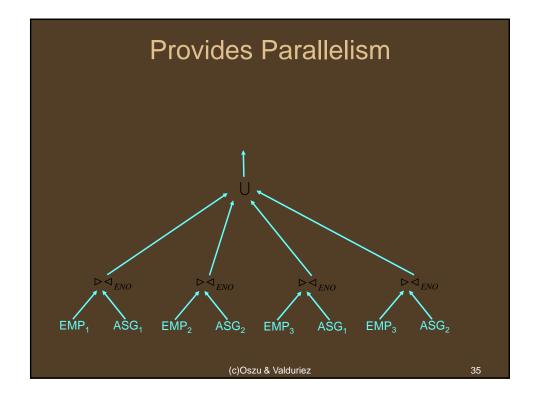
Data Localization

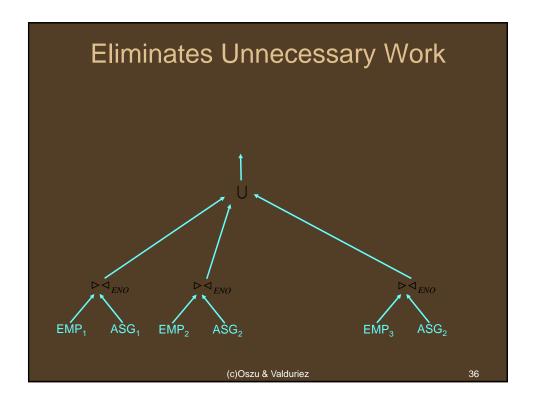
- Input: Algebraic query on distributed relations
- Determine which fragments are involved
- Localization program
 - Substitute for each global query its materialization program
 - optimize

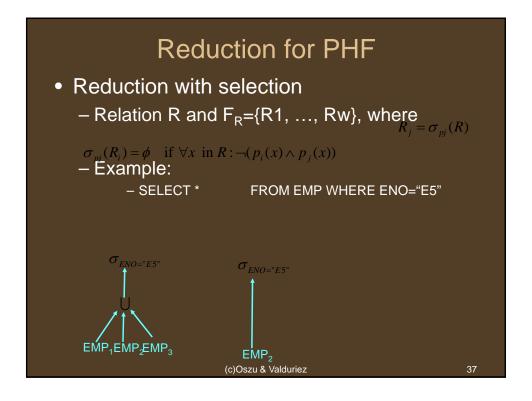
(c)Oszu & Valduriez

33









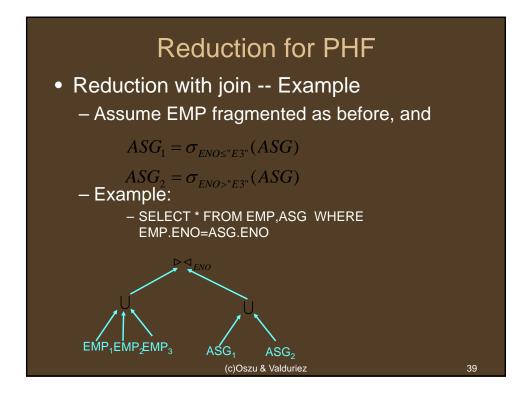
Reduction for PHF

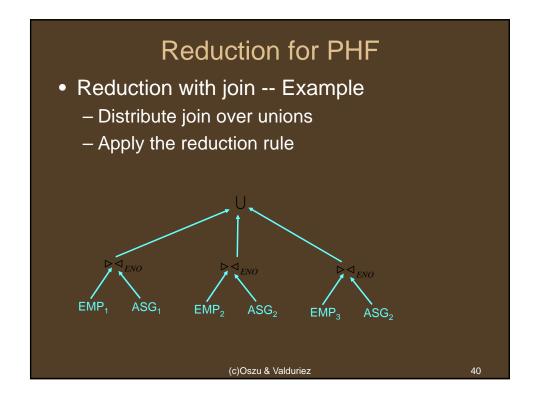
- Reduction with join
 - Possible if fragmentation is done on join attribute
 - Distribute join over unions $(R_1 \cup R_2)$ ▷ \triangleleft $S \Leftrightarrow (R_1 \triangleright \triangleleft S) \cup (R_2 \triangleright \triangleleft S)$
 - Given $R_i = \sigma_{pi}(R)$ and $R_j = \sigma_{pj}(R)$

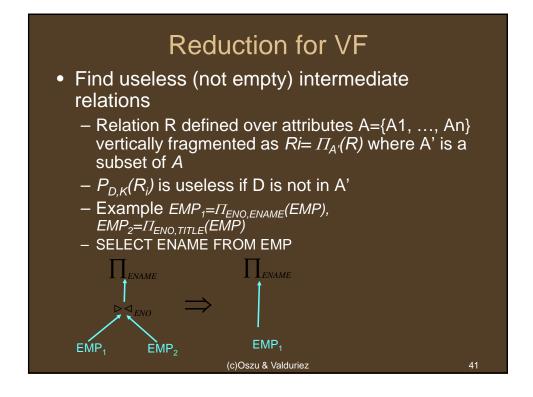
 $R_i \triangleright \triangleleft R_j = \emptyset$ if $\forall x \text{ in } R_i \forall y \text{ in } R_j : \neg (p_i(x) \land p_j(y))$

(c)Oszu & Valduriez

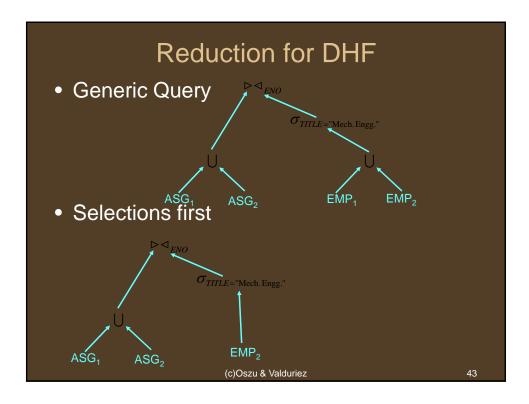
38

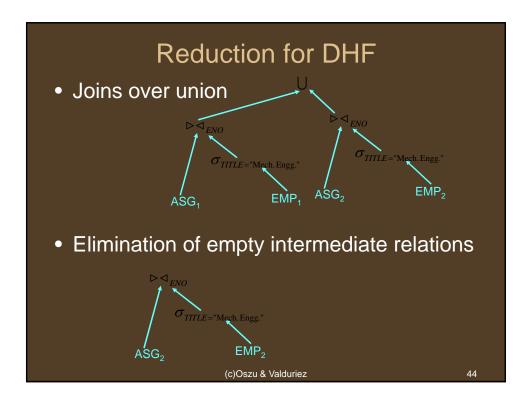






Reduction for DHF Rule: - Distribute join over unions - Apply the join reduction for horizontal fragmentation Example $ASG_1 = ASG \gt \lt_{ENO} (EMP_1)$ $ASG_2 = ASG \gt \lt_{ENO} (EMP_2)$ $EMP_1 = \sigma_{TITLE = "Programmer"}(EMP)$ $EMP_2 = \sigma_{TITLE \neq "Programmer"}(EMP)$ – Query: **SELECT** FROM EMP, ASG ASG.ENO=EMP.ENO WHERE **AND** EMP.TITLE="Mech. Engg" (c)Oszu & Valduriez 42



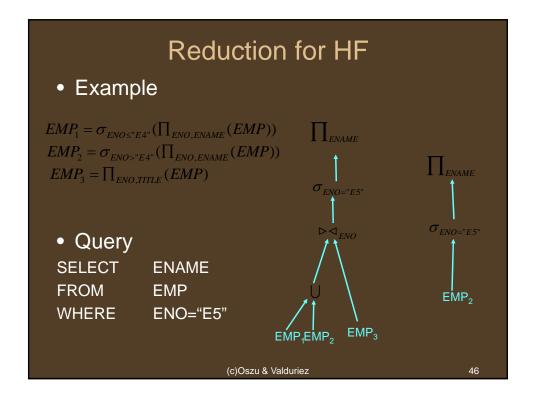


Reduction for HF

- Remove empty relations generated by contradicting selections on horizontal fragments
- Remove useless relations generated by projections on vertical fragments
- Distribute joins over unions in order to isolate and eliminate useless joins

(c)Oszu & Valduriez

45



Step 3 – Global Optimization

- Input: Fragment query
- Find the best (not necessarily optimal) global schedule
 - Minimize a cost function
 - Distributed join processing
 - · Bushy vs. linear trees
 - Which relation to ship where?
 - Ship-whole vs. ship-as-needed
 - Decide on use of semijoins
 - Join methods
 - Nested loop vs. ordered joins (merge join or hash join)

(c)Oszu & Valduriez

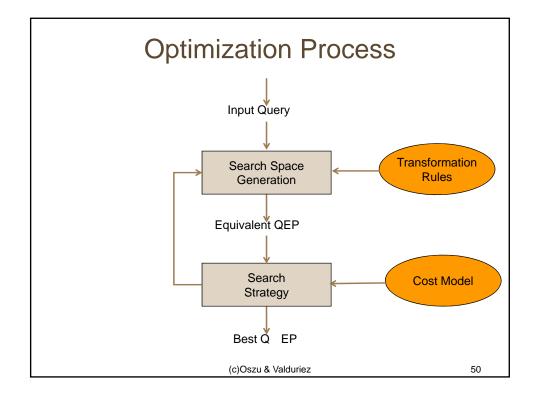
48

Cost Based Optimization

- The set of equivalent algebra expression (query trees)
- Cost function (in terms of time)
 - I/O + CPU + Communication
 - · Different weights
 - Can also maximize throughput
- Search algorithm
 - How do we move inside the solution space?
 - Exhaustive search, heuristic algorithms (iterative improvement, simulated annealing, genetic, ...)

(c)Oszu & Valduriez

49



Search Space

- Search space characterized by alternative execution plans
- Focus on join trees
- For N relations, there are O(N!) equivalent join trees that can be obtained by applying commutativity and associativity rules

SELECT ENAME, RESP FROM EMP, ASG, PROJ WHERE EMP.ENO=ASG.ENO AND ASG.PNO=PROJ.PNO

(c)Oszu & Valduriez

51

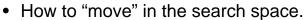
Search Space

- Restrict by means of heuristics
 - Perform unary operations before binary operations
- Restrict the shape of the join tree
 - Consider only linear trees, ignore bushy ones

(c)Oszu & Valduriez

52

Search Strategy



- Deterministic
 - Start from base relations and build plans adding one relation at each step
 - Dynamic programming: breadth-first
 - Greedy: depth first
- Randomized
 - Search for optimalities around a particular point
 - Trade opt. Time for execution time
 - Better when > 5-6 relations
 - Simulated annealing
 - Iterative improvement

(c)Oszu & Valduriez

53

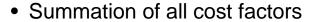
Cost Functions

- Total Time (or Total Cost)
 - Reduce each cost (in terms of time) component individually
 - Do as little of each component as possible
 - Optimizes the utilization of resources → increases system throughput
- Response Time
 - Do as many things as possible in parallel
 - May increase total time because of increased total activity

(c)Oszu & Valduriez

54

Total Cost



- Total cost = CPU cost + I/O cost + comm. Cost
- CPU cost = unit instruction cost * no. of instructions
- I/O cost = unit disk I/O cost * no. of disk I/Os
- Communication cost = message initiation + transmission

(c)Oszu & Valduriez

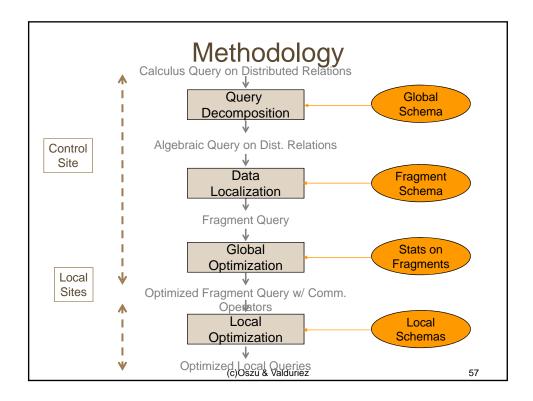
55

Total Cost Factors

- Wide area networks
 - Message initiation and transmission costs high
 - Local processing cost is low (fast mainframes or minicomputers)
 - Ratio of comm to I/O costs = 20:1
- Local Area networks
 - Communication and local processing costs are more or less equal
 - Ratio = 1:1.6

(c)Oszu & Valduriez

56



Optimization Statistics

- Primary cost factor: size of intermediate relations
- Make them precise → more costly to maintain
 - For each relation
 - Length of each attribute: length(Ai)
 - The number of distinct values for each attribute in each fragment: $\operatorname{card}(\Pi_{\mathit{Ai}}, \mathit{Rj})$
 - Max and min values in each domain or each attribute
 - Cardinalities of each domain: card(dom[Ai])
 - Cardinalities of each fragment: card(Rj)
 - Selectivity factor of each operation for relations
 - For joins:

 $SF_{\bowtie}(R,S) = \frac{card(R \bowtie S)}{card(R)*card(S)}$

(c)Oszu & Valduriez

58

Intermediate Relation Size

- $Size(R) = card(SF_{\sigma}(R))*length(R)$
- $Card(\sigma_F(R))=SF_{\sigma}(R)*card(R)$
- Where
- $-SF_{\sigma}(A=value)=1/(card(P_{A}(R)))$
- $-SF_{\sigma}(A>value) = (max(A)-value)/(max(A)-min(A))$
- $-SF_{\sigma}(A < value) = (value min(A))/(max(A) min(A))$
- $-SF_{\sigma}(p(Ai)^{n}p(Aj))=SF_{\sigma}(P(Ai))^{*}SF_{\sigma}(P(Aj))$
- $-SF_{\sigma}(p(Ai) \lor p(Aj))=SF_{\sigma}(p(Ai)+SF_{\sigma}(P(Aj)-SF_{\sigma}(p(Ai)*SF_{\sigma}(P(Aj))$
- SF_{\sigma}(A in value)=SF_{\sigma}(A=value)*card({values})

(c)Oszu & Valduriez

59

Intermediate Relation Size

- Projection
 - $Card(P_A(R)) = card(R)$
- Cartesian Product
 - $Card(R \times S) = card(R) * card(S)$
- Union
 - Upper bound: card(R U S) = card(R)+ card(S)
 - Lower bound: card(R U S) = max{card(R), card(S)}
- Set difference
 - Upper bounds: card(R-S)= card(R)
 - Lower bounds: 0

(c)Oszu & Valduriez

60

Intermediate Relation Size

- Join
 - Special case: A is a key of R and B is a foreign key of S: card(R ▷ ▷ ¬ A=B S) = card(S)
 - More general: $card(R \triangleright \triangleleft S) = SF_{\triangleright \triangleleft} * card(R) * card(S)$
- Semijoin

$$card(R \triangleright <_{A} S) = SF_{\triangleright <}(S.A) * card(R)$$

- where

$$SF_{\triangleright <}(R \triangleright <_A S) = SF_{\triangleright <}(S.A) = \frac{card(\prod_A(S))}{card(dom[A])}$$

(c)Oszu & Valduriez

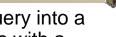
61

Centralized Query Opt.

- **INGRES**
 - Dynamic
 - Interpretive
- System R
 - Static
 - Exhaustive search

(c)Oszu & Valduriez

INGRES Algorithm



- Decompose each multi-variable query into a sequence of mono-variable queries with a common variable
- Process each by a one variable query processor
 - Choose an initial execution plan (heuristics)
 - Order the rest by considering intermediate relation sizes

No statistical information is maintained.

(c)Oszu & Valduriez

63

INGRES – Decomposition

- Replace an n variable query q by a series of queries
 - $-q_1 \rightarrow q_2 \rightarrow \dots \rightarrow q_n$
 - Where q_i uses the result of q_{i-1}
- Detachment
 - Query q decomposed into $q' \rightarrow q''$ where q' and q'' have a common variable which is the result of q'
- Tuple substitution
 - Replace the value of each tuple with actual values and simplify the query
 - $-q(V_1, V_2, ..., V_n) \rightarrow (q', (t_1, V_2, ..., V_n), t_1 \text{ in } R)$

(c)Oszu & Valduriez

64

Detachment

Q: SELECT V2.A2, V3.A3, ..., Vn.An

FROMR1 V1, ..., Rn Vn

WHERE P1(V1.A1') AND P2(V1.A1, ... Vn.An)

Q': SELECT V1.A1 INTO R1'

FROMR1 V1

WHERE P1(V1.A1')

Q": SELECT V2.A2, V3.A3, ..., Vn.An

FROMR1' V1, ..., Rn Vn

WHERE P2(V1.A1, ... Vn.An)

(c)Oszu & Valduriez

65

Detachment Example

· Names of employees working in CAD/CAM

Q1: SELECT EMP.ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND PROJ.PNAME= "CAD/CAM"

Q11: SELECT PROJ.PNO INTO JVAR

FROM PROJ

WHERE PROJ.PNAME="CAD/CAM"

Q': SELECT EMP.ENAME FROM EMP, ASG, JVAR WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=JVAR.PNO

(c)Oszu & Valduriez

66

67

Q': SELECT EMP.ENAME

FROM EMP, ASG, JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO

Q12: SELECT ASG.ENO INTO GVAR

FROM JVAR, ASG

WHERE ASG.PNO=JVAR.PNO

Q13: SELECT EMP.ENAME FROM EMP, GVAR

WHERE EMP.ENO=GVAR.ENO

(c)Oszu & Valduriez

Tuple Substitution

- Q₁₁ is a mono-variable query
- Q₁₂ and Q₁₃ are subject to tuple substitution
- Assume GVAR has two tuples only: <E1><E2>
- Then q13 becomes

Q131: SELECT EMP.ENAME

FROM EMP

WHERE EMP.ENO="E1"

Q132: SELECT EMP.ENAME

FROM EMP

WHERE EMP.ENO="E2"

(c)Oszu & Valduriez

68

System R Algorithm

- Simple (I.e. mono-relation) queries are executed according to the best access path
- Execute joins
 - Determine the possible ordering of joins
 - Determine the cost of each ordering
 - Choose the join ordering with minimal cost

(c)Oszu & Valduriez

70

System R Algorithm

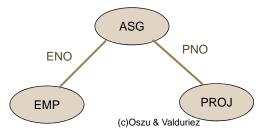
- For joins, two alternative algos:
- Nested Loops
 - For each tuple of external relation (N1)
 - For each tuple of internal relation (N2)
 Join two tuples if predicate is true
 - End
 - End
 - Complexity: N1*N2
- Merge Join
 - Sort relations
 - Merge relations
 - Complexity: N1+N2 if relations are sorted and equijoiin.

(c)Oszu & Valduriez

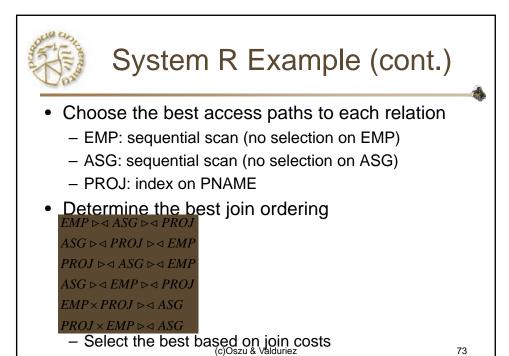
71

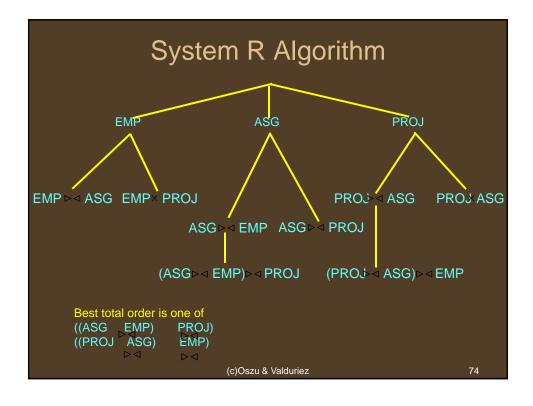
System R – Example

- Assume
 - EMP has an index on ENO,
 - ASG has an index on PNO,
 - PROJ has an index on PNO and one on PNAME



72





System R Algorithm

- ((PROJ ASG) EMP) has a useful index on the select attribute and direct access to the join attribute of ASG and EMP
- Therefore, chose it with the following access methods:
 - Select PROJ using index on PNAME
 - Then join with ASG using index on PNO
 - Then join with EMP using index on ENO

(c)Oszu & Valduriez

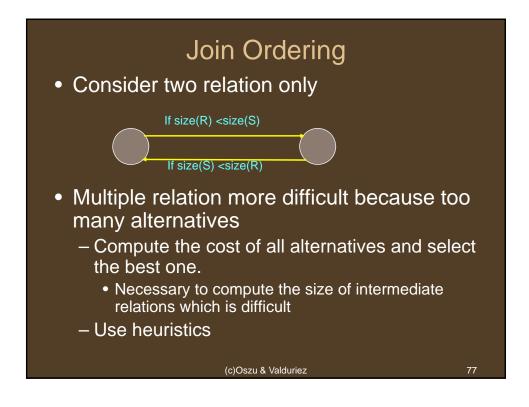
75

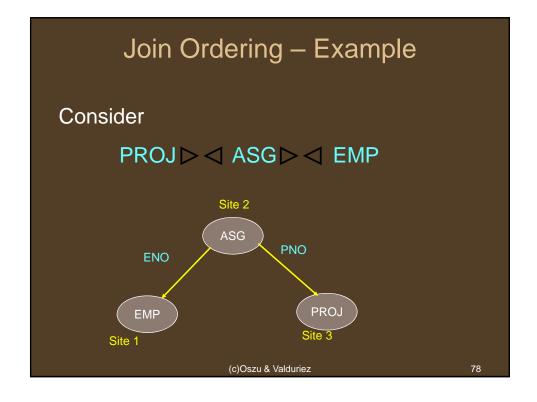
Join Ordering in Fragment Queries

- Distributed INGRES
- System R*
- Semijoin ordering
 - SDD-1

(c)Oszu & Valduriez

76





Semijoin Algorithms

- Consider the join of two relations:
 - R[A] (located at site 1)
 - S[A] (located at site 2)
- Alternatives
 - Do the join $R \triangleright \triangleleft_A S$
 - Perform one of the semijoin equivalents

$$\begin{split} R \rhd \lhd_A S & \Leftrightarrow (R \rhd <_A S) \rhd \lhd_A S \\ R \rhd \lhd_A S & \Leftrightarrow R \rhd \lhd_A (S \rhd <_A R) \\ R \rhd \lhd_A S & \Leftrightarrow (R \rhd <_A S) \rhd \lhd_A (S \rhd <_A R) \end{split}$$

(c)Oszu & Valduriez

79

Semijoin Algorithms

- Perform the join
 - Send R to site 2
 - Site 2 computes the join
- Consider semijoin $R \bowtie_A S \Leftrightarrow (R \bowtie_A S) \bowtie_A S$
 - $\overline{}$ $S' \leftarrow \prod_A (S)$
 - S' → Site 1
 - Site 1 computes $R' = R \triangleright <_A S'$
 - $-R' \rightarrow Site 2$
 - Site 2 computes $R' \triangleright \triangleleft_A S$

Semijoin is better if

$$size(\prod_{A}(S)) + size(R \rhd <_{A} S)) < size(R)$$

(c)Oszu & Valduriez

80

Distributed INGRES Algorithm

- Same as centralized version except
 - Movement of relation (and fragments) need to be considered
 - Optimization with respect to communication cost or response time possible

(c)Oszu & Valduriez

82

R* Algorithm

- Considers only joins
- Exhaustive search
- Compilation
- Published papers provide solutions to handling horizontal and vertical fragmentations but the implemented prototype does not

(c)Oszu & Valduriez

83

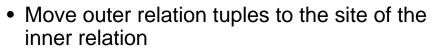
R* Algorithm

- Performing Joins
- Ship Whole
 - Larger data transfer
 - Smaller number of messages
 - Better if relation are small
- Fetch as needed
 - Number of message O(card of external relation)
 - Data transfer per message is minimal
 - Better if relations are large and selectivity is good.

(c)Oszu & Valduriez

84

R*: Vertical part. and joins



- Retrieve outer tuples
- Send them to the inner relation site
- Join them as they arrive
- Total cost = cost(retrieving qualified outer tuples)+ no. of outer tuples fetched * cost(retrieving qualified inner tuples) + msg. Cost *(no. outer tuples fetched * avg. outer tuple size) /msg. size

(c)Oszu & Valduriez

85

R*: Vertical part. and joins

- Move inner relation to the site of the outer reln.
 - Cannot join as they arrive; must be stored
 - Total cost = cost(retrieving qualified outer tuples)
 + no. of outer tuples fetched * cost(retrieving matching inner tuples from temp storage) + cost (retrieving qualified inner tuples) + cost(storing all qualified inner tuples in temp storage) + msg.
 Cost * (no. of inner tuples fetched * avg. inner tuple size) / msg. size

(c)Oszu & Valduriez

86

R*: Vertical part. & joins

- Move both inner and outer relation to another site
- Total cost = cost(retrieving qualified outer tuples) + cost (retrieving qualified inner tuples) + cost(storing inner tuples in storage) + msg. Cost* (no. of outer tuples fetched * avg. outer tuple size)/ msg. Size + msg. Cost*(# inner tuples fetched * avg. inner tuple size) / msg. Size + # outer tuples fetched * cost(retrieving inner tuples from temp storage)

(c)Oszu & Valduriez

87

R*: vertical part. & joins

- Fetch inner tuples as needed
 - Retrieve qualified tuples at outer relation site
 - Send request containing join column value(s) for outer tuples to inner relation site
 - Retrieve matching inner tuples at inner relation site
 - Send the matching inner tuples to outer relation site
 - Join as they arrive
 - Cost = cost(retr. Qual. Outer tuples) + msg. Cost * (# outer tuples fetched) + # inner tuples fetched*(#inner tuples fetched*avg. inner tuple size * msg. Cost/msg. Size) + # outer tuples fetched * cost(retrieving matching inner tuples for one outer value).

(c)Oszu & Valduriez

88

SDD-1 Algorithm

- Semijoins
- No replication
- No fragmentation
- Cost of transferring the result to the user site from the final result site is not considered
- Can minimize either total time or response time

(c)Oszu & Valduriez

90

Hill Climbing Algorithm

- Assume join in between three relations
- Step 1: do initial processing
- Step 2: select initial feasible solution (ES₀)
 - Determine the candidate result sites sites where a relation referenced in the query exists
 - Compute the cost of transferring all the other relns to each candidate site
 - $-ES_0 = candidate site with minimum cost$
- Step 3: determine candidate splits of ES₀ into {ES₁, ES₂}
 - ES₁ consists of sending one of the relations to the other relations site
 - ES₂ consists of sending the join of the relations to the final result site.

(c)Oszu & Valduriez

91

Hill Climbing algorithm

- Step 4: Replace ES₀ with the split schedule which gives cost(ES₁) + cost(local join) + cost (ES₂) < cost(ES₀)
- Step 5: Recursively apply steps 3-4 on ES₁ and ES₂ until no such plans can be found
- Step 6: Check for redundant transmissions in the final plan and eliminate them.

(c)Oszu & Valduriez

92

Hill Climbing Example

 What are the salaries of engineers who work on the CAD/CAM project?

$\prod_{SAL} (PAY \rhd \lhd_{TITLE} (EMP \rhd \lhd_{TITLE}))$	$_{ENO}$ $(ASG \rhd \lhd_{PNO})$	$\sigma_{\scriptscriptstyle \it CAD/\it CAM}(1)$
Relation	Size	Site
EMP	8	1
PAY	4	2
PROJ	4	3
ASG	10	4

- Assume
 - Size of relations is defined as their cardinality
 - Minimize total cost
 - Transmission cost between two sites is 1
 - Ignore local processing cost

(c)Oszu & Valduriez

93

(PROJ))))

Hill Climbing example

- Selection on PROJ; result has cardinality 1

Relation	Size	Site
EMP	8	1
PAY	4	2
PROJ	1	3
ASG	10	4

(c)Oszu & Valduriez

94

Hill Climibing example

- Step 2: initial feasible solution
 - Alt 1: resulting site is site 1
 - Total cost = cost(PAY→ site1) + cost(ASG→site1) + cost(PROJ→ site1) = 4+10+1=15
 - Alt 2: Resulting site is site 2
 - Total cost = 8+10+1 = 19
 - Alt 3: Resulting site is site 3
 - Total cost = 8 + 4 + 10 = 22
 - Alt 4: Resulting site is site 4
 - Total cost = 8 + 4 + 1 = 13
 - Therefore ES₀={EMP→ Site 4; S→ site 4; PROJ → Site 4}

(c)Oszu & Valduriez

95

Hill Climbing example

- Step 3: Determine candidate splits
 - Alternative 1: {ES1, ES2, ES3} where
 - ES1: $EMP \rightarrow Site2$
 - ES2: $(EMP \triangleright \triangleleft PAY) \rightarrow Site4$
 - ES3: $PROJ \rightarrow Site4$
 - Alternative 2: {ES1, ES2, ES3} where
 - ES1: $PAY \rightarrow Site1$
 - ES2: $(PAY \rhd \lhd EMP) \rightarrow Site4$
 - ES3: $PROJ \rightarrow Site4$

(c)Oszu & Valduriez

96

Hill Climbing

- Step 4: Determine the cost of split alternative
 - Cost(Alt 1) = cost(EMP→ Site 2) + cost (Join) + cost (PROJ→ Site 4

$$= 8 + 8 + 1 = 17$$

- Cost(Alt 2) = cost(PAY→ Site 1) + cost (join) + cost (PROJ → site 4)

$$= 4 + 8 + 1 = 13$$

- Decision : do not split
- Step 5: ES₀ is the best
- Step 6: No redundant transmissions.

(c)Oszu & Valduriez

97

Hill Climbing

- Greedy algo → determines an initial feasible solution and iteratively tries to improve it
- If there are local minimas, it may not find global minima
- If the optimal schedule has a high initial cost, it won't find it since it won't choose it as the initial feasible solution
- Example: a better solution is
 - PROJ → Site 4
 - ASG' = (PROJ join ASG) → site 1
 - (ASG' join EMP) → site 2
 - Total cost = 1 + 2 + 2 = 5

(c)Oszu & Valduriez

98