CS542: Distributed Database Systems

PURDUE

CS54200: . Distributed
Database Systems

Query Processing
9 March 2009
Prof. Chris Clifton

Introduction

' (2

* Query Processing

— Converting user commands from the query
language (SQL) to low level data
manipulation commands.

— SQL is declarative — it describes the
properties of the result, not the operations to
produce it.

* Query Optimization

— Determining the “best” or a good execution
plan for the query.

(c)Oszu & Valduriez

Prof. Chris Clifton

3/27/2009

CS542: Distributed Database Systems 3/27/2009

LL“ Ty

Ferim . .

KR Selecting Alternatives
SELECT ENAME *
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND DUR > 37.

Strategy 1:
, avolds cartesian product.
(c)Oszu & Valduriez 3
Problem
Sitel Site3 Site5
A, =0noeer(ASG) | EMRCaoses(EMP) | RESULT
ASG2= 00,5 (ASG) ELEEE]
Site 5
Site 1] ASG/’ Site 2 IASGz’
(c)Oszu & Valduriez 4

Prof. Chris Clifton 2

CS542: Distributed Database Systems

‘@u Alternative 2

Site 5

ASG, ASG, EMP, EMP,
Site 1 Site 2 Site 3 Site 4
(c)Oszu & Valduriez
> o €2,
'.?;.-'._-:-__f—__‘ .
N Cost of Alternatives
- .‘])
¢ Assume

— Size(EMP) = 400; size(ASG)=1000
— Tuple access cost (TAC) = 1unit; tuple xfer cost
(TXC) =10units
e Strategy 1
— Produce ASG’: (10+10)*TAC = 20
— Transfer ASG’: (10+10)*TXC = 200
— Produce EMP’; (10+10)*TAC*2 = 40
— Transfer EMP’ to result site: (10+10)*TXC = 200
— Total COST = 460.

(c)Oszu & Valduriez

Prof. Chris Clifton

3/27/2009

CS542: Distributed Database Systems

Cost of alternatives (cont)

o |

Minimize a cost function
— 1/O cost + CPU cost + communication cost

These may have different weights in different
distributed environments

Wide area networks

— Communication cost will dominate
» Low bandwidth
* Low speed
 High protocol overhead

— Most algorithms ignore all other cost components

(c)Oszu & Valduriez 8

E
e Strategy 2
— Transfer EMP to site 5: 400*TXC = 4000
— Transfer ASG to site 5;: 1000*TXC = 10,000
— Produce ASG’: 1000*TAC = 1,000
—Join EMP and ASG’; 400*20*TAC = 8,000
— TOTAL COST = 23,000!!
(c)Oszu & Valduriez 7
.25 i Query Optimization Objectives
L ﬁ

Prof. Chris Clifton

3/27/2009

CS542: Distributed Database Systems

Prof. Chris Clifton

b Query Optimization Objectives

e Local area networks

— Communication cost not that dominant
— Total cost function should be considered
« Can also maximize throughput.

(c)Oszu & Valduriez

B

PURDUE

CS54200: Distributed
Database Systems

Query Processing
13 March 2009
Prof. Chris Clifton

3/27/2009

CS542: Distributed Database Systems

Complexity of Relational
O Operators
.
Operation Complexity
Assume Select, Project
Relations of cardinality n (Ve\)li?tﬁoutr(;):::)(;icate O(n)
Sequential scan elimination)
Project (w/ duplicate
elimination) O(n |Og n)
Group
Join O(n log n)
Semijoin
Division
Set Operators
Cartesian Product O(nZ)
(c)Oszu & Valduriez 11
54 Issues: Types of Optimizers
» Exhaustive Search
— Cost-based
— Optimal
— Combinatorial complexity in # of relations
* Heuristics
— Not optimal

— Regroup common sub-expressions

— Perform selection, projection first

— Replace a join by a series of semijoins

— Reorder operations to reduce intermediate relation
size

— Optimize individual operations

(c)Oszu & Valduriez 12

Prof. Chris Clifton

3/27/2009

CS542: Distributed Database Systems 3/27/2009

Issues: Optimization
0 Granularity

Single query at a time

— Cannot use common intermediate results
Multiple queries at a time

— Efficient if many similar queries
— Decision space is much larger

(c)Oszu & Valduriez 13

Issues: Optimization timing

e
Fd

Static
— Compilation — optimize prior to execution

— Difficult to estimate the size of the intermediate
results, error propagation

— Can amortize over many executions

— R*

Dynamic

— Run time optimization

— Exact information on the intermediate reln. Sizes
— Have to reoptimize for multiple executions

— Distributed INGRES

(c)Oszu & Valduriez 14

Prof. Chris Clifton 7

CS542: Distributed Database Systems

“&! Issues: Optimization Timing

o |

* Hybrid:
— Compile a static algorithm

— If the error in estimate sizes > threshold,
reoptimize at runtime

— MERMAID

(c)Oszu & Valduriez 15

B

650 Issues: Statistics

Relation

— Cardinality

— Size of a tuple

— Fraction of tuples patrticipating in a join
Attribute

— Cardinality of domain

— Actual number of distinct values

Common assumptions

— Independence between different attribute values

— Uniform distribution of attribute values within their
domain

(c)Oszu & Valduriez 16

Prof. Chris Clifton

3/27/2009

CS542: Distributed Database Systems

Methodology

A Calculus Query on Eistributed Relations
I Query Global
: Decomposition Schema
|
Control I Algebraic Query on Dist. Relations
Site 1 ¥
I Data Fragment
I Localization Schema
|
| Fragment Query
|
I Global Stats on
I Optimization Fragments
Local v
Sites Optimized Fragment Query w/ Comm.
A Opetators
I Local Local
1 Optimization Schemas
! v
v Optimized Local Queries
(c)Oszu & Valduriez 17

Step 1 — Query Decomposition

 Input: Calculus query on global relations
Normalization

— Manipulate query quantifiers and qualification
Analysis

— Detect and reject “incorrect” queries

— Possible for only a subset or reln. Calculus
Simplification

— Eliminate redundant predicates
Restructuring

— Calculus query - algebra query

— More than one translation is possible

— Use transformation rules.

(c)Oszu & Valduriez

[y

8

Prof. Chris Clifton

3/27/2009

CS542: Distributed Database Systems

f’l:".-Qf‘; Normalization

Lexical and syntactic analysis

— Check validity (similar to compilers)
— Check for attributes and relations

— Type checking on quantification
Put into normal form

— Conjunctive normal form

— Disjunctive normal form

— ORs mapped into union

— ANDs mapped into join or selection

(c)Oszu & Valduriez

19

(e Analysis

Refute incorrect queries

Type incorrect

— If any of its attribute or relation names are not defined in
the global schema

— If operations are applied to attributes of the wrong type
Semantically incorrect
— Components do not contribute to result

— Only a subset of reln. Calculus can be tested for
correctness

— Those that do not contain disjunction and negation
— To detect

» Connection graph (query graph)

 Join graph

(c)Oszu & Valduriez

20

Prof. Chris Clifton

3/27/2009

10

CS542: Distributed Database

Systems

SELECT
FROM
WHERE
AND
AND
AND
AND

Query graph

ASG.ENO=EMP.E

ENAME, RESP :

o ase proy AANAlYSIS Example
EMP.ENO = ASG.ENO
ASG.PNO = PROJ.PNO
PNAME = “CAD/CAM”
DUR >= 36

TITLE = “Programmer”

Join graph

ASG.PNO=PROJ.PNO|

ASG.ENO=EMP.ENO

NG ASG.PNO=PROJ.PNO

PROJ

PNAME="CAD/CAM”

(c)Oszu & Valduriez 21

SELECT
FROM
WHERE
AND
AND
AND

Query graph

ENAME, RESP — Anglysis Example
EMP, ASG, PROJ

EMP.ENO = ASG.ENO
PNAME = “CAD/CAM”
DUR >= 36

TITLE = “Programmer”

If the query graph is
not connected, the
guery is incorrect.

DUR >=36

ASG.ENO:EMP.EN

PNAME="CAD/CAM"

(c)Oszu & Valduriez 22

Prof. Chris Clifton

3/27/2009

11

CS542: Distributed Database Systems

3/27/2009

Simplification

Why simplifiy?

— Remember the example

How? Use transformation rules

— Elimination of redundancy
* ldempotency rules

— Application of transitivity
— Use of integrity rules

(c)Oszu & Valduriez

23

=T I &

' (2

Simplification Example

SELECT
FROM
WHERE
AND
AND

OR

AND

TITLE
EMP

EMP.ENAME = “J. DOFE”
(NOT(EMP.TITLE="Programmer”)
(EMP.TITLE="Programmer”
EMP.TITLE="Elect. Engg.”)
NOT(EMP.TITLE="Elect. Engg.”))

SELECT
FROM
WHERE

TITLE
EMP
EMP.ENAME =“J. DOE”

(c)Oszu & Valduriez

24

Prof. Chris Clifton

12

CS542: Distributed Database Systems

Restructuring

» Convert calculus to algebra

Make use of query trees
Example

— Find names of employees other
than J. Doe who worked on the

CAD/CAM project for 1 or 2 ﬁ
years.

|

Associativity of binary operators

— Where R[A] and
Commuting selection with projection

(c)Oszu & Valduriez

SELECT ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND EMP.ENAME<>"J. DOE”
AND PNAME =*“CAD/CAM” PROJ ASG EMP
AND (DUR =12 OR DUR = 24)
(c)Oszu & Valduriez 26
Transformation Rules
» Commutativity of binary operators

27

Prof. Chris Clifton

3/27/2009

13

CS542: Distributed Database Systems

Transformation Rules
« Commuting selection with binary operators

— Where R; belongstoRand T
» Commuting projection with binary operators

— Where R[A] and S[B]; Where_- -

(c)Oszu & Valduriez 28

Prof. Chris Clifton

Example
e Same query as before

SELECT ENAME

FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND EMP.ENAME<>"J. DOE”
AND PNAME = “CAD/CAM”
AND (DUR =12 OR DUR = 24)

(c)Oszu & Valduriez

3/27/2009

14

CS542: Distributed Database Systems 3/27/2009

Equivalent Query

(c)Oszu & Valduriez

Restructuring

\I
N
I
I

I

Prof. Chris Clifton 15

CS542: Distributed Database Systems 3/27/2009

?‘@% Data Localization
o "
 Input: Algebraic query on distributed
relations
» Determine which fragments are involved
» Localization program
— Substitute for each global query its
materialization program
— optimize
(c)Oszu & Valduriez 33

Data Localization

I
e Assume]
— EMP is fragmented as
I
I

— ASG is fragmented as / \

PROJ

AN

ASG, ASG, EMPEMPEMP.

(c)Oszu & Valduriez 34

Prof. Chris Clifton 16

CS542: Distributed Database Systems

Provides Parallelism

EMP, ASG, EMP, ASG, EMP, ASG, EMP, ASG,

(c)Oszu & Valduriez

Eliminates Unnecessary Work

EMP, ASG, EMP, ASG, EMP, ASG,

(c)Oszu & Valduriez

Prof. Chris Clifton

3/27/2009

17

CS542: Distributed Database Systems 3/27/2009

Reduction for PHF

 Reduction with selection
— Relation R and Fx={R1, ..., Rw}, where

— Example:
— SELECT * FROM EMP WHERE ENO="E5”

|
AN

EMP,EMPEMP, e
2

(c)Oszu & Valduriez

Reduction for PHF

e Reduction with join

— Possible if fragmentation is done on join
attribute

— Distribute join over unions

— Given and

(c)Oszu & Valduriez

Prof. Chris Clifton 18

CS542: Distributed Database Systems 3/27/2009

Reduction for PHF

» Reduction with join -- Example
— Assume EMP fragmented as before, and

— Example:

— SELECT * FROM EMP,ASG WHERE
EMP.ENO=ASG.ENO

N
JIN /N

EMF’lEMPZEI\/IP3 ASG, ASG,
(c)Oszu & Valduriez

Reduction for PHF

« Reduction with join -- Example
— Distribute join over unions
— Apply the reduction rule

I

/N N /N

EMP, ASG, EMP, ASG, EMP, ASG,

(c)Oszu & Valduriez

Prof. Chris Clifton 19

CS542: Distributed Database Systems

Prof. Chris Clifton

Reduction for VF

* Find useless (not empty) intermediate

relations

— Relation R defined over attributes A={A1, ..., An}
vertically fragmented as Ri= 77,(R) where A’ is a

subset of A
— Ppk(Ry) is useless if D is not in A’

EMP,=1Zeno 1 e(EMP)

— SELECT ENAME FROM EMP

| |
e e

(c)Oszu & Valduriez

Reduction for DHF

* Rule:

— Distribute join over unions

— Apply the join reduction for horizontal
fragmentation

— Example

— Query:

SELECT *

FROM EMP, ASG

WHERE ASG.ENO=EMP.ENO
AND EMP.TITLE="Mech. Engg”

(c)Oszu & Valduriez

3/27/2009

20

CS542: Distributed Database Systems

Reduction for DHF
» Generic Query ~__

AN
/" "\ VR

. ASG, ASG, EMP, EMP,
» Selections first

/\
ol

(c)Oszu & Valduriez

ASG; ASG,

Reduction for DHF

e Joins over union/ N
C AN

N\

ASG, EMP,

ASG, EMP,

« Elimination of empty intermediate relations

AN
AN

EMP,

(c)Oszu & Valduriez

Prof. Chris Clifton

3/27/2009

21

CS542: Distributed Database Systems

‘ﬁ% Reduction for HF
%

« Combine the rules already specified

— Remove generated by contradicting
selections on horizontal fragments

— Remove generated by projections
on vertical fragments
— Distribute in order to isolate and

eliminate useless joins

(c)Oszu & Valduriez 45

Reduction for HF
« Example

I

e Query

SELECT
FROM
WHERE

Prof. Chris Clifton

I
A\
ENO="E5’ /]

EMPEMP, EMP;

(c)Oszu & Valduriez

3/27/2009

22

CS542: Distributed Database Systems

W
e C
1%

2

Step 3 — Global Optimization

Input: Fragment query

Find the best (not necessarily optimal) global
schedule
— Minimize a cost function
— Distributed join processing
» Bushy vs. linear trees
» Which relation to ship where?
» Ship-whole vs. ship-as-needed
— Decide on use of semijoins
— Join methods
» Nested loop vs. ordered joins (merge join or hash join)

(c)Oszu & Valduriez 48

B

T &

Cost Based Optimization

' (2

Solution space

— The set of equivalent algebra expression (query
trees)
— Cost function (in terms of time)
* I/0O + CPU + Communication
« Different weights
» Can also maximize throughput
— Search algorithm
» How do we move inside the solution space?

» Exhaustive search, heuristic algorithms (iterative
improvement, simulated annealing, genetic, ...)

(c)Oszu & Valduriez 49

Prof. Chris Clifton

3/27/2009

23

CS542: Distributed Database Systems

Optimization Process

Input Q[Jery

Equivalent QEP

BestQ EP

(c)Oszu & Valduriez

Search Space Transformation

Generation Rules
S 1 Cost Model
Strategy

Search Space

Search space characterized by alternative
execution plans

Focus on join trees

For N relations, there are O(N!) equivalent
join trees that can be obtained by applying
commutativity and associativity rules
SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

(c)Oszu & Valduriez

51

Prof. Chris Clifton

3/27/2009

24

CS542: Distributed Database Systems 3/27/2009

650 Search Space

Restrict by means of heuristics

— Perform unary operations before binary
operations

Restrict the shape of the join tree
— Consider only linear trees, ignore bushy ones

(c)Oszu & Valduriez 52

53.?; .:-;j; Search Strategy

How to “move” in the search space.
Deterministic

— Start from base relations and build plans adding one
relation at each step

— Dynamic programming: breadth-first

— Greedy: depth first

Randomized

— Search for optimalities around a particular point
— Trade opt. Time for execution time

— Better when > 5-6 relations

— Simulated annealing

— lterative improvement

(c)Oszu & Valduriez 53

Prof. Chris Clifton 25

CS542: Distributed Database Systems

650 Cost Functions

Total Time (or Total Cost)

— Reduce each cost (in terms of time) component
individually

— Do as little of each component as possible

— Optimizes the utilization of resources =
increases system throughput

Response Time

— Do as many things as possible in parallel

— May increase total time because of increased
total activity

(c)Oszu & Valduriez

54

= Total Cost

' (2

 Summation of all cost factors

— Total cost = CPU cost + I/O cost + comm.
Cost

— CPU cost = unit instruction cost * no. of
instructions

— /O cost = unit disk 1/O cost * no. of disk I/Os

— Communication cost = message initiation +
transmission

(c)Oszu & Valduriez

55

Prof. Chris Clifton

3/27/2009

26

CS542: Distributed Database Systems

Total Cost Factors

» Wide area networks
— Message initiation and transmission costs high

— Local processing cost is low (fast mainframes or
minicomputers)

— Ratio of comm to I/O costs = 20:1
e Local Area networks

— Communication and local processing costs are
more or less equal

— Ratio=1:1.6

(c)Oszu & Valduriez

o

6

Methodology

Calculus Query on Eistributed Relations

Query Global
Decomposition Schema

Algebraic Query on Dist. Relations

v

Control
Site

Data Fragment
Localization Schema

Fragment Query

Global Stats on
Optimization Fragments

Sites Optimized Fragment Query w/ Comm.

Opetators
Local Local

Optimization Schemas

v
OPIMIZeRl Q67 Yaliinies

A
|
|
|
|
|
|
|
|
|
|
|
|
|

Local v

A
|
|
|

v

fohe

7

Prof. Chris Clifton

3/27/2009

27

CS542: Distributed Database Systems

Optimization Statistics

o |

* Primary cost factor: size of intermediate
relations

» Make them precise =» more costly to
maintain

— For each relation
» Length of each attribute: length(Ai)

* The number of distinct values for each attribute in each

fragment: card(/7,,Rj)
* Max and min values in each domain or each attribute
 Cardinalities of each domain: card(dom[Ai])
+ Cardinalities of each fragment: card(R))

— Selectivity factor of each operation for relations

(c)Oszu & Valduriez

58

Intermediate Relation Size

' (2

» Selection
— Size(R) = card(SF (R))*length(R)
— Card(o:(R))=SF (R)*card(R)
— Where
— SF _(A=value)=1/(card(PA(R)))
— SF_(A>value) = (max(A)-value)/(max(A)-min(A))
— SF _(A<value)=(value —min(A))/(max(A)-min(A))
— SF(p(A)" p(A}))=SF (P(AD))* SF (P(A})

— SF(p(Ai) V p(A)))=SF (p(Ai)+ SF (P(Aj)-
SF (p(Ai)* SF (P(A)

— SF_(A in value)=SF (A=value)*card({values})

(c)Oszu & Valduriez

59

Prof. Chris Clifton

3/27/2009

28

CS542: Distributed Database Systems 3/27/2009

?‘@% Intermediate Relation Size
-a-

» Projection
— Card(P,(R))=card(R)
» Cartesian Product
— Card(R x S) = card(R) * card(S)
e Union
— Upper bound: card(R U S) = card(R)+ card(S)

— Lower bound: card(R U S) = max{card(R),
card(S)}

» Set difference
— Upper bounds: card(R-S)= card(R)
— Lower bounds: 0

(c)Oszu & Valduriez 60

Intermediate Relation Size

 Join
— Special case: Aisakeyof Rand B is a
foreign key of S:
— More general:

e Semijoin

— where

(c)Oszu & Valduriez

Prof. Chris Clifton 29

CS542: Distributed Database Systems 3/27/2009

Centralized Query Opt.

=5 M
\ ¥
7 1 5

INGRES

— Dynamic

— Interpretive
System R

— Static

— Exhaustive search

(c)Oszu & Valduriez 62

INGRES Algorithm

ol
Fy i %

Decompose each multi-variable query into a
sequence of mono-variable queries with a
common variable

Process each by a one variable query
processor
— Choose an initial execution plan (heuristics)

— Order the rest by considering intermediate
relation sizes

No statistical information is maintained.

(c)Oszu & Valduriez 63

Prof. Chris Clifton 30

CS542: Distributed Database Systems

3/27/2009

INGRES — Decomposition
- . . %
* Replace an n variable query q by a series of
queries
-0 20 2... 20,
— Where g; uses the result of g, ;
» Detachment
— Query g decomposed into g’ q” where g’ and g”
have a common variable which is the result of g’
» Tuple substitution
— Replace the value of each tuple with actual
values and simplify the query
- q(Vl,Vz, e Vn) é (q’,(tl,VZ, saey Vn), tl In R)
(c)Oszu & Valduriez 64
Detachment
L o
Q: SELECT V2.A2,V3.A3, ..., Vn.An
FROMR1 V1, ..., Rn Vn
WHERE P1(V1.A1') AND P2(V1.A1, ... Vn.An)
Q" SELECT V1.A1INTO RY’
FROMR1 V1
WHERE P1(V1.Al)
Q”: SELECT V2.A2,V3.A3, ..., Vn.An

FROMRLY' V1, ..., Rn Vn
WHERE P2(V1.AL, ... Vn.An)

(c)Oszu & Valduriez

65

Prof. Chris Clifton

31

CS542: Distributed Database Systems

Q1:

Q11:

Detachment Example

» Names of employees working in CAD/CAM

SELECT EMP.ENAME

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO
AND PROJ.PNAME= “CAD/CAM”
SELECT PROJ.PNO INTO JVAR
FROM PROJ

WHERE PROJ.PNAME="CAD/CAM”
SELECT EMP.ENAME

FROM EMP, ASG, JVAR

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=JVAR.PNO

(c)Oszu & Valduriez 66

Detachment Ex. (cont.)

Q12:

Q13:

SELECT EMP.ENAME

FROM EMP, ASG, JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO

SELECT ASG.ENO INTO GVAR
FROM JVAR, ASG
WHERE ASG.PNO=JVAR.PNO

SELECT EMP.ENAME
FROM EMP, GVAR
WHERE EMP.ENO=GVAR.ENO

(c)Oszu & Valduriez 67

Prof. Chris Clifton

3/27/2009

32

CS542: Distributed Database Systems

Tuple Substitution

Q1 is a mono-variable query
Q,, and Q,; are subject to tuple substitution

Assume GVAR has two tuples only: <E1>
<E2>

Then q13 becomes
Q131: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E1"
Q132: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E2"

(c)Oszu & Valduriez

68

System R Algorithm

' (2

« Simple (l.e. mono-relation) queries are
executed according to the best access
path

» Execute joins
— Determine the possible ordering of joins
— Determine the cost of each ordering
— Choose the join ordering with minimal cost

(c)Oszu & Valduriez

70

Prof. Chris Clifton

3/27/2009

33

CS542: Distributed Database Systems 3/27/2009

= 3 System R Algorithm

For joins, two alternative algos:

Nested Loops

— For each tuple of external relation (N1)

» For each tuple of internal relation (N2)
— Join two tuples if predicate is true

* End
- End
— Complexity: N1*N2
Merge Join
— Sort relations
— Merge relations
— Complexity: N1+N2 if relations are sorted and equijoiin.

(c)Oszu & Valduriez 71

System R — Example

e
7

Names of employees working on CAD/CAM

Assume

— EMP has an index on ENO,

— ASG has an index on PNO,

— PROJ has an index on PNO and one on PNAME

PNO
@ (c)Oszu & Valduriez E 72

Prof. Chris Clifton 34

CS542: Distributed Database Systems 3/27/2009

AT
N System R Example (cont.)
y 4

* Choose the best access paths to each relation

— EMP: sequential scan (no selection on EMP)

— ASG: sequential scan (no selection on ASG)

— PROJ: index on PNAME
st join ordering

— Select the best based on vLom costs
Iduriez 73

Oszu &

System R Algorithm

i

EMP ASG EMP PROJ PROJ ASG PROJ ASG

ASG ., EMP ASG PROJ

(ASG EMP) PROJ (PROJ ASG) EMP

Best total order is one of
((ASG EMP) PROJ)
((PROJ ASG) EMP)

(c)Oszu & Valduriez

Prof. Chris Clifton

CS542: Distributed Database Systems

System R Algorithm

o

* (PROJ ASG) EMP) has a useful
index on the select attribute and direct
access to the join attribute of ASG and
EMP

» Therefore, chose it with the following

access methods:

— Select PROJ using index on PNAME

— Then join with ASG using index on PNO

— Then join with EMP using index on ENO

(c)Oszu & Valduriez

75

Join Ordering in Fragment

Queries

» Ordering joins
— Distributed INGRES
— System R*

« Semijoin ordering
—SDD-1

(c)Oszu & Valduriez

76

Prof. Chris Clifton

3/27/2009

36

CS542: Distributed Database Systems

Join Ordering
» Consider two relation only

If size(R) <size(S)

If size(S) <size(R

» Multiple relation more difficult because too
many alternatives
— Compute the cost of all alternatives and select
the best one.

* Necessary to compute the size of intermediate
relations which is difficult

— Use heuristics

(c)Oszu & Valduriez

Join Ordering — Example

Consider
2{2{ON/ ASG

Site 3

(c)Oszu & Valduriez

Prof. Chris Clifton

3/27/2009

37

CS542: Distributed Database Systems

Semijoin Algorithms

» Consider the join of two relations:
— R[A] (located at site 1)
— S[A] (located at site 2)

» Alternatives

— Do the join
— Perform one of the semijoin equivalents

(c)Oszu & Valduriez

Semijoin Algorithms

» Perform the join
— Send R to site 2
— Site 2 computes the join

e Consider semijoin

-S> Site 1

— Site 1 computes

— R’ - Site 2

— Site 2 computes
Semijoin is better if

(c)Oszu & Valduriez

Prof. Chris Clifton

3/27/2009

38

CS542: Distributed Database Systems

Distributed INGRES Algorithm

o |

X
« Same as centralized version except
— Movement of relation (and fragments) need to
be considered
— Optimization with respect to communication
cost or response time possible
(c)Oszu & Valduriez 82
R* Algorithm
| N

» Cost function includes local processing as
well as transmission

» Considers only joins

« Exhaustive search

« Compilation

» Published papers provide solutions to
handling horizontal and vertical

fragmentations but the implemented
prototype does not

(c)Oszu & Valduriez 83

Prof. Chris Clifton

3/27/2009

39

CS542: Distributed Database Systems

R* Algorithm

Performing Joins

Ship Whole

— Larger data transfer

— Smaller number of messages

— Better if relation are small

Fetch as needed

— Number of message — O(card of external relation)
— Data transfer per message is minimal

— Better if relations are large and selectivity is good.

(c)Oszu & Valduriez 84

R*: Vertical part. and joins

' (2

* Move outer relation tuples to the site of the
inner relation
— Retrieve outer tuples
— Send them to the inner relation site
— Join them as they arrive

— Total cost = cost(retrieving qualified outer
tuples)+ no. of outer tuples fetched *
cost(retrieving qualified inner tuples) + msg.
Cost *(no. outer tuples fetched * avg. outer
tuple size) /msg. size

(c)Oszu & Valduriez 85

Prof. Chris Clifton

3/27/2009

40

CS542: Distributed Database Systems

R*: Vertical part. and joins

o |

B

* Move inner relation to the site of the outer
reln.

— Cannot join as they arrive; must be stored

— Total cost = cost(retrieving qualified outer tuples)
+ no. of outer tuples fetched * cost(retrieving
matching inner tuples from temp storage) + cost
(retrieving qualified inner tuples) + cost(storing all
gualified inner tuples in temp storage) + msg.
Cost * (no. of inner tuples fetched * avg. inner
tuple size) / msg. size

(c)Oszu & Valduriez 86

R*: Vertical part. & joins

o |

« Move both inner and outer relation to another
site

» Total cost = cost(retrieving qualified outer
tuples) + cost (retrieving qualified inner
tuples) + cost(storing inner tuples in storage)
+ msg. Cost* (no. of outer tuples fetched *
avg. outer tuple size)/ msg. Size + msg.
Cost*(# inner tuples fetched * avg. inner tuple
size) / msg. Size + # outer tuples fetched *
cost(retrieving inner tuples from temp
storage)

(c)Oszu & Valduriez 87

Prof. Chris Clifton

3/27/2009

41

CS542: Distributed Database Systems

534.?; R*: vertical part. & joins

o |

» Fetch inner tuples as needed
— Retrieve qualified tuples at outer relation site

— Send request containing join column value(s) for
outer tuples to inner relation site

— Retrieve matching inner tuples at inner relation site
— Send the matching inner tuples to outer relation site
— Join as they arrive

— Cost = cost(retr. Qual. Outer tuples) + msg. Cost * (#
outer tuples fetched) + # inner tuples fetched*(#inner
tuples fetched*avg. inner tuple size * msg. Cost/msg.
Size) + # outer tuples fetched * cost(retrieving
matching inner tuples for one outer value).

(c)Oszu & Valduriez 88

SDD-1 Algorithm

' (2

« Based on hill climbing algorithm
— Semijoins
— No replication
— No fragmentation

— Cost of transferring the result to the user site
from the final result site is not considered

— Can minimize either total time or response
time

(c)Oszu & Valduriez 90

Prof. Chris Clifton

3/27/2009

42

CS542: Distributed Database Systems

Hill Climbing Algorithm

Assume join in between three relations
Step 1: do initial processing
Step 2: select initial feasible solution (ES,)

— Determine the candidate result sites — sites where a
relation referenced in the query exists

— Compute the cost of transferring all the other relns to each
candidate site

— ES, = candidate site with minimum cost
Etep 3: determine candidate splits of ES, into {ES,,
2

— ES, consists of sending one of the relations to the other
relations site

— ES, consists of sending the join of the relations to the final
result site.

(c)Oszu & Valduriez 91

Hill Climbing algorithm

Step 4: Replace ES, with the split
schedule which gives

cost(ES,) + cost(local join) + cost (ES,) <
COSt(ESy)

Step 5: Recursively apply steps 3-4 on
ES; and ES, until no such plans can be
found

Step 6: Check for redundant transmissions
in the final plan and eliminate them.

(c)Oszu & Valduriez 92

Prof. Chris Clifton

3/27/2009

43

CS542: Distributed Database Systems

R

S
Jy I £
F=" <
Y
-

¥
a*

“554 Hill Climbing Example

* What are the salaries of engineers who work on the
CAD/CAM project?

Relation Size Site
EMP 8 1
PAY 4 2
PROJ 4 3
ASG 10 4

* Assume
— Size of relations is defined as their cardinality
— Minimize total cost
— Transmission cost between two sites is 1
— Ignore local processing cost

(c)Oszu & Valduriez

93

Hill Climbing example

o Step 1:
— Selection on PROJ; result has cardinality 1

Relation Size Site
EMP 8 1
PAY 4 2
PROJ 1 3
ASG 10 4

(c)Oszu & Valduriez

94

Prof. Chris Clifton

3/27/2009

44

CS542: Distributed Database Systems

5% Hill Climibing example

» Step 2: initial feasible solution

— Alt 1: resulting site is site 1
* Total cost = cost(PAY-> sitel) + cost(ASG->sitel) +
cost(PROJ-> sitel) = 4+10+1=15
— Alt 2: Resulting site is site 2
» Total cost = 8+10+1 =19
— Alt 3: Resulting site is site 3
» Totalcost=8+4 + 10 =22
— Alt 4: Resulting site is site 4
e Totalcost=8+4+1=13
— Therefore ES,={EMP-> Site 4; S - site 4; PROJ
- Site 4}

(c)Oszu & Valduriez 95

X5 Hill Climbing example

» Step 3: Determine candidate splits
— Alternative 1: {ES1, ES2, ES3} where

- Es1. S
L PS> (EMP5<PAY) > Sited
. £s3: EROIESSIEA

— Alternative 2: {ES1, ES2, ES3} where

Es N

- F37: (PAY 52 ENIP) > Sited
- Es3: EROISISIEE

(c)Oszu & Valduriez

96

Prof. Chris Clifton

3/27/2009

45

CS542: Distributed Database Systems

oy Hill Climbing

— Cost(Alt 1) = cost(EMP-> Site 2) + cost (Join) +
cost (PROJ—> Site 4
=8+8+1=17

— Cost(Alt 2) = cost(PAY-> Site 1) + cost (join) +
cost (PROJ - site 4)
=4+8+1=13

— Decision : do not split
Step 5: ES, is the best

Step 6: No redundant transmissions.

(c)Oszu & Valduriez 97

Step 4: Determine the cost of split alternative |

Hill Climbing

o |

* Problems

— Greedy algo - determines an initial feasible
solution and iteratively tries to improve it
— If there are local minimas, it may not find global
minima
— If the optimal schedule has a high initial cost, it
won't find it since it won’t choose it as the initial
feasible solution
— Example: a better solution is
« PROJ > Site 4
« ASG’ = (PROJ join ASG) - site 1
* (ASG’ join EMP) - site 2
» Totalcost=1+2+2=5

(c)Oszu & Valduriez 98

Prof. Chris Clifton

3/27/2009

46

