
CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 1

CS54200: Distributed

Database Systems

Final Review

1 May 2009

Prof. Chris Clifton

2 Phase Locking

1. To grant a lock, the scheduler checks if a

conflicting lock has already been assigned, if

so, delay, otherwise set lock and grant it.

2. A lock cannot be released at least until the DM

acknowledges that the operation has been

performed.

3. Once the scheduler releases a lock for a txn, it

may not subsequently acquire any more locks

(on any item) for that txn.

2

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 2

Distributed 2PL

• 2PL easily extends to the distributed case.

• Each scheduler follows the same rules as before – if
a lock can be acquired, process the operation.

• No communication needed – good.

• Tricky issue: releasing locks!

• In general would require communication.

• However, if STRICT 2PL is followed everywhere,
then no communication is needed.

• Distributed, Strict 2PL is correct (assuming that
abort and commit operations are carried out
atomically – important issue that we will address
later).

14

Distributed Deadlocks

• As with centralized 2PL, distributed 2PL
suffers from deadlocks. Moreover, these can
be distributed deadlocks! E.g. if x and y are at
different sites.

• Solutions:
– Timeouts

– Deadlock Detection

– Deadlock Prevention

• Timeouts are easy – local decision, but may
be overreacting.

15

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 3

Timestamp Ordering

• The TM assigns each txn, Ti, a unique

timestamp, ts(Ti).

• No two txns share a timestamp.

• A TO scheduler enforces:

• TO Rule: if pi[x] and qj[x] are conflicting

operations, then the DM processes pi[x]

before qj[x] iff ts(Ti) < ts(Tj).

16

Distributed Timestamp

Ordering

• Distributed TO: How can TO be modified for
distributed sites?

• Simple – nothing special needed as long as
….

• Timestamps are unique across sites!

• Easy to enforce this.

• Much better than distributed 2PL – no need
for inter-site communication, unlike 2PL
which requires communication for deadlocks.

18

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 4

Recovery

• We will focus on system failures.

• Following the failure, the DBMS is restarted.

• At the start of recovery, the contents of volatile
storage are discarded.

• The stable storage is potentially inconsistent

• A CONSISTENT database state corresponding
to exactly the set of txns that had committed (as
far as the DM is concerned) must be
reconstructed, i.e. C(H).

• This reconstruction uses only data in stable
storage – Stable DB and the LOG.

19

Atomic Commit Protocol:

Requirements
• AC1: All processes that reach a decision reach the

same one.
• AC2: A process cannot reverse its decision after it

has reached one.
• AC3: The Commit decision can only be reached if all

processes voted Yes.
• AC4: If there are no failures and all processes

voted yes, then the decision will be to commit.
• AC5: Consider any execution containing only

failures that the ACP is designed to tolerate. At any
point in this execution, if all existing failures are
repaired and no new failures occur for sufficiently
long, then all processes will eventually reach a
decision.

22

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 5

3PC assuming timeout on receipt

of message

c1

a1

c2

a2

q1

w1 w2

q2

xact request/

start xact

no/

abort

start xact/

no
start xact/

yes

pre-commit/

ack

abort/

-

yes/

pre-commit

Coordinator Participant

p1

ack/

commit

p2

commit/

-

Replication Approaches:

Consistency
• Write All approach

– Reads can be satisfied by any copy in the
system,

– Writes must all modify every copy of the data
item being written.

– Eliminates the problem of multiple copies, and gives
each txn the correct view.

– It is very poor in terms of performance and progress:
• Failures have a crippling effect on transactions!

• Write-All-Available
– Challenge - recovery

30

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 6

1 Copy Serializability

• The correctness definition for replicated
databases is therefore that it should behave as
though all transactions are executed in a serial
manner on a single copy database.

• This is the notion of one copy serializability, I.e.
1SR.

• The user must be given a one copy view of the
database.

• How is this achieved?

• Read-only is easy. For writes we must manage
carefully!

32

Distributed Design Issues

• Why fragment?

• How to fragment?

• How much to fragment?

• How to test correctness?

• How to allocate?

• Information requirements?

34

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 7

Correctness of fragmentation

• Completeness

– Decomposition of Relation R into R1, R2, …Rn

is complete if and only if each data item in R
can also be found in some Ri

• Reconstruction

– If Relation R is decomposed into R1, R2, …Rn

, then there should exist some operator, that
R can be reconstructed from R1,…Rn .

• Disjointness

– If Relation R is decomposed into R1, R2, …Rn

, and data item d is in Rj, then d should not be
in any other fragment Rk, k <>j.

35

PHF-Information Requirements

• Application Information

– Simple predicates: Given R[A1, A2, …, An], a simple

predicate pj is:

• Pj: Ai q Value

• where q is a comparison operator, Value is from the domain

of attribute Ai

– Minterm predicates: Given R and Pr={p1,p2, …pm},

define M={m1, m2, …, mz} as

where pj* = pj or NOT(pj).

36

zipmmM jpjii   1},|{ *

Pr

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 8

Primary Horizontal Frag.
• Definition:

– Where Fj is a selection formula, which is
(preferably) a minterm predicate.

• Therefore,
– A horizontal fragment, Ri of relation R consists

of all the tuples of R which satisfy a minterm
predicate mi

– Given a minterm of predicates M, there are as
many horizontal fragments of relation R as
there are minterm predicates

– Set of horizontal fragments also referred to as
minterm fragments.

37

wjRR Fjj  1),(

PHF - Algorithm

• GIVEN: A relation R, the set of simple

predicates Pr

• OUTPUT: The set of fragments of R= {R1,

…, Rw} which obey the fragmentation

rules.

• Preliminaries:

– Pr should be complete

– Pr should be minimal

38

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 9

PHF - Example
• Two candidate relations: PAY and PROJ.

• Fragmentation of relation PAY
– Application: check the salary info and

determine raise.

– Employee records kept at two sites 
application run at two sites

– Simple predicates
• p1 : SAL <= 30000

• p2 : SAL > 30000

• Pr = {p1, p2} which is complete and minimal Pr’=Pr

– Minterm predicates
• m1 : (SAL <= 30000)

• m2 : NOT(SAL <= 30000) = (SAL>30000)

39

Fragmentation of PROJ
• Applications:

– Find the name and budget of projects given their
loc.– issued at three sites

– Access project information according to budget
• One site accesses <=200000 another accesses > 200000

• Simple Predicates
– For application 1:

• p1 : LOC = “Montreal”

• p2 : LOC = “New York”

• p3 : LOC = “Paris”

– For application 2:
• P4: BUDGET <= 200000

• P5: BUDGET > 200000

– Pr = Pr’ = {p1, p2, p3, p4,p5}

40

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 10

PHF Example

• Fragmentation of PROJ contd:

– Minterm fragments left after elimination

– m1: (LOC = “Montreal”) AND (BUDGET <=200000)

– m2: (LOC = “Montreal”) AND (BUDGET>200000)

– m3: (LOC = “New York”) AND (BUDGET <=200000)

– m4: (LOC = “New York”) AND (BUDGET >200000)

– m5: (LOC = “Paris”) AND (BUDGET <=200000)

– m6: (LOC = “Paris”) AND (BUDGET >200000)

41

PHF -- Example

42

PNO PNAME BUDGET LOC

P1 Instr. 150000 Montreal

PROJ1

PNO PNAME BUDGET LOC

P2
Database

Develop.
135000 New York

PROJ2

PNO PNAME BUDGET LOC

P3
CAD/CA

M
250000 New York

PROJ4

PNO PNAME BUDGET LOC

P4 Maint. 310000 Paris

PROJ6

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 11

Derived Horizontal Fragmentation

• Defined on a member relation of a link

according to a selection operation

specified on its owner.

– Each link is an equijoin

– Equijoin can be implemented by means of

semijoins.

43

Derived Horizontal Fragmentation

44

Title, Sal

ENO, Ename, Title PNO, Pname, Budget, Loc

ENO, PNO, Resp, Dur

SKILL

EMP

ASG

PROJ

L1

L2 L3

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 12

VF – Information Requirements

• Application Information

– Attribute affinities

• A measure that indicates how closely related the attributes

are

• This is obtained from more primitive usage data

– Attribute usage values

• Given a set of queries Q={q1, q2, …, qk} that will run on the

relation R[A1, A2, …, An],

• Use(qi, Aj) = 1 if Aj is referenced by qi, 0 otherwise

• Use(qi,.) can be defined accordingly

45

VF – Affinity Measure aff(Ai,Aj)

• The attribute affinity measure between two

attributes Ai and Aj of a relation R with

respect to the set of applications Q={q1,

q2, …, qk} is defined as follows:

46


Aj and Ai access that queries all

)accessquery (),(ji AAaff


allsites execution

access
 *query a of freq accessaccessquery

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 13

Bond Energy Algorithm
• Input: the AA matrix

• Output: the clustered affinity matrix CA (a perturbation

of AA)

1. Initialization: Place and fix one of the columns of AA in

CA

2. Iteration: Place the remaining n-I columns in the

remaining I+1 positions in the CA matrix. For each

column, chose the placement that makes the most

contribution to the global affinity measure.

3. Row Order: Order the rows according to the columns.

47

Selecting Alternatives
SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO

AND DUR > 37.

Strategy 1:

Strategy 2:

Strategy 2, avoids cartesian product.

(c)Oszu & Valduriez 48

))(()37.. ASGEMPDURENOASGENOEMPENAME  

)))((()37 ASGEMP DURENOENAME  

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 14

Problem

(c)Oszu & Valduriez 49

)("3"1 ASGASG EENO 

Site1

)("3"2 EMPEMP EENO 

Site4)("3"1 EMPEMP EENO 

Site3

)(2 "3" ASGASG EENO 

Site2
RESULT

Site5

)(' 1371 ASGASG DUR 

Site 1

'' 111 ASGEMPEMP ENO

'' 21 EMPEMPRESULT 

)(' 2372 ASGASG DUR 

Site 2

Site 3

ASG1’

'' 222 ASGEMPEMP ENO

Site 4

ASG2’

Site 5

EMP2’EMP1’

Alternative 2

(c)Oszu & Valduriez 50

Site 5

)()(213721 ASGASGEMPEMPRESULT DURENO   

Site 1 Site 2 Site 3 Site 4

ASG1 ASG2
EMP2EMP1

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 15

Cost of Alternatives

• Assume

– Size(EMP) = 400; size(ASG)=1000

– Tuple access cost (TAC) = 1unit; tuple xfer
cost (TXC) =10units

• Strategy 1

– Produce ASG’: (10+10)*TAC = 20

– Transfer ASG’: (10+10)*TXC = 200

– Produce EMP’: (10+10)*TAC*2 = 40

– Transfer EMP’ to result site: (10+10)*TXC =
200

– Total COST = 460.

(c)Oszu & Valduriez 51

Cost of alternatives (cont)

• Strategy 2

– Transfer EMP to site 5: 400*TXC = 4000

– Transfer ASG to site 5: 1000*TXC = 10,000

– Produce ASG’: 1000*TAC = 1,000

– Join EMP and ASG’: 400*20*TAC = 8,000

– TOTAL COST = 23,000!!

(c)Oszu & Valduriez 52

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 16

Query Optimization Objectives

• Minimize a cost function

– I/O cost + CPU cost + communication cost

• These may have different weights in
different distributed environments

• Wide area networks

– Communication cost will dominate
• Low bandwidth

• Low speed

• High protocol overhead

– Most algorithms ignore all other cost
components

(c)Oszu & Valduriez 53

Complexity of Relational Operators

(c)Oszu & Valduriez 54

Operation Complexity

Select, Project

(without duplicate

elimination)

O(n)

Project (w/ duplicate

elimination)

Group

O(n log n)

Join

Semijoin

Division

Set Operators

O(n log n)

Cartesian Product O(n2)

Assume

Relations of cardinality n

Sequential scan

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 17

Methodology

(c)Oszu & Valduriez 55

Query

Decomposition

Data

Localization

Global

Optimization

Local

Optimization

Calculus Query on Distributed Relations

Algebraic Query on Dist. Relations

Fragment Query

Optimized Fragment Query w/ Comm.

Operators

Optimized Local Queries

Global

Schema

Fragment

Schema

Stats on

Fragments

Local

Schemas

Control

Site

Local

Sites

Data Localization

• Assume

– EMP is fragmented as

– ASG is fragmented as

(c)Oszu & Valduriez 56

)("3"1 EMPEMP EENO 

)("6""3"2 EMPEMP EENOEENO  

)("6"3 EMPEMP EENO 

)("3"1 ASGASG EENO 

)("3"2 ASGASG EENO 

ENAME

)24 12( DURORDUR

"/" CAMCADPNAME

"." DOEJENAME

ENO

EMP3

PROJ

ENO

ASG1 ASG2 EMP2EMP1

 

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 18

Reduction for PHF

• Reduction with selection

– Relation R and FR={R1, …, Rw}, where

– Example:
– SELECT * FROM EMP WHERE ENO=“E5”

(c)Oszu & Valduriez 57

)(RR pjj 

))()((:in if)(xpxpRxR jiipj  

EMP3EMP2



"5"EENO

EMP1 EMP2

"5"EENO

Reduction for PHF

• Reduction with join

– Possible if fragmentation is done on join

attribute

– Distribute join over unions

– Given and

(c)Oszu & Valduriez 58

)()()(2121 SRSRSRR  

)(RR pjj )(RR pii 

))()((:in in if ypxpRyRxRR jijiji  

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 19

Reduction for PHF

• Reduction with join -- Example

– Assume EMP fragmented as before, and

– Example:
– SELECT * FROM EMP,ASG WHERE

EMP.ENO=ASG.ENO

(c)Oszu & Valduriez 59

EMP3EMP2



EMP1

)("3"1 ASGASG EENO 

)("3"2 ASGASG EENO 

ENO

ASG2



ASG1

Reduction for PHF

• Reduction with join -- Example

– Distribute join over unions

– Apply the reduction rule

(c)Oszu & Valduriez 60



EMP1

ENO

ASG1 EMP2

ENO

ASG2 EMP3

ENO

ASG2

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 20

Reduction for VF

• Find useless (not empty) intermediate
relations
– Relation R defined over attributes A={A1, …, An}

vertically fragmented as Ri= PA’(R) where A’ is a
subset of A

– PD,K(Ri) is useless if D is not in A’

– Example EMP1=PENO,ENAME(EMP),
EMP2=PENO,TITLE(EMP)

– SELECT ENAME FROM EMP

(c)Oszu & Valduriez 61

ENAME

ENO

EMP2EMP1



ENAME

EMP1

Reduction for DHF

• Rule:
– Distribute join over unions

– Apply the join reduction for horizontal
fragmentation

– Example

– Query:
SELECT *

FROM EMP, ASG

WHERE ASG.ENO=EMP.ENO

AND EMP.TITLE=“Mech. Engg”

(c)Oszu & Valduriez 62

)(11 EMPASGASG ENO 

)(22 EMPASGASG ENO 

)("Programmer"2 EMPEMP TITLE  

)("Programmer"1 EMPEMP TITLE  

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 21

Reduction for DHF

• Generic Query

• Selections first

(c)Oszu & Valduriez 63



EMP1

ENO

ASG1 EMP2ASG2

"Engg. Mech."TITLE



ENO

ASG1
EMP2ASG2

"Engg. Mech."TITLE



Step 3 – Global Optimization

• Input: Fragment query

• Find the best (not necessarily optimal)
global schedule

– Minimize a cost function

– Distributed join processing
• Bushy vs. linear trees

• Which relation to ship where?

• Ship-whole vs. ship-as-needed

– Decide on use of semijoins

– Join methods
• Nested loop vs. ordered joins (merge join or hash

join)

(c)Oszu & Valduriez 64

CS542: Distributed Database Systems 5/1/2009

Prof. Chris Clifton 22

Semijoin Algorithms

• Perform the join

– Send R to site 2

– Site 2 computes the join

• Consider semijoin

–

– S’  Site 1

– Site 1 computes

– R’  Site 2

– Site 2 computes

Semijoin is better if

(c)Oszu & Valduriez 65

SSRSR AAA )(

)(' SS A

'' SRR A 

SR A'

)())())((RsizeSRsizeSsize AA  

R* Algorithm

• Performing Joins

• Ship Whole

– Larger data transfer

– Smaller number of messages

– Better if relation are small

• Fetch as needed

– Number of message – O(card of external
relation)

– Data transfer per message is minimal

– Better if relations are large and selectivity is
good.

(c)Oszu & Valduriez 66

