
CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 1

CS54200: Distributed

Database Systems

Distributed Recovery

6 February 2009

Prof. Chris Clifton

What is a Distributed Transaction?

Transaction

component

Data

Transaction

component

Data

Transaction

component

Data

Transaction

component

Data

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 2

Distributed Recovery

• Assume a distributed architecture composed of
several local TM, Schedulers, RM, and CMs .

• Ignore replication for now.

• Allow each site’s CM to manage the local cache
for local data.

• Allow each site’s RM to manage recovery (as in
the centralized case) using any of the recovery
algorithms discussed earlier.

• Will this work, as with distributed concurrency
control?

5

NO!

• What is the key difference?

• Atomicity – global agreement.

• Isn’t global agreement required for CC as well?

• CC is handled locally, without communication.

• Global agreement is required for CC:
– 2PL – avoiding deadlocks; but this is avoided by strict

2PL.

– TO – to ensure agreement on relative ordering of
txns; this is piggy-backed with the request message
sent by TM to schedulers.

6

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 3

Atomic Commit Protocol

• Distributed recovery requires global agreement

– every site must agree whether to commit or

abort a txn – this must be an atomic action.

• Protocols that ensure a consistent decision

across distributed sites are called Atomic

Commitment Protocols (ACPs).

• Where does the problem come from?

• Failures!!!

7

Committing a Distributed

Transaction

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 4

Failures

• Site failures:
– Assume non-Byzantine failures

– Fail-stop

– Partial or total

• In the absence of failures, each pair of sites can
communicate.

• Communication failures:
– When two sites, neither of which has failed, are

unable to communicate (via any route)

– May lead to partitioning.

9

Failures

• If a message is undeliverable, we assume that it
is dropped.

• Failures are detected using timeouts.

• Can lead to false detections, as well as delayed
detections.

• Must make a judicious choice of the timeout
interval.

• A failed site may recover at any time – will need
to execute the recovery process at that time.

10

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 5

ACP

• The steps in an ACP are as follows:

– TM gets a commit operation from the txn.

– ACP needs to arrive at a single, consistent decision

to commit or abort based upon the state of the txn at

each site i.e.

• Scheduler

• DM (ensure that redo rule is satisfied) if there were only read

operations at a site, ACP doesn’t need to consult DM

– Can do this by polling all sites.

– Send the decision to each site.

11

System Model

• We abstract the problem to one of reaching a

decision between distributed processes.

• There are two types of processes:

– Coordinator: This is the site which initiates the ACP –

I.e. where the TM gets the commit operation. Note

that the decision if txn want to abort is easy to arrive

at.

– Participants: all other processes involved.

12

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 6

System Model

• Initially, the coordinator knows all the

participants, but the participants don’t know each

other.

• Assume that each site has a distinct log called

the Distributed Transaction Log (DT Log).

• Each process can vote yes or no .

• Each process can reach a decision : commit or

abort.

13

ACP Requirements

• AC1: All processes that reach a decision reach the
same one.

• AC2: A process cannot reverse its decision after it
has reached one.

• AC3: The Commit decision can only be reached if all
processes voted Yes.

• AC4: If there are no failures and all processes
voted yes, then the decision will be to commit.

• AC5: Consider any execution containing only
failures that the ACP is designed to tolerate. At any
point in this execution, if all existing failures are
repaired and no new failures occur for sufficiently
long, then all processes will eventually reach a
decision.

14

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 7

ACP terminology

• The period between sending a yes vote and
reaching a decision is called the uncertainty
period.

• When a process must await the repair of failures
before proceeding, we say that it is blocked. E.g.
when a failure disables comm. between a process
and all other sites when the process is uncertain.

• If a process fails while uncertain, it cannot reach a
decision on its own upon recovery – it must
communicate with other processes. An ACP that
avoids such situations has the independent
recovery property.

15

2 Phase Commit Protocol

(Lamport ’76, Gray ’79)
1. Coord sends VOTE_REQ to all participants.

2. Each P sends a msg back with its vote: YES or
NO. If it votes NO, it decides ABORT and stops.

3. The Coord collects all votes.
• If all are YES and its own vote is YES, it decides

COMMIT and sends COMMIT msgs to each participant.
Stop

• Otherwise, it decides ABORT and send ABORT msgs to
all participants that voted YES. Stop.

4. Each participant that voted YES waits for the
coord’s decision, decides accordingly and stops.

19

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 8

Two-Phase Commit

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

Transaction

component

Data

log

Coordinator

CanCommit? CanCommit?

CanCommit? CanCommit?

Yes

Yes

Yes

Yes

Commit

CommitCommit

Commit

Done

Done Done

Done

Complications

• If no failures take place this ACP works fine.

• However, if there are failures, we need to specify
what happens when:
– There is a timeout while waiting for a message; or

– A site crashes and then recovers during the ACP?

• Timeout actions:
– Participant waiting for a VOTE_REQ: unilaterally

abort.

– Coord waiting for a vote: decide ABORT and send
msg to all sites that voted yes.

22

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 9

Timeout Actions

• While waiting for the decision: tricky – use a
termination protocol

• Suppose that participant P needs to determine
the decision
– P can wait until it can communicate with Coord

– This is simple, but could unnecessarily block P

– Instead, P could learn of the decision from some
other participant.

• The second option can be used with the
cooperative termination protocol

23

Cooperative Termination

Protocol

• Process P sends a decision_REQ message to

every participant, Q. P learns of the other

participants from the VOTE_REQ message sent

by the Coord.

• Q does the following:

– If Q has already decided, then it send its decision to P

– If Q has not yet voted, then it can unilaterally abort

and send ABORT to P.

– If Q is also uncertain then it cannot help P – both are

blocked.

24

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 10

Handling site failure in 2PC

• We use a distributed transaction log to record
necessary information about termination
protocols, in order to recover correctly.

• The DT log can be a part of the regular log too.

• It works as follows:
– When Coord sends a VOTE_REQ, it writes a start-

2PC record (before or after sending message).

– If a participant votes yes, it writes a yes record before
sending the vote. This record contains the identities of
the coordinator and other participants (as given by the
initial message of the coord).

25

DT Log

• If the participant votes no, it writes an abort

record, either before or after sending the vote.

• Before the Coord sends a commit decision, it

writes a commit record.

• When the Coord sends abort, it writes the abort

record to the log

• After receiving commit(abort), a participant

writes a commit(abort) record to its log.

26

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 11

Recovery

• When a site recovers, the fate of a distributed
txn is determined as follows.

• If the DT log contains a start-2PC record, then
the recovering site, s, was the coordinator
– if it also contains a commit or abort record, then the

coord had reached a decision before failure.

– if neither is found, the coord can now unilaterally
decide ABORT.

• If the DT log doesn’t contain the start-2PC
record, then the site was a participant. There are
three cases:

27

Recovery (contd.)

– The DT log contains a commit or abort record
– I.e. participant had reached a decision.

– The DT log does not contain a yes record:
either the participant failed before voting, or
voted NO. It can therefore unilaterally decide
to ABORT.

– The DT log contains a yes record, but no
commit or abort record: participant failed
during the uncertainty period – use the
termination protocol to determine fate.

28

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 12

Garbage Collection

• As with the regular log, the DT log needs to be
garbage collected. There are two basic rules:

• GC1: A site cannot delete entries of txn T from
the DT log at least until its RM has processed
RM-Commit or RM-Abort.

• GC2: At least one site must not delete the
records of txn T from its DT log until that site has
received messages indicating that RM-
Commit(T) or RM-Abort(T) has been processed
at all other sites where T executed. (can be done
by the coordinator).

29

How good is 2PC?

• Resiliency: what types of failures does it tolerate?
– Site and communication failures (even partitioning)

• Blocking: does it block, if so when?
– Yes. If a process times out in its uncertainty period and

can only communicate with other uncertain processes.

• Time Complexity: How many rounds?
– With no failures: 3 rounds are needed.

– With failures, we need a termination protocol, that could
add 2 more rounds.

– Each failure could result in these extra rounds,but they
could overlap, so we count only 2 rounds.

30

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 13

Message Complexity

• Message Complexity: with n participants
– With no failures: 3n messages.

– If there are m sites that invoke the termination
protocol, then mn DECISION_REQ messages are
sent, at most (n-m+1) could respond. With each round
of the termination protocol, one less process is in its
uncertainty period, and thus one more could respond,
therefore the maximum number is:

which is at most n(3n+1)/2 + 3n in total.

31

m

i

mm
nkimnmn

1

2

22
2)(

Alternative 2PC

• Decentralised: complete graph. Better time

complexity.

• Linear: better message complexity.

32

Centralised Decentralised Linear

Time 3 rounds 2 rounds 2n rounds

MSG 3n n+n2 2n

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 14

Two-Phase Commit:

Problems

• Blocks on failure

– Timeout before abort if participant fails

– All participants must wait for recovery if
coordinator fails

• While blocked, transaction must remain
Isolated

– Hold locks on data items touched

– Prevents other transactions from completing

Two-Phase Commit

(Lamport ’76, Gray ’79)

• Central coordinator initiates protocol
– Phase 1:

• Coordinator asks if participants can commit

• Participants respond yes/no

– Phase 2:
• If all votes yes, coordinator sends Commit

• Participants respond when done

• Blocks on failure
– Participants must replace coordinator

– If participant and coordinator fail, wait for recovery

• While blocked, transaction must remain Isolated
– Prevents other transactions from completing

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 15

Negative Results

• Total failures + lack of independent recovery

give rise to blocking.

• Can we eliminate uncertainty periods?

• Unfortunately, there are two well-known

results:

1. There are no ACPs that eliminate blocking if

communication or total failures are possible.

2. No ACP can guarantee independent recovery

of failed processes.

35

Formal Recovery Models

(Skeen & Stonebraker ’83)

• Formal models for commit protocols

– Transaction state

– Failure

• Protocol types

– Commit

– Termination

– Recovery

• Necessary Conditions for non-blocking

– Leads to Three-Phase Protocol

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 16

Background

• Transaction has “commit point”

– Failure after transaction visible

– Failure before abort as part of recovery

• Protocol needed to ensure commit/abort
decision unanimous

– Any site can abort before first site commits

– No site can abort after first site commits

• Non-Blocking Protocol: Failure doesn’t
cause operational sites to suspend

Transaction Model

• Network:
– Point to point communication

– Maximum delay T or timeout
• If timeout, sender can assume recipient of network failure

• If network failure, sender doesn’t know if message received

• Each site can be viewed as Finite State Automaton
– Sites have three state “classes”:

• Initial: Allowed to abort the transaction

• Abort: Can’t transition to non-abort

• Commit: Can’t transition to non-commit

– Nondeterministic with respect to protocol, i.e., State transitions
may occur independent of protocol due to local actions

– State diagram is acyclic (assures termination)

– Site transitions asynchronous

– State transitions atomic

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 17

State Transition Graph for Two-

Phase Commit

c1a1 c2

a2

q1

w1 p2

q2

xact request/

start xact

no/

-

start xact/

no
start xact/

yes

commit/

-

abort/

-

yes/

abort

yes/

commit

Coordinator Participant

Transaction Model

• Global Transaction State
– Vector of local states

– Outstanding messages in the network

– Final if all local states in final state

– Inconsistent if vector contains both commit and abort states

– Global state transition occurs when local state transition occurs

• Reachable State Graph
– Possible global transitions

– Protocol correct if and only if reachable state graph has:
• No inconsistent states

• All terminal states are final states

• Local states potentially concurrent if a reachable global state
contains both local states
– Concurrency set C(s) is all states potentially concurrent with s

• Sender set S(s) = {local states t | t sends m and s can receive m}

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 18

Reachable Global State Graph for

Two-Phase Commit

• Leaf nodes are

terminal states

– All contain only final

states

• No nodes have both

“abort” and “commit”

– Protocol consistent

• Therefore 2-phase

commit is

operationally correct

Failure Models

• Site failure assumed when expected message

not received in time

– Modeled as “failure transition”

Assumption: A site knows it has failed

– Allow multiple failure transitions from a state

Different types of failure

• Independent Recovery

– Transition directly to final state without

communication

– Paper discusses only two site case

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 19

Single Site Failure

• Lemma 1: If a protocol contains a local
state s with both abort and commit in C(s),
cannot independently recover

– C(s) has both abort and commit

– s cannot fail to either abort or commit

2PC: C(p2) has both commit and abort!

• Rule 1: If C(s) has commit, insert failure
transition from s to commit, else insert
failure from s to abort

Modified 2PC with Rule 1

c1

a1

c2

a2

q1

w1 p2

q2

xact request/

start xact

no/

-

start xact/

no
start xact/

yes

commit/

done

abort/

-

yes/

abort

yes/

commit

Coordinator Participant

p1

done/

-

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 20

Handling Timeout

• Rule 2: For each intermediate state s

– if t is in S(s) and t had a failure transition to a
commit (abort) state, then

– assign a timeout transition from s to a commit
(abort) state

• Assumption: Failed state will
independently recover

– Rule 1 forces transition to commit / abort

– Rule 2 forces “live” transaction to do same

Modified 2PC with Rules 1,2

c1

a1

c2

a2

q1

w1 p2

q2

xact request/

start xact

no/

-

start xact/

no
start xact/

yes

commit/

done

abort/

-

yes/

abort

yes/

commit

Coordinator Participant

p1

done/

-

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 21

Theorem: Sufficient Conditions for

Handling Failure

• Rules 1 and 2 are sufficient for designing
protocols resilient to a single site failure

• Proof: Let P be protocol s.t. there is no s where
C(s) contains commit and abort
– P’ is P modified by Rules 1 and 2

– Site 1 fails in state s1 when Site 2 in s2

• Transitions to f1 inconsistent with f2

• Case 1: Site t2 in final state f2

– Implies f2 in C(s1) – violates Rule 1

• Case 2: Site 2 in nonfinal state, timeouts to f2

– Implies s1 S(s2) – violates Rule 2

Two site failure

• Theorem: No protocol using independent recovery
resilient to arbitrary two site failures
– Holds only if failures concurrent (both sites fail without knowing

other has failed)

• Proof: Assume path in global state graph G0, …, Gm, all
sites recover to abort from G0, to commit from Gm

• Let Gk be first state where first site j recovers to commit
– j recovers to abort in Gk-1
– j was only site to transition between Gk and Gk-1
– All other sites will recover same in Gk and Gk-1
– So either Gk or Gk-1 inconsistent if j and another site fail

• Key: No non-blocking recovery
– Doesn’t mean operational sites have to block

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 22

CS54200: Distributed

Database Systems

Three-Phase Commit

6 February 2009

Prof. Chris Clifton

Introduction

• No ACP can eliminate blocking if total failures or
total site failures are possible.

• 2PC may cause blocking even if there is a non-
total site failure – how?

• Introduce a new ACP which eliminates blocking
in the absence of comm. and total site failures.

• Unfortunately, it does not tolerate all
communication failures – some cases may result
in inconsistent decisions.

• A variation of this protocol avoids these
problems.

50

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 23

Centralized vs. Decentralized

Protocols

• What if we don’t want

a coordinator?

• Decentralized:

– Each site broadcasts

at each round

– Transition based on all

messages received

• Decentralized Two-

Phase Commit 

Decentralized 3-Phase Commit

(Skeen ’81)

• Send start message

– When ready, send yes/no

• If Any no’s received,

abort

• If all yes’s, send prepare

– Failure  commit

– Timeout  abort

• When prepares received,

commit

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 24

3 Phase Commit

• Assume no communications failures 
– every pair of operational sites can communicate
– A time-out implies that the sender is down (I.e. it

is not doing anything).

• 2PC causes blocking because uncertain
operational sites cannot be sure that a site
didn’t commit before failure.

• We want to have the following property:
– NB: If any operational process is uncertain then

no process (operational or failed) can have
decided to Commit.

• 3PC is designed to satisfy NB.

53

3PC

• The problem with 2PC is that the coordinator
sends Commit messages while the participants
are uncertain.

• Thus participants can decide commit while some
other participants are uncertain.

• 3PC avoids this by sending pre-Commit
messages instead of Commit messages,
thereby moving every participant out of the
uncertainty period before any participant
commits.

• After coord receives ack for pre-Commits, it
sends commit, allowing participants to commit.

54

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 25

3PC Steps

1. Coord send VOTE_REQ messages

2. Participants respond with vote. If it sends NO,
it decides Abort and stops.

3. The coord collects all votes and determines
whether to commit or abort. If it decides Abort
it sends the Abort to all sites. Otherwise, it
sends pre-Commit messages to all
participants.

4. A part that voted YES waits for a pre-Commit
or Abort message. If it receives a pre-Commit,
it sends an ACK to the Coord, otherwise it
Aborts and stops.

55

3PC Steps (contd.)

5. The Coord collects all ACKs. When they have

been received, it decides Commit, and send

Commit messages to all participants, and stops.

6. A participant waits for a commit from the Coord.

When it receives that message, it decides Commit

and stops.

What are the actions for timeouts and recovery?

56

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 26

What about non-independent

recovery?

• Previous protocols assume independent

recovery

– Always know proper decision when

recovering from failure

– Problem: Operational processes block with

multiple failures

• Solution: Recovery may need to request

help

3PC assuming timeout on receipt

of message

c1

a1

c2

a2

q1

w1 w2

q2

xact request/

start xact

no/

abort

start xact/

no
start xact/

yes

pre-commit/

ack

abort/

-

yes/

pre-commit

Coordinator Participant

p1

ack/

commit

p2

commit/

-

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 27

Timeout Actions

• Steps 1 and 3: unilaterally decide ABORT

• Step 5: A participant has failed. May have recvd
the pre-Commit before failure. Coordinator
ignores the failure (participant must be willing to
commit) even though some failed site may be
uncertain.

• Steps 4 and 6: can’t decide unilaterally. Step 4 is
as before. Why is step 6 difficult? Only a commit
can be received since pre-Commit has been
received. Why can’t the participant ignore the
timeout and decide commit?

59

Timeout Actions

• It can’t decide because some participants may
still be uncertain. This would violate NB.

• At this point, the participant should determine if
any of the operational sites are still uncertain –
use a termination protocol.

• A process can be in one of the following states:
– Aborted;

– Uncertain;

– Commitable; or

– Commited.

60

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 28

Solution: Termination Protocol

• If participant times out in w2 or p2:

– Elect new Coordinator
If coordinator alive, would have committed/aborted

• New coordinator requests state of all
processes. Termination rules:

– If any aborted, broadcast abort

– If any committed, broadcast commit

– If all w2, broadcast abort

– If any p2, send pre-commit and enter state p1

Termination Protocol

1. Upon timeout, the participant initiates a leader
election, involving all operational sites.

2. The new coordinator sends a STATE_REQ
message to all processes that participated in
election.

3. The Coord uses the termination rule:

TR1: If some process is Aborted, the coord
decides Abort, sends ABORT messages, and
stops.

TR2: If some process is Committed, the coord
decides Commit, sends COMMIT, and stops.

62

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 29

Termination Protocol (contd.)

TR3: If all processes report that they are
uncertain, the Coord decides Abort, sends
ABORT messages, and stops.

TR4: If some process is commitable but
none is commited, send PRE_COMMIT
messages to all uncertain processes; wait
for ACKs. Upon receiving these, decide
Commit, send COMMIT messages and
stops.

63

3PC Termination

• What happens if we get failures during the

termination protocol?

• The Coord will ignore failed participants.

• If the Coord fails, then a new one is elected. This

can go on until all sites have failed – total failure!

• Note that a site that recovers during the

termination protocol is not allowed to take part.

• Such processes use the recovery operations.

64

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 30

Recovery Actions

• A recovering participant, p, first determines its state
with respect to the transaction. If it failed
– Before sending YES, unilaterally abort.

– After receiving Commit/Abort, decided.

– Otherwise, it must communicate with other processes.

• Since there is no blocking, a decision has already
been made, or is being made, or p is the first
process to recover from a total failure.

• In the first 2 cases, it will eventually get the decision.

• Note that even if p had recvd a pre-Commit, it
cannot decide to COMMIT. Decision may be to abort
due to termination protocol!

65

Terminates

• Lemma: Only one of termination rules can
apply

• Theorem: In the absence of total failures,
3PC with termination protocol does not
block

– If coordinator alive, terminates after timeout.
Otherwise elect new coordinator.

• By Lemma, one of rules selected  decision

– If new coordinator fails, repeat
• Either succeeds, or all processes failed

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 31

Theorem: All operational

processes agree

• No failure: all messages sent to each process,
so each agree

• Induction: works for k failures. On k+1:
– First rule: p has aborted. So before failure, p didn’t

vote or voted no, or received abort.
• No process could have previously committed

– Second: p committed. So before failure, p had
received commit

– Third: Will abort. No previous commit. Since all
operational in w2, no process could be committed

– Fourth: Will commit. Assume p previously aborted –
no process could have entered p2

What about failed processes?

• Preceding assumes failed processes stay
failed

– We’ve removed failure transitions for
independent recovery

• Solution: Recovering site requests state
from operational sites

– Since 3PC non-blocking, will eventually get
response from operational site

– Same process for recovery from w2 or p2

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 32

What if all sites fail?

• If not in w2 or p2, recover independently

• If last site to fail, run termination protocol

– Only need to run with self

Would have been okay before failure

– Thus independent recovery

• Otherwise ask other sites when they

recover

Total Failures

• Upon recovery from a total failure, a process is
blocked unless:
– It was the last failed site

– It had decided before failure.

• If it was the last site to fail, it invokes the
termination protocol as the leader.

• All processes that have recovered by this time
can participate.

• Note that the inclusion of the last failed site in
such a situation is critical.

70

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 33

Election Protocol

• Order the sites.

• All sites exchange their IDs during election.

• The site with the lowest ID is the leader.

• Each site maintains a list of processes that it
believes are operational, UPp.

• When a site detects the failure of the coord, it
removes it from Upp and considers the process
with smallest ID in Upp to be the new leader. If it
is not the new leader, it sends a UR_ELECTED
message to the leader.

71

Election Protocol (contd.)

• A site that receives UR_ELECTED leads

• A site that receives a STATE_REQ from a new
leader ignores it if the ID is lower that what it
considers to be the current leader, or

• Assumes it to be the new leader, removes all
entries with smaller values from UPp.

• The Upp lists are useful for determining the last
failed site too.

• A set of recovered sites R, contains the last
failed site if

72

pRp UPR 

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 34

Communication Failures

• Problem: Network partition indistinguishable from process failure

• Solution: Need responses from majority

– Not non-blocking

– But non-blocking not possible!

• More difficult when transient partition

– Election of multiple coordinators with majority

Evaluation of 3PC

• Resiliency and blocking: site failures only.

Non-blocking unless total failure.

• Time Complexity:

– With no failures: 5 rounds.

– With failures: Each invocation of termination

protocol adds 5 more rounds +

UR_ELECTED. Thus with f failures, 6f + 5

rounds.

74

CS542: Distributed Database Systems 2/4/2009

Prof. Chris Clifton 35

Evaluation of 3PC

• Message Complexity:

– With no failures: 5n rounds

– With failures: each round of termn. Protocol

the number of message is the number of

remaining part.

– In i-th invocation, there are at most (n-i) left,

so the number of messages is at most 6(n-i).

– With f failures, at most

75

.)12)(1(3)(65
1

nnfinn
f

i

