CS542: Distributed Database Systems 1/16/2009

Database
administrator

ommands l o

Transacticn DDL
manager compiler

il

v metadatal

T taaata
"

i

.]
ogging and Concurrency | 4}
1
r

t

#== What's

O New?

* Query Compiler?
— DDL Compiler?

* Transaction
Manager?

control

« Execution Engine? Ll 7

+ Logging/Recovery?

« Concurrency !
Control? anage

* Index/File/Record? fl

» Buffer Manager? ..‘i'.v.r:'.;_'c

» Storage Manager? ;

PURDUE

CS542: Distributed Database
Concurrency Control

16 January 2009
Chris Clifton

Prof. Chris Clifton 1

CS542: Distributed Database Systems 1/16/2009

LIS Concurrency Control

To improve performance, we want to
allow (maximize) concurrent access to
data

If there are no updates, there is no
problem,

However, in the presence of updates
there are potential problems:

— Lost Update

— Inconsistent Retrieval

Examples of Incorrect

Behavior

TRANSFER

Read Acc1

Read Acc2 WITHDRAW
Adjust balances Read Acc1
Write Acc1 Adjust Balance
Write Acc2 Write Acc1

Prof. Chris Clifton 2

CS542: Distributed Database Systems

1/16/2009

Examples of Incorrect

Behavior
TRANSFER
Read Acc1
Read Acc2
WITHDRAW
Read Acc1
Adjust Balance

Adjust balances
Write Acc1
Write Acc2

Write Acc1

Examples of Incorrect

Behavior

TRANSFER
Read Acc1
Write Acc1
Read Acc2
Write Acc2

CHECK BALANCE
Read Acc1
Read Acc2

Prof. Chris Clifton

CS542: Distributed Database Systems

Examples of Incorrect
Behavior

TRANSFER

Read Acc1

Write Acc1
CHECK BALANCE

Read Acc1
Read Acc2 Read Acc2
Write Acc2

L |

How to Allow CORRECT
interleaving?

It is difficult to judge each interleaving to
decide whether something has gone
wrong for the given application (depends
too heavily on application semantics).

« SOLUTION: Transaction Model.

— The DBMS guarantees the correct
interleaving of transactions.

Prof. Chris Clifton

1/16/2009

CS542: Distributed Database Systems

ey TRANSACTIONS

F
» A Transaction is an execution of a 4
program that accesses a shared database.

The goal of concurrency control and

recovery is to ensure that transactions

execute Aftomically:.

— Each txn accesses shared data without
interfering with other transaction, and

— If a txn terminates normally, then all of its
effects are made permanent; otherwise it has
no effect at all.

10

Database Systems

ra
i

e A consists of a set of named

data items.

 The is the set of values of

these data items.

« The DBMS supports (e.g., read

and write of data items).

« DBMS executes txns atomically, |.e.

behaves as though it were sequential
(may or may not be).

Prof. Chris Clifton

1/16/2009

CS542: Distributed Database Systems

Database Systems (contd.)

The DBMS also supports
Start, Commit, Abort.

Transactions must end with a Commit or Abort.
(the Start may be implicit).

Assume that the DBMS begins in a consistent
state.

The correct atomic, execution of a transaction
takes the DBMS from one consistent state to
another. (May be inconsistent during the txn
execution).

=

12

Transaction

Procedure TRANSFER begin
Start;
input(from, to, amountO;
temp < Read(Accounts[from]);
if temp < amount then begin
output(“insufficient funds”)

Abort;

end

else begin
Write(Accounts[from], temp-amount);
temp < Read(Accounts[to]);
Write(Accounts[to], temp+amount);
Commit;
output(“Transfer Completed”);

end;

return;

end

13

Prof. Chris Clifton

1/16/2009

CS542: Distributed Database Systems

Transactions

Active txn — one that has not yet committed or
aborted.

Abort — may be from application semantics, or
system imposed.

Commit: effects must persist
— Also important for read-only transactions!

Abort: undo any effect.

Messages: txns communicate via data
stored in the DBMS!!

14

ACID properties

Atomicity: All or nothing

Consistency: defined by the execution of
the txn

Isolation: txn should see a consistent state
at all times

Durability: permanence of committed txn
actions.

15

Prof. Chris Clifton

1/16/2009

CS542: Distributed Database Systems

Recoverability

Ensure: ALL the effects of committed txns
and NONE of aborted txns

Easy if there are no aborts.

Aborting requires: ing the effects of
the txn: l.e. updates and effects on others.

Cascading aborts: aborting a txn implies
that all those that read the data it wrote
should also be aborted.

16

Fa
b

Recoverability

Committing a txn means it can NEVER be
aborted.

Thus we shouldn’t commit if we could
have a cascading abort!

A Recoverable execution is one which
allows commits only when all txns that
wrote data items read by the committing
txn have committed.

17

A

b,

Prof. Chris Clifton

1/16/2009

CS542: Distributed Database Systems

-5",":'71.f'; Recoverability

™
e A

e Atxn Ij_ X from txn T, if
- Tj reads x after T; has written to it;
— T,does not abort before Tj reads x; and
— Every txn (if any) that writes x between the time T,
writes it and Tj reads it, abort before Tj reads it.
» An execution is recoverable if, for every txn T
that commits, T's commit follows the commit of

every txn from which T read.

18

Avoid Cascading Aborts

» Recoverability may require cascading
aborts.

« These are expensive operations — should
be avoided.

« A DBMS Avoids Cascading Aborts (ACA)

if it does not allow a txn to read a data
item that has been modified by an
uncommitted transaction.

19

Prof. Chris Clifton

1/16/2009

CS542: Distributed Database Systems

Before Images

*
o {4

» Undo is typically done using before-
images, e.g.

Write,(x,1)
Write,(y,3)
Write,(y,1)
Commit,
Read,(x)
Abort,

20

Strict Execution

e 2

 However, if we have:
Write,(x,2); Write,(x,3); Abort,; Abort,;

» To avoid the corruption of before images,
we enforce Strict executions:

A DBMS that does not read or overwrite a
data item that has been modified by an
uncommitted transaction is STRICT.

21

Prof. Chris Clifton

1/16/2009

10

CS542: Distributed Database Systems

SERIALIZABILITY

By the definition of transactions, the
sequential (SERIAL) execution of
transactions is correct.

A SERIAL execution is one with no
interleaving of transactions.

How can we interleave txns while ensuring
that the result (effect) is the same as some
acceptable sequential execution — such an

execution is called SERIALIZABLE.

22

DBMS Model

Transactions

N1/

Transaction
Manager

Scheduler

Recovery
Manager

I
Cache
Manager
| |

>

23

Prof. Chris Clifton

1/16/2009

11

CS542: Distributed Database Systems

Lo €

DBMS Model

Abstract Model.
Centralized system (For NOW).

: manages the cache and
stable storage. Fetch, Flush.

. ensures atomicity and
durability. Handles system failures, media
failures — restores after crash.

24

Scheduler

Ensures concurrency control.

By controlling the order of execution of
operations submitted to it. Ensure that
ordering is serializable and recoverable.

Execute, Reject, Delay operations.

Sees only operations:

— type of operation,

— data object being operated upon,
— ID of the executing transaction.

25

Prof. Chris Clifton

1/16/2009

12

CS542: Distributed Database Systems

DBMS Model

The Transaction Manager assigns txn Ids,
passes operation onto scheduler.

There is no guarantee of order of
execution of operations at any level: must
be ensured through checks at txn
submission, scheduler, and the recovery
manager.

26

=

Prof. Chris Clifton

1/16/2009

13

