
CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 1

CS54100: Database Systems

Date Warehousing:

Current, Future?

20 April 2012

Prof. Chris Clifton

Data Warehousing: Goals

• OLAP vs OLTP

– On Line Analytical Processing (vs.

Transaction)

• Optimize for read, not write

– No transactions

– No index updates (just rebuild)

– No “open space” for future inserts

• Schema Changes

CS54100

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 2

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 5

Data Warehousing

 Integrated data spanning
long time periods, often
augmented with summary
information.

 Several gigabytes to
terabytes common.

 Interactive response
times expected for
complex queries; ad-hoc
updates uncommon.

EXTERNAL DATA
 SOURCES

 EXTRACT
TRANSFORM
 LOAD
 REFRESH

 DATA
WAREHOUSE

 Metadata
Repository

SUPPORTS

OLAP
DATA
MINING

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 6

Warehousing Issues

 Semantic Integration: When getting data from
multiple sources, must eliminate mismatches,
e.g., different currencies, schemas.

 Heterogeneous Sources: Must access data from
a variety of source formats and repositories.

 Replication capabilities can be exploited here.

 Load, Refresh, Purge: Must load data,
periodically refresh it, and purge too-old data.

 Metadata Management: Must keep track of
source, loading time, and other information for
all data in the warehouse.

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 3

Data Warehousing: How

• Consolidate data from many sources

• Batch updates

– ETL: Extract/Transform/Load

• Analysis-oriented schema

– “Fact table” and dimension tables

– Star / Snowflake Schema
• Clustering

• Indexing Structures

– Data Cube

 CS54100

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 10

Dimension Hierarchies

 For each dimension, the set of values can be
organized in a hierarchy:

PRODUCT TIME LOCATION

category week month state

pname date city

 year

quarter country

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 4

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 11

OLAP Queries

 Influenced by SQL and by spreadsheets.

 A common operation is to aggregate a
measure over one or more dimensions.

 Find total sales.

 Find total sales for each city, or for each state.

 Find top five products ranked by total sales.

 Roll-up: Aggregating at different levels of a
dimension hierarchy.

 E.g., Given total sales by city, we can roll-up to get
sales by state.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 12

OLAP Queries

 Drill-down: The inverse of roll-up.

 E.g., Given total sales by state, can drill-down to get
total sales by city.

 E.g., Can also drill-down on different dimension to
get total sales by product for each state.

 Pivoting: Aggregation on selected dimensions.

 E.g., Pivoting on Location and Time
yields this cross-tabulation: 63 81 144

38 107 145

75 35 110

 WI CA Total

1995

1996

1997

176 223 339 Total

 Slicing and Dicing: Equality
 and range selections on one
 or more dimensions.

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 5

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 13

Comparison with SQL Queries

 The cross-tabulation obtained by pivoting can also
be computed using a collection of SQLqueries:

SELECT SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.timeid=L.timeid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM Sales S, Location L
WHERE S.timeid=L.timeid
GROUP BY L.state

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 14

The CUBE Operator

 Generalizing the previous example, if there
are k dimensions, we have 2^k possible SQL
GROUP BY queries that can be generated
through pivoting on a subset of dimensions.

 CUBE pid, locid, timeid BY SUM Sales

 Equivalent to rolling up Sales on all eight subsets
of the set {pid, locid, timeid}; each roll-up
corresponds to an SQL query of the form:

SELECT SUM(S.sales)
FROM Sales S
GROUP BY grouping-list

Lots of work on optimizing
the CUBE operator!

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 6

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 15

Design Issues

 Fact table in BCNF; dimension tables un-normalized.

 Dimension tables are small; updates/inserts/deletes are
rare. So, anomalies less important than query performance.

 This kind of schema is very common in OLAP
applications, and is called a star schema; computing
the join of all these relations is called a star join.

price category pname pid country state city locid

sales locid timeid pid

holiday_flag week date timeid month quarter year

(Fact table) SALES

TIMES

PRODUCTS LOCATIONS

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 16

Implementation Issues

 New indexing techniques: Bitmap indexes, Join
indexes, array representations, compression,
precomputation of aggregations, etc.

 E.g., Bitmap index:

10

10

01

10

112 Joe M 3

115 Ram M 5

119 Sue F 5

112 Woo M 4

00100

00001

00001

00010

 sex custid name sex rating rating Bit-vector:
1 bit for each
possible value.
Many queries can
be answered using
bit-vector ops!

M
F

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 7

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 18

Bitmapped Join Index

 Consider a query with conditions price=10 and
country=“USA”. Suppose tuple (with sid) s in Sales
joins with a tuple p with price=10 and a tuple l with
country =“USA”. There are two join indexes; one
containing [10,s] and the other [USA,s].

 Intersecting these indexes tells us which tuples in
Sales are in the join and satisfy the given selection.

price category pname pid country state city locid

sales locid timeid pid

holiday_fla
g

week dat
e

timei
d

mont
h

quarte
r

year

(Fact table) SALES

TIMES

PRODUCTS LOCATIONS

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 20

SQL99 WINDOW Clause

 Let the result of the FROM and WHERE clauses be “Temp”.
 (Conceptually) Temp is partitioned according to the PARTITION BY clause.

 Similar to GROUP BY, but the answer has one row for each row in a partition, not
one row per partition!

 Each partition is sorted according to the ORDER BY clause.
 For each row in a partition, the WINDOW clause creates a “window” of

nearby (preceding or succeeding) tuples.
 Can be value-based, as in example, using RANGE
 Can be based on number of rows to include in the window, using ROWS clause

 The aggregate function is evaluated for each row in the partition using the
corresponding window.
 New aggregate functions that are useful with windowing include RANK (position

of a row within its partition) and its variants DENSE_RANK, PERCENT_RANK,
CUME_DIST.

SELECT L.state, T.month, AVG(S.sales) OVER W AS movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.state
 ORDER BY T.month
 RANGE BETWEEN INTERVAL `1’ MONTH PRECEDING
 AND INTERVAL `1’ MONTH FOLLOWING)

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 8

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 22

Top N Queries

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
ORDER BY S.sales DESC

OPTIMIZE FOR 10 ROWS

 OPTIMIZE FOR construct is not in SQL:1999!

 Cut-off value c is chosen by optimizer.

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
 AND S.sales > c
ORDER BY S.sales DESC

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 23

Online Aggregation
 Consider an aggregate query, e.g., finding the

average sales by state. Can we provide the user
with some information before the exact average is
computed for all states?

 Can show the current “running average” for each state
as the computation proceeds.

 Even better, if we use statistical techniques and sample
tuples to aggregate instead of simply scanning the
aggregated table, we can provide bounds such as “the
average for Wisconsin is 2000102 with 95%
probability.

• Should also use nonblocking algorithms!

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 9

Data Warehousing: Practice

• “Options” to commercial RDBMS

– Turn off logging, locking

– Large blocks, no empty space

– Bitmap indices, data cubes

• Specialized database

– No “dead code” for Transaction features

– Compressed representations (more in
memory)

– …

26

C-Store: A Column-oriented DBMS

By

New England Database Group

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 10

27

M.I.T

Column Stores

28

M.I.T

C-Store Technical Ideas

Code the columns to save space

No alignment

Big disk blocks

Only materialized views (perhaps many)

Focus on Sorting not indexing

Automatic physical DBMS design

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 11

29

M.I.T

C-store (Column Store) Technical
Ideas

Optimize for grid computing

Innovative redundancy

Xacts – but no need for Mohan

Data ordered on anything, Not just time

Column optimizer and executor

30

M.I.T

Code the Columns

Work hard to shrink space

Use extra space for multiple orders

Fundamentally easier than in a row store

E.g. RLE works well

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 12

31

M.I.T

Only Materialized Views

Projection (materialized view) is some

number of columns from a fact table

Plus columns in a dimension table – with

a 1-n join between Fact and Dimension

table

Stored in order of a storage key(s)

Several may be stored!!!!!

With a permutation, if necessary, to map

between them

32

M.I.T

Only Materialized Views

Table (as the user specified it and sees

it) is not stored!

No secondary indexes (they are a one

column sorted MV plus a permutation, if

you really want one)

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 13

33

M.I.T

Example

User view:

EMP (name, age, salary, dept)

Dept (dname, floor)

Possible set of MVs:

MV-1 (name, dept, floor) in floor order

MV-2 (salary, age) in age order

MV-3 (dname, salary, name) in salary order

34

M.I.T

Different Indexing

Few values Many values

Sequential

RLE encoded

Conventional B-tree at

the value level

Delta encoded

Conventional B-tree at

the block level

Non sequential Bitmap per value

Conventional Gzip

Conventional B-tree at

the block level

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 14

35

M.I.T

Automatic Physical DBMS Design

Not enough 4-star wizards to go around

Accept a “training set” of queries and a

space budget

Choose the MVs auto-magically

Re-optimize periodically based on a log

of the interactions

36

M.I.T

XACTS – No Mohan

Undo from a log (that does not need to

be persistent)

Redo by rebuild from elsewhere in the

network

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 15

37

M.I.T

XACTS – No Mohan

Snapshot isolation (run queries as of a

tunable time in the recent past)

To solve read-write conflicts

Distributed Xacts

Without a prepare message (no 2

phase commit)

38

M.I.T

Storage (sort) Key(s) is not
Necessarily Time

That would be too limiting

So how to do fast updates to densepack

column storage that is not in entry

sequence?

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 16

39

M.I.T

Solution – a Hybrid Store

Read-optimized

Column store

Write-optimized

Column store

Tuple mover

(Much like Monet)

(What we have been

talking about so far)

(Batch rebuilder)

40

M.I.T

Column Executor

Column operations – not row operations

Columns remain coded – if possible

Late materialization of columns

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 17

41

M.I.T

Column Optimizer

Chooses MVs on which to run the query

Most important task

Build in snowflake schemas

Which are simple to optimize without

exhaustive search

Looking at extensions

42

M.I.T

Current Performance

100X popular row store in 40% of the

space

10X popular column store in 70% of the

space

7X popular row store in 1/6th of the space

Code available with BSD license

CS54100: Database Systems 4/20/2012

© 2012 Chris Clifton 18

43

M.I.T

Structure Going Forward

Vertica

Very well financed start-up to

commercialize C-store

Doing the heavy lifting

University Research

Funded by Vertica

