
CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 1 

CS54100:  Database Systems 

SQL DDL 

27 January 2012 

Prof. Chris Clifton 

Defining a Database Schema 

CREATE TABLE name (list of elements). 
• Principal elements are attributes and their types, but key 

declarations and constraints also appear. 
• Similar CREATE X commands for other schema elements X: 

views, indexes, assertions, triggers. 
• “DROP X name” deletes the created element of kind X with 

that name. 

Example 
 CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer VARCHAR(20), 

  price REAL 

 ); 
 

 DROP TABLE Sells; 

Spring 2012 Chris Clifton - CS54100 2 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 2 

Constraints 

Commercial relational systems allow much more “fine-tuning” 
of constraints than do the modeling languages we learned earlier. 

• In essence: SQL programming is used to describe constraints. 

Outline 
1. Primary key declarations. 

2. Foreign-keys = referential integrity constraints. 

3. Attribute- and tuple-based checks = constraints within relations. 

4. SQL Assertions = global constraints. 
– Not found in Oracle. 

5. Oracle Triggers. 
– A substitute for assertions. 

Spring 2012 Chris Clifton - CS54100 3 

 Declaring Keys 

Use PRIMARY KEY or UNIQUE. 

• But only one primary key, many UNIQUEs 
allowed. 

• SQL permits implementations to create an index 
(data structure to speed access given a key 
value) in response to PRIMARY KEY only. 
– But PostgreSQL and Oracle create indexes for both. 

• SQL does not allow nulls in primary key, but 
allows them in “unique” columns (which may 
have two or more nulls, but not repeated non-
null values). 

Spring 2012 Chris Clifton - CS54100 4 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 3 

 Declaring Keys 

Two places to declare: 

1. After an attribute’s type, if the attribute is 

a key by itself. 

2. As a separate element. 

– Essential if key is >1 attribute. 

Spring 2012 Chris Clifton - CS54100 5 

 Example 

 CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer VARCHAR(20), 

  price REAL, 

  PRIMARY KEY(bar,beer) 

 ); 

Spring 2012 Chris Clifton - CS54100 6 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 4 

 Example 

 CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer VARCHAR(20), 

  price REAL, 

  UNIQUE(bar,beer) 

 ); 

is different than: 
CREATE TABLE Sells ( 

  bar CHAR(20) UNIQUE, 

  beer VARCHAR(20) UNIQUE, 

  price REAL 

 ); 

Spring 2012 Chris Clifton - CS54100 7 

 Other Properties You Can Give to 

Attributes 

1. NOT NULL = every tuple must have a real 
value for this attribute. 

2. DEFAULT value = a value to use whenever no 
other value of this attribute is known. 

 Example 
CREATE TABLE Drinkers ( 

 name CHAR(30) PRIMARY KEY, 

 addr CHAR(50) 

  DEFAULT '123 Sesame St', 

 phone CHAR(16) 

); 

Spring 2012 Chris Clifton - CS54100 8 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 5 

 INSERT INTO Drinkers(name) 

 VALUES('Sally') 

results in the following tuple: 

 name addr   phone 

 Sally 123 Sesame St.  NULL 

• Primary key is by default not NULL. 

• This insert is legal. 
– OK to list a subset of the attributes and values for only this 

subset. 

• But if we had declared 
  phone CHAR(16) NOT NULL 

 then the insertion could not be made. 

Spring 2012 Chris Clifton - CS54100 9 

Interesting Defaults 

•  DEFAULT CURRENT_TIMESTAMP 

•  SEQUENCE 

CREATE SEQUENCE customer_seq; 

CREATE TABLE Customer ( 

  customerID INTEGER 

    DEFAULT 

nextval('customer_seq'), 

  name VARCHAR(30) 

); 

Spring 2012 Chris Clifton - CS54100 10 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 6 

Foreign Keys 

In relation R a clause that “attribute A references S(B)” 
says that whatever values appear in the A column of R 
must also appear in the B column of relation S. 
• B must be declared the primary key for S. 

Example 
CREATE TABLE Beers ( 

  name CHAR(20) PRIMARY KEY, 

  manf CHAR(20) 

); 

 

CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer CHAR(20) REFERENCES Beers(name), 

  price REAL 

); 

Spring 2012 Chris Clifton - CS54100 11 

Alternative: add another element declaring the foreign 
key, as: 
CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer CHAR(20), 

  price REAL, 

  FOREIGN KEY beer REFERENCES 

    Beers(name) 

); 

• Extra element essential if the foreign key is more 
than one attribute. 

Spring 2012 Chris Clifton - CS54100 12 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 7 

What Happens When 

a Foreign Key Constraint is Violated? 

• Two ways: 

1. Insert or update a Sells tuple so it refers to a nonexistent 
beer. 

– Always rejected. 

2. Delete or update a Beers tuple that has a beer value some 
Sells tuples refer to. 

a)  Default: reject. 

b)  Cascade: Ripple changes to referring Sells tuple. 

Example 
• Delete “Bud.” Cascade deletes all Sells tuples that 

mention Bud. 

• Update “Bud” to “Budweiser.”  Change all Sells tuples with 
“Bud” in beer column to be “Budweiser.” 

Spring 2012 Chris Clifton - CS54100 13 

c)  Set Null: Change referring tuples to have 
NULL in referring components. 

Example 
• Delete “Bud.”  Set-null makes all Sells 

tuples with “Bud” in the beer component 

have NULL there. 

• Update “Bud” to “Budweiser.” Same 

change. 

Spring 2012 Chris Clifton - CS54100 14 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 8 

Selecting a Policy 

Add ON [DELETE, UPDATE] [CASCADE, SET NULL] to 
declaration of foreign key. 

Example 
CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer CHAR(20), 

  price REAL, 

  FOREIGN KEY beer REFERENCES Beers(name) 

   ON DELETE SET NULL 

   ON UPDATE CASCADE 

); 

• “Correct” policy is a design decision. 
– E.g., what does it mean if a beer goes away?  What if a beer 

changes its name? 

Spring 2012 Chris Clifton - CS54100 15 

Attribute-Based Checks 

Follow an attribute by a condition that must hold 

for that attribute in each tuple of its relation. 

• Form: CHECK (condition). 

– Condition may involve the checked attribute. 

– Other attributes and relations may be involved, but 

only in subqueries. 

– Oracle: No subqueries allowed in condition. 

• Condition is checked only when the associated 

attribute changes (i.e., an insert or update 

occurs). 

Spring 2012 Chris Clifton - CS54100 16 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 9 

Example 

CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer CHAR(20) CHECK( 

   beer IN (SELECT name 

    FROM Beers) 

  ), 

  price REAL CHECK( 

   price <= 5.00 

  ) 

); 

• Check on beer is like a foreign-key constraint, except: 

– The check occurs only when we add a tuple or change the beer 
in an existing tuple, not when we delete a tuple from Beers. 

Spring 2012 Chris Clifton - CS54100 17 

Spring 2012 Chris Clifton - CS54100 19 

Tuple-Based Checks 

Separate element of table declaration. 

• Form: like attribute-based check. 

• But condition can refer to any attribute of 

the relation. 

– Or to other relations/attributes in subqueries. 

– Again: Oracle forbids the use of subqueries. 

• Checked whenever a tuple is inserted or 

updated. 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 10 

Spring 2012 Chris Clifton - CS54100 20 

Example 

Only Joe's Bar can sell beer for more than 
$5. 
CREATE TABLE Sells ( 

  bar CHAR(20), 

  beer CHAR(20), 

  price REAL, 

  CHECK(bar = 'Joe''s Bar' OR 

   price <= 5.00) 

); 

Spring 2012 Chris Clifton - CS54100 21 

SQL Assertions 

• Database-schema constraint. 

• Not present in Oracle. 

• Checked whenever a mentioned relation 

changes. 

• Syntax: 

 CREATE ASSERTION < name> 

 CHECK(<condition>); 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 11 

Example 

No bar may charge an average of more than $5 for 
beer. 
Sells(bar, beer, price) 

 

CREATE ASSERTION NoRipoffBars 

CHECK(NOT EXISTS( 

   SELECT bar 

   FROM Sells 

   GROUP BY bar 

   HAVING 5.0 < AVG(price) 
   ) 
); 

• Checked whenever Sells changes. 

Spring 2012 Chris Clifton - CS54100 22 

Example 

There cannot be more bars than drinkers. 

Bars(name, addr, license) 

Drinkers(name, addr, phone) 
 

CREATE ASSERTION FewBar 

CHECK( 

   (SELECT COUNT(*) FROM Bars) <= 

   (SELECT COUNT(*) FROM Drinkers) 

); 

• Checked whenever Bars or Drinkers changes. 

Spring 2012 Chris Clifton - CS54100 23 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 12 

CS54100:  Database Systems 

SQL DDL, Views 

30 January 2012 

Prof. Chris Clifton 

 Types 

1. INT or INTEGER. 

2. REAL or FLOAT. 

3. CHAR(n) = fixed length character string, 
padded with “pad characters.” 

4. CHARACTER VARYING (or VARCHAR) (n) = 
variable-length strings up to n characters. 

5. NUMERIC(precision, decimal) is a number 
with precision digits with the decimal point 
decimal digits from the right. NUMERIC(10,2) 
can store ±99,999,999.99 

Spring 2012 Chris Clifton - CS54100 27 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 13 

Types 

6. DATE.  SQL form is DATE 'yyyy-mm-dd' 
• Oracle uses a different standard format 

• Use “Alter session” command to fix it 

7. TIME. Form is TIME 'hh:mm:ss[.ss…]' in 
SQL. 

8. DATETIME or TIMESTAMP. Form is TIMESTAMP 
'yyyy-mm-dd hh:mm:ss[.ss…]' in SQL. 
• Generally preferable to just “Date” or “time” 

• Be careful with semantics of comparison 

9. Various extensions 
• INTERVAL – time interval 

• BLOB, LONG, RAW – large objects with little typing 

Spring 2012 Chris Clifton - CS54100 28 

Changing Columns 

Add an attribute of relation R with 

 ALTER TABLE R ADD <column declaration>; 

 

 Example 
 ALTER TABLE Bars ADD phone CHAR(16) 

   DEFAULT 'unlisted'; 

 

• Columns may also be dropped. 

 ALTER TABLE Bars DROP license; 

 Spring 2012 Chris Clifton - CS54100 29 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 14 

 Views 

An expression that describes 

a table without creating it. 

 

 

 

 

 

 

 

• View definition form is: 
  CREATE VIEW <name> AS  <query>; 

Spring 2012 Chris Clifton - CS54100 30 

 Example 

The view CanDrink is the set of drinker-beer pairs such that the 
drinker frequents at least one bar that serves the beer. 
 CREATE VIEW CanDrink AS 

  SELECT drinker, beer 

  FROM Frequents, Sells 

  WHERE Frequents.bar = Sells.bar; 

 Querying Views 
Treat the view as if it were a materialized relation. 

 Example 
  SELECT beer 

  FROM CanDrink 

  WHERE drinker = ‘Sally’; 

Spring 2012 Chris Clifton - CS54100 31 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 15 

Theory behind views 

• Every relational query returns a relation 

– Possibly a single row, single column relation 

• Query result could be stored in a table 

– Use in future queries 

• View:  Do this “on the fly” 

– Generate the result every time the view is 

used 

Spring 2012 Chris Clifton - CS54100 32 

Using Views 

• Access control:  Limit who sees data 

• Different logical views 

– Schema migration 

• “short cuts” 

Spring 2012 Chris Clifton - CS54100 33 



CS54100:  Database Systems 1/30/2012 

© 2012 Chris Clifton 16 

View Limitations 

• Performance 

– Materialized views 

• Update 

– Insert 

– Modify 

– Delete 

• Solutions to come 

– Triggers 

Spring 2012 Chris Clifton - CS54100 34 


