
CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 1

CS54100: Database Systems

Relational Algebra

3 February 2012

Prof. Walid Aref

“Core” Relational Algebra

A small set of operators that allow us to manipulate
relations in limited but useful ways. The operators
are:

1. Union, intersection, and difference: the usual set
operators.
– But the relation schemas must be the same.

2. Selection: Picking certain rows from a relation.

3. Projection: Picking certain columns.

4. Products and joins: Composing relations in useful
ways.

5. Renaming of relations and their attributes.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 2

UNARY

Relational Algebra

• limited expressive power (subset of possible queries)

• good optimizer possible

• rich enough language to express enough useful things

Finiteness

 SELECT

π PROJECT

X CARTESIAN PRODUCT FUNDAMENTAL

U UNION BINARY

– SET-DIFFERENCE

 SET-INTERSECTION


THETA-JOIN CAN BE DEFINED

 NATURAL JOIN IN TERMS OF

÷ DIVISION or QUOTIENT FUNDAMENTAL OPS

Selection

R1 = C(R2)

where C is a condition involving the attributes of relation

R2.

Example
Relation Sells:

JoeMenu = bar=Joe's(Sells)

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75

Sue's Bud 2.50

Sue's Coors 3.00

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 3

Extra Example Relations

DEPOSIT(branchName, acctNo,custName,balance)

CUSTOMER(custName,street,custCity)

BORROW(branchName,loan-no,custName,amount)

BRANCH(branchName,assets, branchCity)

CLIENT(custName,emplName)

Borrow BN L# CN AMT

 T1 Midtown 123 Fred 600
 T2 Midtown 234 Sally 1200
 T3 Midtown 235 Sally 1500
 T4 Downtown 612 Tom 2000

SELECT () arity((R)) = arity(R)

 0  card((R))  card(R)

 c (R)  c (R) (R)

c is selection condition: terms of form: attr op value attr op attr

 op is one of < = >  ≠ ≥

 example of term: branch-name = ‘Midtown’

 terms are connected by 

 branchName = ‘Midtown’  amount > 1000 (Borrow)

 custName = empName (client)

Selection

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 4

Projection

R1 =  L(R2)

where L is a list of attributes from the schema
of R2.

Example

beer,price(Sells)

• Notice elimination of duplicate tuples.

beer price

Bud 2.50

Miller 2.75

Coors 3.00

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75

Sue's Bud 2.50

Sue's Coors 3.00

Projection

Projection (π) 0  card (π A (R))  card (R)

 arity (π A (R)) = m  arity(R) = k

 π i1,...,im
 (R) 1  ij  k distinct

produces set of m-tuples a1,...,am

 such that k-tuple b1,...,bk in R where aj = bij
 for j = 1,...,m

π branchName, custName (Borrow)

Midtown Fred

Midtown Sally

Downtown Tom

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 5

Product

R = R1  R2

pairs each tuple t1 of R1 with each tuple t2 of

R2 and puts in R a tuple t1t2.

Product

Cartesian Product ()

 arity(R) = k1 arity(R  S) = k1 + k2

 arity(S) = k2 card(R  S) = card(R)  card(S)

 R  S is the set all possible (k1 + k2)-tuples

 whose first k1 attributes are a tuple in R

 last k2 attributes are a tuple in S

 R S R  S

A B C D D E F A B C D D' E F

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 6

Theta-Join

R = R1 C R2

is equivalent to R = C(R1  R2).

Example

Sells = Bars =

BarInfo = Sells Sells.Bar=Bars.Name Bars

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75

Sue's Bud 2.50

Sue's Coors 3.00

name addr

Joe's Maple St.

Sue's River Rd.

bar beer price name addr

Joe's Bud 2.50 Joe's Maple St.

Joe's Miller 2.75 Joe's Maple St.

Sue's Bud 2.50 Sue's River Rd.

Sue's Coors 3.00 Sue's River Rd.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 7

Theta-Join R arity(R) = r

arity(S) = s

arity (R S) = r + s

0  card(R S) card(R)  card(S)

S

i j

$i $rj)R  S)

 R S

1 . . . r 1 . . . s





 can be < > = ≠ 

If equal (=), then it is

anEQUIJOIN

R S =  (R  S)
c c

R(A B C) S(C D E)

result has schema T(A B C C' D E)

R.A<S.D

i j

R(ABC) S(CDE) T(ABCC’DE)
 1 3 5 2 1 1 1 3 5 1 2 2
 2 4 6 1 2 2 1 3 5 3 3 4
 3 5 7 3 3 4 1 3 5 4 4 3
 4 6 8 4 4 3 2 4 6 3 3 4
 2 4 6 4 4 3
 3 5 7 4 4 3

Natural Join

R = R1 R2

calls for the theta-join of R1 and R2 with the condition that

all attributes of the same name be equated. Then, one

column for each pair of equated attributes is projected out.

Example
Suppose the attribute name in relation Bars was changed

to bar, to match the bar name in Sells.

BarInfo = Sells Bars

bar beer price addr

Joe's Bud 2.50 Maple St.

Joe's Miller 2.75 Maple St.

Sue's Bud 2.50 River Rd.

Sue's Coors 3.00 River Rd.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 8

Renaming

S(A1,…,An) (R) produces a relation identical to R
but named S and with attributes, in order,
named A1,…,An.

Example
Bars =

R(bar,addr) (Bars) =

• The name of the second relation is R.

name addr

Joe's Maple St.

Sue's River Rd.

bar addr

Joe's Maple St.

Sue's River Rd.

Set Operations: Union

Union (R  S) arity(R) = arity(S) = arity(R  S)

 max(card(R),card(S)) card(R  S)card(R) + card(S)

set of tuples in R or S or both R R  S

 S R  S

Find customers of Perryridge Branch

πCust-Name ( Branch-Name = "Perryridge" (BORROW  DEPOSIT))

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 9

Set Operations: Intersection

SET INTERSECTION arity(R) = arity(S) = arity (R S)

 (R S) 0 card (R S) min (card(R), card(S))

 tuples both in R and in S

R  (R S) = R S

S R

 R  S R

 R  S S

Set Operations: Difference

Difference(R S)

 arity(R) = arity(S) = arity(R–S)

 0 card(R –S)card(R) R – S R

is the tuples in R not in S

Depositors of Perryridge who aren't borrowers of Perryridge

πcustName ( branchName = ‘Perryridge’ (DEPOSIT – BORROW))

Deposit < Perryridge, 36, Pat, 500 >

Borrow < Perryridge, 72, Pat, 10000 >

 πcustName ( branchName = ‘Perryridge’ (DEPOSIT)) —

πcustName ( branchName = ‘Perryridge’ (BORROW))

Does (π (D)  π (B)) work?

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 10

CS54100: Database Systems

Relational Algebra

6 February 2012

Prof. Chris Clifton

Combining Operations

Algebra =

1. Basis arguments +

2. Ways of constructing expressions.

For relational algebra:

1. Arguments = variables standing for
relations + finite, constant relations.

2. Expressions constructed by applying one
of the operators + parentheses.

• Query = expression of relational algebra.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 11

Operator Precedence

The normal way to group operators is:

1. Unary operators , , and  have highest precedence.

2. Next highest are the “multiplicative” operators, , C , and

.

3. Lowest are the “additive” operators, , , and —.

• But there is no universal agreement, so we always put

parentheses around the argument of a unary operator, and it

is a good idea to group all binary operators with parentheses

enclosing their arguments.

Example
Group R  S T as R  ((S) T).

Each Expression Needs a

Schema

• If , , — applied, schemas are the same, so use
this schema.

• Projection: use the attributes listed in the projection.

• Selection: no change in schema.

• Product R  S: use attributes of R and S.
– But if they share an attribute A, prefix it with the relation

name, as R.A, S.A.

• Theta-join: same as product.

• Natural join: use attributes from each relation;
common attributes are merged anyway.

• Renaming: whatever it says.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 12

Example

• Find the bars that are either on Maple

Street or sell Bud for less than $3.

Sells(bar, beer, price)

Bars(name, addr)

Example

Find the bars that sell

two different beers at

the same price.

Sells(bar, beer,

price)

CS54100

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 13

Linear Notation for Expressions
• Invent new names for intermediate relations, and

assign them values that are algebraic expressions.

• Renaming of attributes implicit in schema of new

relation.

Example
Find the bars that are either on Maple Street or sell

Bud for less than $3.

Sells(bar, beer, price)

Bars(name, addr)

R1(name) := name( addr = Maple St.(Bars))

R2(name) := bar( beer=Bud AND price<$3(Sells))

R3(name) := R1  R2

Why Decomposition “Works”?

What does it mean to “work”? Why can’t we just tear
sets of attributes apart as we like?

• Answer: the decomposed relations need to
represent the same information as the original.
– We must be able to reconstruct the original from the

decomposed relations.

Projection and Join Connect the
Original and Decomposed Relations

• Suppose R is decomposed into S and T.
We project R onto S and onto T.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 14

Example

R =

• FDs:

– name  addr

– name  favoriteBeer

– beersLiked  manf

• Decompose:

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud

Project onto Drinkers1(name, addr,

favoriteBeer):

Project onto Drinkers3(beersLiked, manf):

Project onto Drinkers4(name, beersLiked):

beersLiked manf

Bud A.B.

WickedAle Pete's

Bud A.B.

name beersLiked

Janeway Bud

Janeway WickedAle

Spock Bud

name addr favoriteBeer

Janeway Voyager WickedAle

Spock Enterprise Bud

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 15

Reconstruction of Original

Can we figure out the original relation from the
decomposed relations?

• Sometimes, if we natural join the relations.

Example
Drinkers3 Drinkers4 =

• Join of above with Drinkers1 = original R.

name beersLiked manf

Janeway Bud A.B.

Janeway WickedAle Pete's

Spock Bud A.B.

Theorem: Lossless Join

• Decomposition of XYZ into XY and XZ:
– Let XY = Π XYZ ; XZ = Π XYZ

– XY XZ guaranteed to reconstruct XYZ if and only if X Y
• Remember that X  Z  X  Y

– Usually, the MVD is really a FD, X  Y or X Z.

• BCNF: When we decompose XYZ into XY and XZ, it is
because there is a FD X  Y or X  Z that violates BCNF.
– Thus, we can always reconstruct XYZ from its projections onto

XY and XZ.

• 4NF: when we decompose XYZ into XY and XZ, it is because
there is an MVD X  Y or X  Z that violates 4NF.
– Again, we can reconstruct XYZ from its projections onto XY and

XZ.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 16

Bag Semantics

A relation (in SQL, at least) is really a bag or
multiset.

• It may contain the same tuple more than
once, although there is no specified order
(unlike a list).

• Example: {1,2,1,3} is a bag and not a set.

• Select, project, and join work for bags as
well as sets.
– Just work on a tuple-by-tuple basis, and don't

eliminate duplicates.

Bag Union

Sum the times an element appears in the two bags.

• Example: {1,2,1}  {1,2,3,3} = {1,1,1,2,2,3,3}.

Bag Intersection
Take the minimum of the number of occurrences in

each bag.

• Example: {1,2,1}  {1,2,3,3} = {1,2}.

Bag Difference
Proper-subtract the number of occurrences in the two

bags.

• Example: {1,2,1} – {1,2,3,3} = {1}.

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 17

Laws for Bags Differ From Laws

for Sets

• Some familiar laws continue to hold for bags.
– Examples: union and intersection are still

commutative and associative.

• But other laws that hold for sets do not hold for
bags.

Example
R  (S  T)  (R  S)  (R  T) holds for sets.

• Let R, S, and T each be the bag {1}.

• Left side: S  T = {1,1}; R  (S  T) = {1}.

• Right side: R  S = R  T = {1};
(R  S)  (R  T) = {1}  {1} = {1,1}  {1}.

Extended (“Nonclassical”)

Relational Algebra

Adds features needed for SQL, bags.

1. Duplicate-elimination operator .

2. Extended projection.

3. Sorting operator .

4. Grouping-and-aggregation operator .

5. Outerjoin operator o .

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 18

Duplicate Elimination

(R) = relation with one copy of each tuple that appears one or
more times in R.

Example
R =

 A B

 1 2

 3 4

 1 2

(R) =
 A B

 1 2

 3 4

Sorting
• L(R) = list of tuples of R, ordered according to

attributes on list L.

• Note that result type is outside the normal types
(set or bag) for relational algebra.
– Consequence:  cannot be followed by other

relational operators.

Example

R = A B

 1 3

 3 4

 5 2

B(R) = [(5,2), (1,3), (3,4)].

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 19

Extended Projection

Allow the columns in the projection to be functions
of one or more columns in the argument relation.

Example
R = A B

 1 2

 3 4

A+B,A,A(R) =

 A+B A1 A2

 3 1 1

 7 3 3

Aggregation Operators

• These are not relational operators; rather they
summarize a column in some way.

• Five standard operators: Sum, Average, Count, Min,
and Max.

• Use with grouping (see next slide) or shorthand as
“special” projection:

• R: A B
 1 2
 3 4
Max(A), Min(B)(R) =
 Max(A) Min(B)
 3 2
• Remember: Aggregations return a single row – can’t

combine with non-aggregates in projection

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 20

Grouping Operator


L(R), where L is a list of elements that are either

a) Individual (grouping) attributes or

b) Of the form (A), where  is an aggregation
operator
and A the attribute to which it is applied,

is computed by:

1. Group R according to all the grouping attributes on
list L.

2. Within each group, compute (A), for each element
(A) on list L.

3. Result is the relation whose columns consist of one
tuple for each group. The components of that tuple
are the values associated with each element of L
for that group.

Example
Let R =

 bar beer price

 Joe's Bud 2.00

 Joe's Miller 2.75

 Sue's Bud 2.50

 Sue's Coors 3.00

 Mel's Miller 3.25

Compute beer,AVG(price)(R).

1. Group by the grouping attribute(s), beer in this case:

 bar beer price

 Joe's Bud 2.00

 Sue's Bud 2.50

 Joe's Miller 2.75

 Mel's Miller 3.25

 Sue's Coors 3.00

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 21

2. Compute average of price within groups:

 beer AVG(price)

 Bud 2.25

 Miller 3.00

 Coors 3.00

CS54100: Database Systems

Relational Algebra

8 February 2012

Prof. Chris Clifton

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 22

Outerjoin

The normal join can “lose” information,
because a tuple that doesn’t join with any
from the other relation (dangles) has no
vestage in the join result.

• The null value  can be used to “pad”
dangling tuples so they appear in the join.

• Gives us the outerjoin operator o .

• Variations: theta-outerjoin, left- and right-
outerjoin (pad only dangling tuples from
the left (respectively, right).

Example
R = A B

 1 2

 3 4

S = B C

 4 5

 6 7

R o S = A B C

 3 4 5 part of natural join

 1 2  part of right-outerjoin

  6 7 part of left-outerjoin

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 23

Division Operator

• Let R=XY, S=Y. Then RS produces a
relation X where

– x  R

–  y  S, xy  R

• Example: Bars that serve everyone’s
favorite beers

– Πbars,beers(Sells)  ΠfavoriteBeer(Drinkers)

• Division isn’t a fundamental operator

– RS = ΠR-S(r) – ΠR-S((Π(R-S(r)  s)- ΠR-S,S(r))

“Breaking” the Model

• Some SQL constructs break the traditional

relational model

select bar

from sells

where beer in

 (select favorite_beer from drinkers);

• What is the equivalent relational algebra?

– Why does it break the model?

CS54100

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 24

UNARY

Relational Algebra

• limited expressive power (subset of possible queries)

• good optimizer possible

• rich enough language to express enough useful things

Finiteness

 SELECT

π PROJECT

X CARTESIAN PRODUCT FUNDAMENTAL

U UNION BINARY

– SET-DIFFERENCE

 SET-INTERSECTION


THETA-JOIN CAN BE DEFINED

 NATURAL JOIN IN TERMS OF

÷ DIVISION or QUOTIENT FUNDAMENTAL OPS

Extended (“Nonclassical”)

Relational Algebra

Adds features needed for SQL, bags.

1. Duplicate-elimination operator .

2. Extended projection.

3. Sorting operator .

4. Grouping-and-aggregation operator .

5. Outerjoin operator o .

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 25

Relational Calculus

• Two flavors

– Domain Relational Calculus

– Tuple Relational Calculus

CS54100

Tuple Relational Calculus

• Query: { t | P(t) }
– All tuples such that P is true for t

– t[A] denotes value of attribute t for a

– t  r denotes t is in relation r

– P similar to predicate calculus

• Quantifiers

– tr(Q(t))
• There is a tuple in r such that Q(t) holds

– tr(Q(t))
• Q(t) holds for all tuples in r

CS54100

CS54100: Database Systems 2/8/2012

© 2012 Chris Clifton 26

Domain Relational Calculus

• Query: { <x1, …, xn> | P(x1, …, xn)}

– xi are domain variables

– P is a predicate

CS54100

Safety of Expressions

• Calculus expressions meeting certain

conditions are “safe”

– Processing clearly defined

– Essentially requires that all values in an

expression appear in predicate or relation

CS54100

