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Relational Algebra 

3 February 2012 

Prof. Walid Aref 

“Core” Relational Algebra 

A small set of operators that allow us to manipulate 
relations in limited but useful ways. The operators 
are: 

1. Union, intersection, and difference: the usual set 
operators. 
– But the relation schemas must be the same. 

2. Selection: Picking certain rows from a relation. 

3. Projection: Picking certain columns. 

4. Products and joins: Composing relations in useful 
ways. 

5. Renaming of relations and their attributes. 
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UNARY 

Relational Algebra 

• limited expressive power (subset of possible queries) 

• good optimizer possible 

• rich enough language to express enough useful things 

Finiteness 

 SELECT 

π  PROJECT 

X CARTESIAN PRODUCT                                    FUNDAMENTAL 

U UNION                                  BINARY 

– SET-DIFFERENCE       

 SET-INTERSECTION                                         

 
THETA-JOIN                                                       CAN BE DEFINED 

   NATURAL JOIN                                                  IN TERMS OF  

÷ DIVISION or QUOTIENT                                    FUNDAMENTAL OPS 

Selection 

R1 = C(R2) 

where C is a condition involving the attributes of relation 

R2. 

Example 
Relation Sells: 

 

 

JoeMenu = bar=Joe's(Sells) 

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75

Sue's Bud 2.50

Sue's Coors 3.00

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75
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Extra Example Relations 

DEPOSIT(branchName, acctNo,custName,balance) 

CUSTOMER(custName,street,custCity) 

BORROW(branchName,loan-no,custName,amount) 

BRANCH(branchName,assets, branchCity) 

CLIENT(custName,emplName) 

Borrow      BN          L#      CN    AMT 
 
  T1         Midtown   123     Fred    600 
  T2         Midtown   234     Sally  1200 
  T3         Midtown   235     Sally  1500 
  T4        Downtown 612    Tom   2000 

SELECT ()                                                       arity((R)) = arity(R) 

                                                                         0  card((R))  card(R) 

 c  (R)                           c (R) (R) 

c is selection condition: terms of form: attr op value   attr op attr 

                   op is one of < = >  ≠ ≥ 

          example of term:  branch-name = ‘Midtown’ 

                   terms are connected by    

 branchName = ‘Midtown’  amount > 1000 (Borrow) 

 custName = empName (client) 

 

Selection 
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Projection 

R1 =  L(R2) 

where L is a list of attributes from the schema 
of R2. 

Example 
 

beer,price(Sells) 

 

 

 

• Notice elimination of duplicate tuples. 

beer price

Bud 2.50

Miller 2.75

Coors 3.00

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75

Sue's Bud 2.50

Sue's Coors 3.00

Projection 

Projection    (π)                                   0  card (π A (R))  card (R) 

                                                             arity (π A (R)) = m  arity(R) = k 

   π i1,...,im
            (R)    1   ij    k distinct 

 

produces set of m-tuples a1,...,am

  such that k-tuple  b1,...,bk in R where aj  = bij
     for j = 1,...,m 

  

π  branchName, custName   (Borrow) 

 

 

Midtown      Fred 

Midtown      Sally 

Downtown  Tom 
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Product 

R = R1  R2 

pairs each tuple t1 of R1 with each tuple t2 of 

R2 and puts in R a tuple t1t2. 

Product 

Cartesian Product () 

                 arity(R) = k1    arity(R  S) = k1 + k2 

                 arity(S) = k2    card(R  S) = card(R)  card(S) 

 R  S is the set all possible (k1 + k2)-tuples 

       whose first k1 attributes are a tuple in R 

                  last k2 attributes are a tuple in S 

 

        R                   S                          R  S 

A  B  C   D    D  E   F           A  B   C  D  D'  E  F 
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Theta-Join 

R = R1  C  R2 

is equivalent to R = C(R1  R2). 

Example 

Sells =                                   Bars = 

 

 

 

 

BarInfo = Sells Sells.Bar=Bars.Name Bars 

bar beer price

Joe's Bud 2.50

Joe's Miller 2.75

Sue's Bud 2.50

Sue's Coors 3.00

name addr

Joe's Maple St.

Sue's River Rd.

bar beer price name addr

Joe's Bud 2.50 Joe's Maple St.

Joe's Miller 2.75 Joe's Maple St.

Sue's Bud 2.50 Sue's River Rd.

Sue's Coors 3.00 Sue's River Rd.



CS54100:  Database Systems 2/8/2012 

© 2012 Chris Clifton 7 

Theta-Join   R  arity(R) = r 

arity(S) = s 

arity (R       S) = r + s 

 

0  card(R       S) card(R)  card(S)  

S 

i j 

$i $rj)R  S) 

    R                  S 

1 . . . r           1 . . . s 





 can be < > = ≠ 

If equal (=), then it is 

anEQUIJOIN 

R S =    (R   S) 
c c 

R(A B C)        S(C D E) 

 

result has schema T(A B C C' D E) 

R.A<S.D 

i j 

R(ABC)   S(CDE)   T(ABCC’DE) 
    1 3 5       2 1 1       1 3 5 1 2 2 
    2 4 6       1 2 2       1 3 5 3 3 4 
    3 5 7       3 3 4       1 3 5 4 4 3 
    4 6 8       4 4 3       2 4 6 3 3 4 
                                  2 4 6 4 4 3 
                                  3 5 7 4 4 3 

Natural Join 

R = R1      R2 

calls for the theta-join of R1 and R2 with the condition that 

all attributes of the same name be equated. Then, one 

column for each pair of equated attributes is projected out. 

Example 
Suppose the attribute name in relation Bars was changed 

to bar, to match the bar name in Sells. 

BarInfo = Sells   Bars 

 
bar beer price addr

Joe's Bud 2.50 Maple St.

Joe's Miller 2.75 Maple St.

Sue's Bud 2.50 River Rd.

Sue's Coors 3.00 River Rd.
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Renaming 

S(A1,…,An) (R)  produces a relation identical to R 
but named S and with attributes, in order, 
named A1,…,An. 

Example 
Bars = 

 

R(bar,addr) (Bars) = 

 

• The name of the second relation is R. 

name addr

Joe's Maple St.

Sue's River Rd.

bar addr

Joe's Maple St.

Sue's River Rd.

Set Operations: Union 

Union (R  S)   arity(R) = arity(S) = arity(R  S) 

                       max(card(R),card(S)) card(R  S)card(R) + card(S) 

 

set of tuples in R or S or both   R R  S  

                                                                                       S R  S 

 

Find customers of Perryridge Branch 

 

πCust-Name  ( Branch-Name = "Perryridge"  (BORROW  DEPOSIT) ) 
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Set Operations:  Intersection 

SET INTERSECTION          arity(R) = arity(S) = arity (R S) 

   (R S)                              0 card (R S) min (card(R), card(S)) 

 

 tuples both in R and in S 

 

 

 

 

 

 

 

R  (R S) = R S 

 

S R 

 R  S R 

 R  S S 

Set Operations:  Difference 

Difference(R S) 

                          arity(R) = arity(S) = arity(R–S) 

                       0 card(R –S)card(R)                R – S R 

is the tuples in R not in S 

 

 

Depositors of Perryridge who aren't borrowers of Perryridge 

πcustName  ( branchName = ‘Perryridge’   (DEPOSIT – BORROW) ) 

 

Deposit   < Perryridge, 36, Pat, 500 > 

Borrow    < Perryridge, 72, Pat, 10000 > 

  πcustName  ( branchName = ‘Perryridge’   (DEPOSIT) )  — 

πcustName  ( branchName = ‘Perryridge’   (BORROW) ) 

Does   (π (D)  π (B) )  work? 
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Combining Operations 

Algebra = 

1. Basis arguments + 

2. Ways of constructing expressions. 

For relational algebra: 

1. Arguments = variables standing for 
relations + finite, constant relations. 

2. Expressions constructed by applying one 
of the operators + parentheses. 

• Query = expression of relational algebra. 



CS54100:  Database Systems 2/8/2012 

© 2012 Chris Clifton 11 

Operator Precedence 

The normal way to group operators is: 

1. Unary operators , , and  have highest precedence. 

2. Next highest are the “multiplicative” operators,      ,   C  , and 

. 

3. Lowest are the “additive” operators, , , and —. 

• But there is no universal agreement, so we always put 

parentheses around the argument of a unary operator, and it 

is a good idea to group all binary operators with parentheses 

enclosing their arguments. 

Example 
Group R  S      T as R  ((S )      T ). 

Each Expression Needs a 

Schema 

• If , , — applied, schemas are the same, so use 
this schema. 

• Projection: use the attributes listed in the projection. 

• Selection: no change in schema. 

• Product R  S: use attributes of R and S. 
– But if they share an attribute A, prefix it with the relation 

name, as R.A, S.A. 

• Theta-join: same as product. 

• Natural join: use attributes from each relation; 
common attributes are merged anyway. 

• Renaming: whatever it says. 
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Example 

• Find the bars that are either on Maple 

Street or sell Bud for less than $3. 

Sells(bar, beer, price) 

Bars(name, addr) 

Example 

Find the bars that sell 

two different beers at 

the same price. 

Sells(bar, beer, 

price) 

CS54100 
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Linear Notation for Expressions 
• Invent new names for intermediate relations, and 

assign them values that are algebraic expressions. 

• Renaming of attributes implicit in schema of new 

relation. 

Example 
Find the bars that are either on Maple Street or sell 

Bud for less than $3. 

Sells(bar, beer, price) 

Bars(name, addr) 

R1(name) := name( addr = Maple St.(Bars)) 

R2(name) := bar( beer=Bud AND price<$3(Sells)) 

R3(name) := R1  R2 

Why Decomposition “Works”? 

What does it mean to “work”? Why can’t we just tear 
sets of attributes apart as we like? 

• Answer: the decomposed relations need to 
represent the same information as the original. 
– We must be able to reconstruct the original from the 

decomposed relations. 

Projection and Join Connect the 
Original and Decomposed Relations 

• Suppose R is decomposed into S and T.  
We project R onto S and onto T. 
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Example 

R = 

 

 

• FDs: 

– name  addr 

– name  favoriteBeer 

– beersLiked  manf 

• Decompose: 

name addr beersLiked manf favoriteBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud

Project onto Drinkers1(name, addr, 

favoriteBeer): 

 

 

 

Project onto Drinkers3(beersLiked, manf): 

 

 

 

Project onto Drinkers4(name, beersLiked): 

beersLiked manf

Bud A.B.

WickedAle Pete's

Bud A.B.

name beersLiked

Janeway Bud

Janeway WickedAle

Spock Bud

name addr favoriteBeer

Janeway Voyager WickedAle

Spock Enterprise Bud
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Reconstruction of Original 

Can we figure out the original relation from the 
decomposed relations? 

• Sometimes, if we natural join the relations. 

Example 
Drinkers3   Drinkers4 = 

 

 

 

 

• Join of above with Drinkers1 = original R. 

name beersLiked manf

Janeway Bud A.B.

Janeway WickedAle Pete's

Spock Bud A.B.

Theorem:  Lossless Join 

• Decomposition of XYZ into XY and XZ: 
– Let XY = Π XYZ ; XZ = Π XYZ 

– XY       XZ guaranteed to reconstruct XYZ if and only if X Y  
• Remember that X  Z  X  Y 

– Usually, the MVD is really a FD, X  Y or X Z. 

• BCNF: When we decompose XYZ into XY and XZ, it is 
because there is a FD X  Y or X  Z that violates BCNF. 
– Thus, we can always reconstruct XYZ from its projections onto 

XY and XZ. 

• 4NF: when we decompose XYZ into XY and XZ, it is because 
there is an MVD X  Y or X  Z that violates 4NF. 
– Again, we can reconstruct XYZ from its projections onto XY and 

XZ. 
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Bag Semantics 

A relation (in SQL, at least) is really a bag or 
multiset. 

• It may contain the same tuple more than 
once, although there is no specified order 
(unlike a list). 

• Example: {1,2,1,3} is a bag and not a set. 

• Select, project, and join work for bags as 
well as sets. 
– Just work on a tuple-by-tuple basis, and don't 

eliminate duplicates. 

Bag Union 

Sum the times an element appears in the two bags. 

• Example: {1,2,1}  {1,2,3,3} = {1,1,1,2,2,3,3}. 

Bag Intersection 
Take the minimum of the number of occurrences in 

each bag. 

• Example: {1,2,1}  {1,2,3,3} = {1,2}. 

Bag Difference 
Proper-subtract the number of occurrences in the two 

bags. 

• Example: {1,2,1} – {1,2,3,3} = {1}. 
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Laws for Bags Differ From Laws 

for Sets 

• Some familiar laws continue to hold for bags. 
– Examples: union and intersection are still 

commutative and associative. 

• But other laws that hold for sets do not hold for 
bags. 

Example 
R  (S  T)  (R  S)  (R  T) holds for sets. 

• Let R, S, and T each be the bag {1}. 

• Left side: S  T = {1,1}; R  (S  T) = {1}. 

• Right side: R  S = R  T = {1}; 
(R  S)  (R  T) = {1}  {1} = {1,1}  {1}. 

Extended (“Nonclassical”) 

Relational Algebra 

Adds features needed for SQL, bags. 

1. Duplicate-elimination operator . 

2. Extended projection. 

3. Sorting operator . 

4. Grouping-and-aggregation operator . 

5. Outerjoin operator   o  . 
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Duplicate Elimination 

(R) = relation with one copy of each tuple that appears one or 
more times in R. 

Example 
R = 

   A B 

   1 2 

   3 4 

   1 2 
 

(R) = 
   A B 

   1 2 

   3 4 

 

Sorting 
• L(R) = list of tuples of R, ordered according to 

attributes on list L. 

• Note that result type is outside the normal types 
(set or bag) for relational algebra. 
– Consequence:  cannot be followed by other 

relational operators. 

Example 

R = A B 

  1 3 

  3 4 

  5 2 

B(R) = [(5,2), (1,3), (3,4)]. 
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Extended Projection 

Allow the columns in the projection to be functions 
of one or more columns in the argument relation. 

Example 
R = A B 

  1 2 

  3 4 

A+B,A,A(R) = 

 A+B A1 A2 

 3  1 1 

 7  3 3 

Aggregation Operators 

• These are not relational operators; rather they 
summarize a column in some way. 

• Five standard operators: Sum, Average, Count, Min, 
and Max. 

• Use with grouping (see next slide) or shorthand as 
“special” projection: 

• R: A B 
  1 2 
  3 4 
Max(A), Min(B)(R) = 
 Max(A) Min(B) 
  3 2 
• Remember:  Aggregations return a single row – can’t 

combine with non-aggregates in projection 
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Grouping Operator 


L(R), where L is a list of elements that are either 

a) Individual (grouping) attributes or 

b) Of the form (A), where  is an aggregation 
operator 
and A the attribute to which it is applied, 

is computed by: 

1. Group R according to all the grouping attributes on 
list L. 

2. Within each group, compute (A), for each element 
(A) on list L. 

3. Result is the relation whose columns consist of one 
tuple for each group. The components of that tuple 
are the values associated with each element of L 
for that group. 

Example 
Let R = 

  bar beer price 

  Joe's Bud 2.00 

  Joe's Miller 2.75 

  Sue's Bud 2.50 

  Sue's Coors 3.00 

  Mel's Miller 3.25 

Compute beer,AVG(price)(R). 

1. Group by the grouping attribute(s), beer in this case: 

  bar beer price 

  Joe's Bud 2.00 

  Sue's Bud 2.50 

  Joe's Miller 2.75 

  Mel's Miller 3.25 

  Sue's Coors 3.00 
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2. Compute average of price within groups: 

 

  beer AVG(price) 

  Bud 2.25 

  Miller 3.00 

  Coors 3.00 

CS54100:  Database Systems 

Relational Algebra 
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Outerjoin 

The normal join can “lose” information, 
because a tuple that doesn’t join with any 
from the other relation (dangles) has no 
vestage in the join result. 

• The null value  can be used to “pad” 
dangling tuples so they appear in the join. 

• Gives us the outerjoin operator   o . 

• Variations: theta-outerjoin, left- and right-
outerjoin (pad only dangling tuples from 
the left (respectively, right). 

Example 
R =  A B 

   1 2 

   3 4 
 

S =  B C 

   4 5 

   6 7 
 

R   o   S = A B C 

   3 4 5 part of natural join 

   1 2  part of right-outerjoin 

    6 7 part of left-outerjoin 
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Division Operator 

• Let R=XY, S=Y.  Then RS produces a 
relation X where 

– x  R 

–  y  S, xy  R 

• Example:  Bars that serve everyone’s 
favorite beers 

– Πbars,beers(Sells)  ΠfavoriteBeer(Drinkers) 

• Division isn’t a fundamental operator 

– RS = ΠR-S(r) – ΠR-S((Π(R-S(r)  s)- ΠR-S,S(r)) 

“Breaking” the Model 

• Some SQL constructs break the traditional 

relational model 

select bar 

from sells 

where beer in 

 (select favorite_beer from drinkers); 

• What is the equivalent relational algebra? 

– Why does it break the model? 

CS54100 
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UNARY 

Relational Algebra 

• limited expressive power (subset of possible queries) 

• good optimizer possible 

• rich enough language to express enough useful things 

Finiteness 

 SELECT 

π  PROJECT 

X CARTESIAN PRODUCT                                    FUNDAMENTAL 

U UNION                                  BINARY 

– SET-DIFFERENCE       

 SET-INTERSECTION                                         

 
THETA-JOIN                                                       CAN BE DEFINED 

   NATURAL JOIN                                                  IN TERMS OF  

÷ DIVISION or QUOTIENT                                    FUNDAMENTAL OPS 

Extended (“Nonclassical”) 

Relational Algebra 

Adds features needed for SQL, bags. 

1. Duplicate-elimination operator . 

2. Extended projection. 

3. Sorting operator . 

4. Grouping-and-aggregation operator . 

5. Outerjoin operator   o  . 
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Relational Calculus 

• Two flavors 

– Domain Relational Calculus 

– Tuple Relational Calculus 

CS54100 

Tuple Relational Calculus 

• Query:  { t | P(t) } 
– All tuples such that P is true for t 

– t[A] denotes value of attribute t for a 

– t  r denotes t is in relation r 

– P similar to predicate calculus 

• Quantifiers 

– tr(Q(t)) 
• There is a tuple in r such that Q(t) holds 

– tr(Q(t)) 
• Q(t) holds for all tuples in r 

CS54100 
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Domain Relational Calculus 

• Query:  { <x1, …, xn> | P(x1, …, xn)} 

– xi are domain variables 

– P is a predicate 

CS54100 

Safety of Expressions 

• Calculus expressions meeting certain 

conditions are “safe” 

– Processing clearly defined 

– Essentially requires that all values in an 

expression appear in predicate or relation 

CS54100 


