
CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 1

CS54100: Database Systems

Failure & Recovery

9 April 2012

Prof. Chris Clifton

Recovery

• First order of business:

 Failure Model

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 2

Events Desired

 Undesired Expected

 Unexpected

Our failure model

 processor

memory disk

CPU

M D

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 3

Desired events: see product manuals….

Undesired expected events:

 System crash

 - memory lost

 - cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!

Undesired Unexpected:

Everything else!

Examples:

• Disk data is lost

• Memory lost without CPU halt

• CPU implodes wiping out universe….

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 4

Is this model reasonable?

Approach: Add low level checks +

 redundancy to increase

 probability model holds

E.g., Replicate disk storage (stable store)

 Memory parity

 CPU checks

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 23

Review: The ACID properties

 A tomicity: All actions in the Xact happen, or none

happen.

 C onsistency: If each Xact is consistent, and the DB

starts consistent, it ends up consistent.

 I solation: Execution of one Xact is isolated from

that of other Xacts.

 D urability: If a Xact commits, its effects persist.

 The Recovery Manager guarantees Atomicity &
Durability.

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 5

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 24

Motivation

 Atomicity:

 Transactions may abort (“Rollback”).

 Durability:

 What if DBMS stops running? (Causes?)

crash!  Desired Behavior after system restarts:
– T1, T2 & T3 should be durable.

– T4 & T5 should be aborted (effects
not seen).

T1
T2
T3
T4
T5

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 25

Assumptions

 Concurrency control is in effect.

 Strict 2PL, in particular.

 Updates are happening “in place”.

 i.e. data is overwritten on (deleted from) the disk.

 A simple scheme to guarantee Atomicity &
Durability?

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 6

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 26

Handling the Buffer Pool

 Force every write to disk?

 Poor response time.

 But provides durability.

 Steal buffer-pool frames
from uncommited Xacts?

 If not, poor throughput.

 If so, how can we ensure
atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 27

More on Steal and Force

 STEAL (why enforcing Atomicity is hard)

 To steal frame F: Current page in F (say P) is
written to disk; some Xact holds lock on P.

• What if the Xact with the lock on P aborts?

• Must remember the old value of P at steal time (to
support UNDOing the write to page P).

 NO FORCE (why enforcing Durability is hard)

 What if system crashes before a modified page is
written to disk?

 Write as little as possible, in a convenient place, at
commit time,to support REDOing modifications.

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 7

Operations:

• Input (x): block with x  memory

• Output (x): block with x  disk

• Read (x,t): do input(x) if necessary

 t  value of x in block

• Write (x,t): do input(x) if necessary

 value of x in block  t

Key problem Unfinished transaction

Example Constraint: A=B

 T1: A  A  2

 B  B  2

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 8

T1: Read (A,t); t  t2
 Write (A,t);
 Read (B,t); t  t2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

• Need atomicity: execute all actions of
 a transaction or none
 at all

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 9

One solution: undo logging (immediate

 modification)

due to: Hansel and Gretel, 782 AD

• Improved in 784 AD to durable undo

logging

(Okay, Ariadne deserves earlier credit)

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 33

Basic Idea: Logging

 Record REDO and UNDO information, for
every update, in a log.

 Sequential writes to log (put it on a separate disk).

 Minimal info (diff) written to log, so multiple
updates fit in a single log page.

 Log: An ordered list of REDO/UNDO actions

 Log record contains:

<XID, pageID, offset, length, old data, new data>

 and additional control info (which we’ll see soon).

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 10

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 34

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:
 Must force the log record for an update before the

corresponding data page gets to disk.

 Must write all log records for a Xact before commit.

 #1 guarantees Atomicity.

 #2 guarantees Durability.

 Exactly how is logging (and recovery!) done?
 We’ll study the ARIES algorithms.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 35

WAL & the Log

 Each log record has a unique Log Sequence
Number (LSN).
 LSNs always increasing.

 Each data page contains a pageLSN.
 The LSN of the most recent log record

for an update to that page.

 System keeps track of flushedLSN.
 The max LSN flushed so far.

 WAL: Before a page is written,
 pageLSN flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
 in RAM

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 11

T1: Read (A,t); t  t2 A=B
 Write (A,t);
 Read (B,t); t  t2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>

16 <T1, B, 8>

16

One “complication”

• Log is first written in memory

• Not written to disk on every action

 memory

 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16

BAD STATE
1

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 12

One “complication”

• Log is first written in memory

• Not written to disk on every action

 memory

 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16

BAD STATE
2

<T1, B, 8>
<T1, commit>

..
.

Undo logging rules

(1) For every action generate undo log

 record (containing old value)

(2) Before x is modified on disk, log

 records pertaining to x must be

 on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all

 writes of transaction must be

 reflected on disk

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 13

Recovery rules: Undo logging

• For every Ti with <Ti, start> in log:

 - If <Ti,commit> or <Ti,abort>

 in log, do nothing

 - Else For all <Ti, X, v> in log:

 write (X, v)

 output (X)

 Write <Ti, abort> to log

IS THIS CORRECT??

Recovery rules: Undo logging

(1) Let S = set of transactions with <Ti,
start> in log, but no <Ti, commit> (or <Ti,
abort>) record in log

(2) For each <Ti, X, v> in log,

 in reverse order (latest  earliest) do:

 - if Ti  S then - write (X, v)

 - output (X)

(3) For each Ti  S do

 - write <Ti, abort> to log

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 14

What if failure during recovery?

 No problem!  Undo idempotent

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 43

Log Records

 Possible log record types:

 Update

 Commit

 Abort

 End (signifies end of commit or abort)

 Compensation Log Records (CLRs)

 for UNDO actions

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 15

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 44

Other Log-Related State

 Transaction Table:

 One entry per active Xact.

 Contains XID, status
(running/commited/aborted), and lastLSN.

 Dirty Page Table:

 One entry per dirty page in buffer pool.

 Contains recLSN -- the LSN of the log record
which first caused the page to be dirty.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 45

Normal Execution of an Xact

 Series of reads & writes, followed by commit
or abort.

 We will assume that write is atomic on disk.
• In practice, additional details to deal with non-atomic

writes.

 Strict 2PL.

 STEAL, NO-FORCE buffer management, with
Write-Ahead Logging.

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 16

To discuss:

• Redo logging

• Undo/redo logging, why both?

• Real world actions

• Checkpoints

• Media failures

CS54100: Database Systems

Failure & Recovery

11 April 2012

Prof. Chris Clifton

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 17

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);

 Read(B,t); t t2; write (B,t);

 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>
<T1, commit>

output

16

Redo logging rules

(1) For every action, generate redo log

 record (containing new value)

(2) Before X is modified on disk (DB),

 all log records for transaction that

 modified X (including commit) must

 be on disk

(3) Flush log at commit

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 18

Recovery rules: Redo logging

• For every Ti with <Ti, commit> in log:

– For all <Ti, X, v> in log:

 Write(X, v)

 Output(X)

IS THIS CORRECT??

Recovery rules: Redo logging

(1) Let S = set of transactions with

 <Ti, commit> in log

(2) For each <Ti, X, v> in log, in forward

 order (earliest  latest) do:

 - if Ti  S then Write(X, v)

 Output(X) optional

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 19

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 53

Checkpointing

 Periodically, the DBMS creates a checkpoint, in order
to minimize the time taken to recover in the event of
a system crash. Write to log:
 begin_checkpoint record: Indicates when chkpt began.

 end_checkpoint record: Contains current Xact table and dirty
page table. This is a `fuzzy checkpoint’:

• Other Xacts continue to run; so these tables accurate only as of the
time of the begin_checkpoint record.

• No attempt to force dirty pages to disk; effectiveness of checkpoint
limited by oldest unwritten change to a dirty page. (So it’s a good
idea to periodically flush dirty pages to disk!)

 Store LSN of chkpt record in a safe place (master record).

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 54

The Big Picture:
What’s Stored Where

DB

Data pages

 each

 with a

 pageLSN

Xact Table

 lastLSN

 status

Dirty Page Table

 recLSN

flushedLSN

RAM

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

master record

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 20

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 55

Simple Transaction Abort

 For now, consider an explicit abort of a Xact.

 No crash involved.

 We want to “play back” the log in reverse
order, UNDOing updates.

 Get lastLSN of Xact from Xact table.

 Can follow chain of log records backward via the
prevLSN field.

 Before starting UNDO, write an Abort log record.
• For recovering from crash during UNDO!

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 56

Abort, cont.

 To perform UNDO, must have a lock on data!

 No problem!

 Before restoring old value of a page, write a CLR:

 You continue logging while you UNDO!!

 CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the
record we’re currently undoing).

 CLRs never Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

 At end of UNDO, write an “end” log record.

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 21

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 57

Transaction Commit

 Write commit record to log.

 All log records up to Xact’s lastLSN are
flushed.
 Guarantees that flushedLSN  lastLSN.

 Note that log flushes are sequential, synchronous
writes to disk.

 Many log records per log page.

 Commit() returns.

 Write end record to log.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 58

Crash Recovery: Big Picture

 Start from a checkpoint (found
via master record).

 Three phases. Need to:
– Figure out which Xacts committed since

checkpoint, which failed (Analysis).

– REDO all actions.

 (repeat history)

– UNDO effects of failed Xacts.

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 22

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 59

Recovery: The Analysis Phase

 Reconstruct state at checkpoint.

 via end_checkpoint record.

 Scan log forward from checkpoint.

 End record: Remove Xact from Xact table.

 Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

 Update record: If P not in Dirty Page Table,

• Add P to D.P.T., set its recLSN=LSN.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 60

Recovery: The REDO Phase

 We repeat History to reconstruct state at crash:
 Reapply all updates (even of aborted Xacts!), redo CLRs.

 Scan forward from log rec containing smallest
recLSN in D.P.T. For each CLR or update log rec LSN,
REDO the action unless:
 Affected page is not in the Dirty Page Table, or

 Affected page is in D.P.T., but has recLSN > LSN, or

 pageLSN (in DB) LSN.

 To REDO an action:
 Reapply logged action.

 Set pageLSN to LSN. No additional logging!

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 23

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 61

Recovery: The UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}

Repeat:
 Choose largest LSN among ToUndo.

 If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.

 If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo

 Else this LSN is an update. Undo the update, write a
CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 62

Example of Recovery

begin_checkpoint

 end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

 00

 05

 10

 20

 30

 40

 45

 50

 60

Xact Table

 lastLSN

 status

Dirty Page Table

 recLSN

flushedLSN

ToUndo

prevLSNs

RAM

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 24

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 63

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG

00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

 90

Xact Table

 lastLSN

 status

Dirty Page Table

 recLSN

flushedLSN

ToUndo

undonextLSN

RAM

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 64

Additional Crash Issues

 What happens if system crashes during
Analysis? During REDO?

 How do you limit the amount of work in
REDO?
 Flush asynchronously in the background.

 Watch “hot spots”!

 How do you limit the amount of work in
UNDO?
 Avoid long-running Xacts.

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 25

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 65

Summary of Logging/Recovery

 Recovery Manager guarantees Atomicity &
Durability.

 Use WAL to allow STEAL/NO-FORCE w/o
sacrificing correctness.

 LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

 pageLSN allows comparison of data page and
log records.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 66

Summary, Cont.

 Checkpointing: A quick way to limit the
amount of log to scan on recovery.

 Recovery works in 3 phases:
 Analysis: Forward from checkpoint.

 Redo: Forward from oldest recLSN.

 Undo: Backward from end to first LSN of oldest
Xact alive at crash.

 Upon Undo, write CLRs.

 Redo “repeats history”: Simplifies the logic!

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 26

Recovery is very, very SLOW !

Redo log:

First T1 wrote A,B

 Last
Record Committed a year ago

 Record
(1 year ago) --> STILL, Need to redo after

crash!!

...

Crash

Solution: Checkpoint (simple version)

Periodically:

(1) Do not accept new transactions

(2) Wait until all transactions finish

(3) Flush all log records to disk (log)

(4) Flush all buffers to disk (DB) (do not discard buffers)

(5) Write “checkpoint” record on disk (log)

(6) Resume transaction processing

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 27

Example: what to do at

recovery?

• Redo log (disk):
<

T
1
,A

,1
6
>

 <
T
1
,c

o
m

m
it
>

 C
h
e
ck

p
o
in

t

<
T
2
,B

,1
7
>

 <
T
2
,c

o
m

m
it
>

 <

T
3
,C

,2
1
>

Crash
...

Key drawbacks:

• Undo logging: cannot bring backup DB

 copies up to date

• Redo logging: need to keep all modified

 blocks in memory

 until commit

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 28

Solution: undo/redo logging!

Update  <Ti, Xid, New X val, Old X val>

page X

Rules

• Page X can be flushed before or

 after Ti commit

• Log record flushed before corresponding

updated page (WAL)

• Flush at commit (log only)

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 29

Non-quiesce checkpoint

L
O
G

 for
 undo dirty buffer
 pool pages
 flushed

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

...
..
.

Examples what to do at recovery

time?

 no T1 commit

L

O

G

T1,-
a

...
Ckpt
T1

...
Ckpt
end

...
T1-
b

...

 Undo T1 (undo a,b)

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 30

Example

L
O
G

...
T1
a

... ...
T1
b

... ...
T1
c

...
T1
cmt

...
ckpt-
end

ckpt-s
T1

 Redo T1: (redo b,c)

Recovery process:

• Backwards pass (end of log  latest checkpoint start)

– construct set S of committed transactions

– undo actions of transactions not in S

• Undo pending transactions

– follow undo chains for transactions in

 (checkpoint active list) - S

• Forward pass (latest checkpoint start  end of log)

– redo actions of S transactions
backward pass

forward pass
start
check-
point

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 31

Real world actions

E.g., dispense cash at ATM

 Ti = a1 a2 …... aj …... an

$

Solution

(1) execute real-world actions after commit

(2) try to make idempotent

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 32

 ATM

Give$$

(amt, Tid, time)

$

give(amt)

lastTid:

time:

Media failure (loss of non-volatile
 storage)

A: 16

Solution: Make copies of data!

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 33

Example 1 Triple modular

redundancy

• Keep 3 copies on separate disks

• Output(X) --> three outputs

• Input(X) --> three inputs + vote

X1 X2 X3

Example #2 Redundant writes,

 Single reads

• Keep N copies on separate disks

• Output(X) --> N outputs

• Input(X) --> Input one copy

 - if ok, done

 - else try another one

 Assumes bad data can be detected

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 34

Example #3: DB Dump + Log

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

log

time

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 35

Fall 2007 Chris Clifton - CS541 88

More on transaction processing

Topics:

• Cascading rollback, recoverable schedule

• Deadlocks
– Prevention

– Detection

• View serializability

• Distributed transactions

• Long transactions (nested, compensation)

Fall 2007 Chris Clifton - CS541 89

Concurrency control & recovery

Example: Tj Ti

 Wj(A)

 ri(A)

 Commit Ti

 Abort Tj

…

…

…

…

…

…

 Cascading rollback (Bad!)

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 36

Fall 2007 Chris Clifton - CS541 90

• Schedule is conflict serializable

• Tj Ti

• But not recoverable

Fall 2007 Chris Clifton - CS541 91

• Need to make “final’ decision for each

transaction:

– commit decision - system guarantees

transaction will or has completed, no matter

what

– abort decision - system guarantees

transaction will or has been rolled back

 (has no effect)

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 37

Fall 2007 Chris Clifton - CS541 92

To model this, two new actions:

• Ci - transaction Ti commits

• Ai - transaction Ti aborts

Fall 2007 Chris Clifton - CS541 93

..
.

..
.

..
.

..
.

 Tj Ti

 Wj(A)

 ri(A)

 Ci  can we commit

 here?

Back to example:

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 38

Fall 2007 Chris Clifton - CS541 94

Definition

Ti reads from Tj in S (Tj S Ti) if

(1) wj(A) <S ri(A)

(2) aj <S ri(A) (< : does not precede)

(3) If wj(A) <S wk(A) <S ri(A) then

 ak <S ri(A)

Fall 2007 Chris Clifton - CS541 95

Definition

Schedule S is recoverable if

whenever Tj S Ti and j  i and Ci  S

then Cj <S Ci

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 39

Fall 2007 Chris Clifton - CS541 96

Note: in transactions, reads and writes
 precede commit or abort

 If Ci  Ti, then ri(A) < Ci

 wi(A) < Ci

 If Ai  Ti, then ri(A) < Ai

 wi(A) < Ai

• Also, one of Ci, Ai per transaction

Fall 2007 Chris Clifton - CS541 97

How to achieve recoverable

schedules?

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 40

Fall 2007 Chris Clifton - CS541 98

 With 2PL, hold write locks to

 commit (strict 2PL)

 Tj Ti

 Wj(A)

 Cj

 uj(A)
 ri(A)

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Fall 2007 Chris Clifton - CS541 99

 With validation, no change!

CS54100: Database Systems 4/16/2012

© 2012 Chris Clifton 41

Fall 2007 Chris Clifton - CS541 100

• S is recoverable if each transaction

commits only after all transactions from

which it read have committed.

• S avoids cascading rollback if each

transaction may read only those values

written by committed transactions.

