CS54100: Database Systems

PURDUE

Failure & Recovery
9 April 2012
Prof. Chris Clifton

CS54100: Database Systems

|ndiana

Genter for

Database

Recovery

L7

* First order of business:
Failure Model

© 2012 Chris Clifton

4/16/2012

CS54100: Database Systems

Events — Desired
S~ Undesired Expected

I Unexpected

memory

Our failure model

CPU | < processor

———————— >

N @ - disk

© 2012 Chris Clifton

4/16/2012

CS54100: Database Systems 4/16/2012

Desired events: see product manuals....

Undesired expected events:
System crash
- memory lost

- Ccpu halts, resets
that's it!!

Undesired Unexpected: Everything else!

= Undesired Unexpected:
Everything else!

Examples:

» Disk data is lost

* Memory lost without CPU halt

« CPU implodes wiping out universe....

© 2012 Chris Clifton 3

CS54100: Database Systems

T &

Is this model reasonable?

L/

Approach: Add low level checks +

redundancy to increase
probability model holds

E.g.,| Replicate disk storage (stable store)

Memory parity
CPU checks

b

TV

Review: The ACID properties ot

& A tomicity: All actions in the Xact happen, or none
happen.

& Consistency: If each Xact is consistent, and the DB
starts consistent, it ends up consistent.

& I solation: Execution of one Xact is isolated from
that of other Xacts.

& D urability: If a Xact commits, its effects persist.

< The Recovery Manager guarantees Atomicity &
Durabilit

Database Management Systerég,. 3ed, R. Ramakrishnan and J. Gehrke 23

© 2012 Chris Clifton

4/16/2012

CS54100: Database Systems

4/16/2012

Motivation

< Atomicity:
< Durability:

> Desired Behavior after system restarts:

- T1, T2 & T3 should be durable.

- T4 & T5 should be aborted (effects
not seen).

* Transactions may abort (“Rollback”).

* What if DBMS stops running? (Causes?)

T1
T2
T3
T4
T5

crash!

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke

24

Assumptions

Durability?

% Concurrency control is in effect.
= Strict 2PL, in particular.
+ Updates are happening “in place”.

* i.e. data is overwritten on (deleted from) the disk.

% A simple scheme to guarantee Atomicity &

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke

g

g P

S

Ly e

25

© 2012 Chris Clifton

CS54100: Database Systems 4/16/2012

S £]
//—J’i 3
Handling the Buffer Pool o
+ Force every write to disk?
* Poor response time. No Steal Steal

* But provides durability. Force| Trivial
rivial

+ Steal buffer-pool frames
from uncommited Xacts? |

= If not, poor throughput. \; £o/ce Desired
= [f so, how can we ensure e
atomicity?
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 26

g P

More on Steal and Force s

+ STEAL (why enforcing Atomicity is hard)
» To steal frame F: Current page in F (say P) is
written to disk; some Xact holds lock on P.
* What if the Xact with the lock on P aborts?
* Must remember the old value of P at steal time (to

support UNDOing the write to page P).
+ NO FORCE (why enforcing Durability is hard)

» What if system crashes before a modified page is
written to disk?

= Write as little as possible, in a convenient place, at
commit time,to support REDOing modifications.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 27

© 2012 Chris Clifton 6

CS54100: Database Systems

Operations:

*
o {4

 Input (X): block with x - memory
» Output (x): block with x — disk

* Read (x,t): do input(x) if necessary
t « value of x in block

* Write (x,t): do input(x) if necessary
value of x in block «t

e 2

Example Constraint: A=B
T1: A « Ax2
B « Bx2

Key problem Unfinished transaction

© 2012 Chris Clifton

4/16/2012

CS54100: Database Systems

Ta:

Read (A)t); t« tx2
Write (A,b);

Read (B,t); t <« tx2

Write (B,1);
Output (A);
Output (B);

A: 8 16
B:.8" 16

memory

failure!

disk

L |

* Need atomicity: execute all actions of

a transaction or none
at all

© 2012 Chris Clifton

4/16/2012

CS54100: Database Systems

:-E.',Q(J

\5

,.
o &
<
*

b
e
/
{1 },
- ¢ }

-
¥,

One solution: undo logging (immediate
modification)

due to: Hansel and Gretel, 782 AD
* Improved in 784 AD to durable undo

logging
(Okay, Ariadne deserves earlier credit)

Basic Idea: Logging

< Record REDO and UNDO information, for
every update, in a log.
» Sequential writes to log (put it on a separate disk).
* Minimal info (diff) written to log, so multiple

updates fit in a single log page.
% Log: An ordered list of REDO/UNDO actions

* Log record contains:
<XID, pagelD, offset, length, old data, new data>

» and additional control info (which we’ll see soon).

4/16/2012

33

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke

© 2012 Chris Clifton

CS54100: Database Systems 4/16/2012

S i
//—J’i
Write-Ahead Logging (WAL) Cor?
< The Write-Ahead Logging Protocol:
@ Must force the log record for an update before the
corresponding data page gets to disk.
@ Must write all log records for a Xact before commit.
% #1 guarantees Atomicity.
< #2 guarantees Durability.
< Exactly how is logging (and recovery!) done?
»= We'll study the ARIES algorithms.
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 34

WAL & the Log-

LSNs pagelLSNs flushedLSN

< Each log record has a unique Log Sequence
Number (LSN). Log records

[] LSNS always inCreasing, flushed to disk
< Each data page contains a pageLLSN.

* The LSN of the most recent log record
for an update to that page.

% System keeps track of flushed LSN.
* The max LSN flushed so far.

+ WAL: Before a page is written, ~ |P2°LSN /| “Log tail”
» pageLSN < flushedLSN in RAM

= :

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke

© 2012 Chris Clifton 10

CS54100: Database Systems 4/16/2012

UndO |Ogglng (Immediate modification)
T1: Read (Al); t« tx2 A=B
Write (A1);
Read (B,t); t <« tx2
Write (B,t);
Output (A);
Output (B); D
| AR
A:8 16 A8 16 <T1, B, 8>
B:8 16 B:8 16 <T1, commit>
N~
memory disk log

One “complication”

— %
* Log is first written in memory

* Not written to disk on every action

memory
B: 8 DBBAD STATE
A 16

B, 816 # 1
Log: Log

<T1,start>
<T1,A 8>
<T1, B, 8>

© 2012 Chris Clifton 11

CS54100: Database Systems

One “complication”

o {4

 Log is first written in memory
» Not written to disk on every action

5
memory na 16
B: 8 DB BAD STATE

AL 16 # 2
B:/9f16
Log: Log
<T1,start>
<T1, A, 8> ’
<T1, B, 8> <T1, B, 8>
<T1, commit> <T1, commit>

Undo logqging rules

L |

(1) For every action generate undo log
record (containing old value)

(2) Before x is modified on disk, log
records pertaining to x must be

on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
writes of transaction must be

reflected on disk

© 2012 Chris Clifton

4/16/2012

12

CS54100: Database Systems 4/16/2012

751 Recovery rules: Undo logging
— »
« For every Ti with <Ti, start> in log:

- If <Ti,commit> or <Ti,abort>
in log, do nothing

- Else |For all <Ti, X, v>in log:
{write (X, v)
output (X)

Write <Ti, abort> to log

XIS THIS CORRECT??

2453 Recovery rules: Undo logging

e 2

Tl) Let S = set of transactions with <Ti,
start> in log, but no <Ti, commit> (or <Ti,
abort>) record in log

(2) For each <Ti, X, v>in log,
in reverse order (latest — earliest) do:
-if Ti € S then |- write (X, v)
{- output (X)
(3) Foreach Ti € Sdo
- write <Ti, abort> to log

© 2012 Chris Clifton 13

CS54100: Database Systems

L/ @
What if failure during recovery?
No problem! <=Undo idempotent
@
")
C)’)
Log Records pedsN @
XID
LogRecord fields:
+ Possible log record types: D
. dat length
+ Update R oot
< Commit oy before-image
% Abort after-image
+ End (signifies end of commit or abort)
< Compensation Log Records (CLRs)
» for UNDO actions
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 43

© 2012 Chris Clifton

4/16/2012

14

CS54100: Database Systems 4/16/2012

g

/ff'

Other Log-Related State et

L S0

< Transaction Table:
* One entry per active Xact.
* Contains XID, status
(running/commited /aborted), and lastLSN.
< Dirty Page Table:
* One entry per dirty page in buffer pool.

» Contains recLSN -- the LSN of the log record
which first caused the page to be dirty.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 44

Normal Execution of an Xact s

+ Series of reads & writes, followed by commit
or abort.
= We will assume that write is atomic on disk.

* In practice, additional details to deal with non-atomic
writes.

< Strict 2PL.

+ STEAL, NO-FORCE buffer management, with
Write-Ahead Logging.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 45

© 2012 Chris Clifton 15

CS54100: Database Systems 4/16/2012

To discuss:

»
o 1

* Redo logging

« Undo/redo logging, why both?
» Real world actions

» Checkpoints

» Media failures

PURDUE

CS54100: Database Systems

Failure & Recovery
11 April 2012
Prof. Chris Clifton

|ndiana

Center for

Database

[\, Systems S
/ (W
/

P
fr*-«“‘\ r’Hf‘\’f ™

© 2012 Chris Clifton 16

CS54100: Database Systems 4/16/2012

Redo logging (deferred modification)
T1: Read(A,t); t—tx2; write (A,t);
Read(B,t); t—tx2; write (B,t);
Output(A); Output(B)

/\
v
<T1, start>

. output (Y <TL A 16>

AB16 —— ., |A: 816 <T1, B, 16>

B: 816 B: 8 <T1, commit>
v

memory DB

LOG

Redo loqgqing rules

e 2

(1) For every action, generate redo log
record (containing new value)
(2) Before X is modified on disk (DB),
all log records for transaction that
modified X (including commit) must
be on disk

(3) Flush log at commit

© 2012 Chris Clifton 17

CS54100: Database Systems 4/16/2012

Recovery rules: Redo logging

« For every Ti with <Ti, commit> in log:
— For all <Ti, X, v>in log:

Write(X, v)
Output(X)

IS THIS CORRECT??

=5} Recovery rules: Redo logging
(1) Let S = set of transactions with *
<Ti, commit> in log
(2) For each <Ti, X, v>in log, in forward
order (earliest — latest) do:
_if Ti e S then {Write(x, v)

Output(X) «— optional

© 2012 Chris Clifton 18

CS54100: Database Systems

Checkpointing

a system crash. Write to log:

time of the begin_checkpoint record.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke

| 2

O\

L g P

LS

O\

78

% Periodically, the DBMS creates a checkpoint, in order
to minimize the time taken to recover in the event of

= begin_checkpoint record: Indicates when chkpt began.
= end_checkpoint record: Contains current Xact table and dirty
page table. This is a “fuzzy checkpoint’:

* Other Xacts continue to run; so these tables accurate only as of the

* No attempt to force dirty pages to disk; effectiveness of checkpoint
limited by oldest unwritten change to a dirty page. (So it's a good
idea to periodically flush dirty pages to disk!)

= Store LSN of chkpt record in a safe place (master record).

53

The Big Picture:
What’s Stored Where

[

LOG
DB
LogRecords
E)(rIeDvLSN Data pages
each

P D with a
page pageLSN
length
offset i master record
before-image
after-image

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke

7 4
TV
‘T o
ya 1/ 1/ 1/ ya
RAM
Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

54

© 2012 Chris Clifton

4/16/2012

19

CS54100: Database Systems 4/16/2012

g

//—J’"

Simple Transaction Abort G

L0

< For now, consider an explicit abort of a Xact.
* No crash involved.
<+ We want to “play back” the log in reverse
order, UNDOing updates.
» Get lastLSN of Xact from Xact table.

* Can follow chain of log records backward via the
prevLSN field.

» Before starting UNDO, write an Abort log record.

* For recovering from crash during UNDO!

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 55

Abort, cont.

< To perform UNDO, must have a lock on data!
= No problem!

< Before restoring old value of a page, write a CLR:
* You continue logging while you UNDO!!

= CLR has one extra field: undonextLSN

* Points to the next LSN to undo (i.e. the prevLSN of the
record we're currently undoing).

* CLRs never Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

< At end of UNDO, write an “end” log record.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 56

© 2012 Chris Clifton 20

CS54100: Database Systems 4/16/2012

g

/ff'

Transaction Commit et

L S0

< Write commit record to log.

< All log records up to Xact’s lastLSN are
flushed.
= Guarantees that flushedLSN > lastL.SN.

* Note that log flushes are sequential, synchronous
writes to disk.

* Many log records per log page.
% Commit() returns.
% Write end record to log.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 57

c ")
wred
TV o

D

Crash Recovery: Big Picture

Oldest log
rec.of Xact % < Start from a checkpoint (found
active at crash = .

: via master record).
Smallest : « Three phases. Need to:
recLSN in .)]))
dirty page ey - Figure out wh1c.h Xac.ts commlttele since
table after : checkpoint, which failed (Analysis).
Analysis : - REDO all actions.

(repeat history)
- UNDO effects of failed Xacts.

Last chkpt —= l
N

CRASH = /
A R U
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 58

© 2012 Chris Clifton 21

CS54100: Database Systems 4/16/2012

Recovery: The Analysis Phase s

< Reconstruct state at checkpoint.
» via end_checkpoint record.

% Scan log forward from checkpoint.
* End record: Remove Xact from Xact table.

= Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

» Update record: If P not in Dirty Page Table,
e Add P to D.P.T., set its recLSN=LSN.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 59

S

Recovery: The REDO Phase ant

« We repeat History to reconstruct state at crash:
= Reapply all updates (even of aborted Xacts!), redo CLRs.
% Scan forward from log rec containing smallest

recLSN in D.P.T. For each CLR or update log rec LSN,
REDO the action unless:

= Affected page is not in the Dirty Page Table, or
= Affected page is in D.P.T., but has recLSN > LSN, or
* pagelLSN (in DB) > LSN.
< To REDO an action:
= Reapply logged action.
= Set pageLSN to LSN. No additional logging!

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 60

© 2012 Chris Clifton 22

CS54100: Database Systems 4/16/2012

Recovery: The UNDO Phase oty

ToUndo={1 | [alastLSN of a “loser” Xact}

Repeat:
* Choose largest LSN among ToUndo.
= [f this LSN is a CLR and undonextLSN==NULL
* Write an End record for this Xact.
= [f this LSN is a CLR, and undonextL.SN != NULL
* Add undonextLLSN to ToUndo

= Else this LSN is an update. Undo the update, write a
CLR, add prevLSN to ToUndo.

Until ToUndo is empty.
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 61
"3
4 4
g P |
> =5
Example of Recovery =
LSN LOG
RAM 00 -- begin_checkpoint
05 — end_checkpoint
Xact Table 10 "' update: T1 writes PS5« . prevLSNs
lastLSN 20 + update T2 writes P3 40 .~ o g
status S WL
. 30 = T1 abort «. — .\
Dirty Page Table : abort o« — .\
recLSN 40 = CLR: Undo Tl_LSN 10 |,
flushedLSN 45 = T1End —°
50 =+ update: T3 writes P1
HiglUiiels 60 =+ update: T2 writes P5
X CRASH, RESTART
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 62

© 2012 Chris Clifton 23

CS54100: Database Systems 4/16/2012

$
/fJ/'/)
. v =\
Example: Crash During Restart! 34
LSN LOG
L _ 00,05 —o— begin_checkpoint, end_checkpoint
RAM 10 — update: T1 writes P5
20 _ update T2 writes P3 undonextLSN
Xact Table 30 - T1 abort
PSLSN 140,45 = CLR: Undo T1 LSN 10, T1 End) |
Dirty Page Table 50 —o— update: T3 writes P1 g
recLSN 60 = update: T2 writes P5
e S X CRASH, RESTART
70 = CLR: Undo T2 LSN 60
ToUndo i
80,85 = CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART
90 - CLR: Undo T2 LSN 20, T2 end
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 63
$
4 4
.. TV 4
Additional Crash Issues S
< What happens if system crashes during
Analysis? During REDO?
< How do you limit the amount of work in
REDQO?
* Flush asynchronously in the background.
» Watch “hot spots”!
% How do you limit the amount of work in
UNDO?
» Avoid long-running Xacts.
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 64

© 2012 Chris Clifton 24

CS54100: Database Systems 4/16/2012

»

//—J’

Summary of Logging/Recovery ot

% Recovery Manager guarantees Atomicity &
Durability.

+ Use WAL to allow STEAL/NO-FORCE w/ 0o
sacrificing correctness.

<+ LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

<+ pageLSN allows comparison of data page and
log records.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 65

g

g P

Summary, Cont. !

S

< Checkpointing: A quick way to limit the
amount of log to scan on recovery.
< Recovery works in 3 phases:
» Analysis: Forward from checkpoint.
» Redo: Forward from oldest recLSN.

= Undo: Backward from end to first LSN of oldest
Xact alive at crash.

< Upon Undo, write CLRs.
< Redo “repeats history”: Simplifies the logic!

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 66

© 2012 Chris Clifton 25

CS54100: Database Systems 4/16/2012

Recovery is very, very SLOW I

Redo log:

Fir/st \ T1 wrote A,B / \
Las

Record Committed a year agg™"
Record
(1 year ago) --> STILL, Need to redo after
crash!!

SOlUtion: CheCprint (simple version)

— : %
Periodically:

(1) Do not accept new transactions

(2) Wait until all transactions finish

(3) Flush all log records to disk (log)

(4) Flush all buffers to disk (DB) o ot discard buters)
(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

© 2012 Chris Clifton 26

CS54100: Database Systems 4/16/2012

= Example: what to do at
recovery?
* Redo log (disk):

Crash

<T1,A,16>
<T1,commit>
Checkpoint
<T2,B,17>
<T2,commit>
<T3,C,21>

Key drawbacks:
e 4
« Undo logging: cannot bring backup DB
copies up to date

* Redo logging: need to keep all modified
blocks in memory
until commit

© 2012 Chris Clifton 27

CS54100: Database Systems 4/16/2012

N3¢ Solution: undo/redo logging!

— %
Update = <Ti, Xid, New X val, Old X val>
page X

Rules
it %

» Page X can be flushed before or
after Ti commit

* Log record flushed before corresponding
updated page (WAL)
* Flush at commit (log only)

© 2012 Chris Clifton 28

CS54100: Database Systems

Undo T1 wndoab)

pERY Non-guiesce checkpoint
L) k
tart-ckpt
O active TR: e
G . . |11 P
N_—
for
undo dirty buffer
pool pages
flushed
#+=% Examples what to do at recovery
N time?
no T1 commit
L
@) T1, Ckpt Ckpt T1-
G a T1 end b
v

© 2012 Chris Clifton

4/16/2012

29

CS54100: Database Systems

Example

L

O T1 ckpt-s | T1 ckpt-| [T1 T1
G a Tl " |b end [|cC cmt| ™

Redo T1: (redo b,c)

Recovery process:

point

v

e Backwards PASS (end of log 2 latest checkpoint start)
— construct set S of committed transactions
— undo actions of transactions not in S

« Undo pending transactions

— follow undo chains for transactions in
(checkpoint active list) - S

 Forward PAaSsS (latest checkpoint start © end of log)

—-re ctions of S transactions
Vo backward pass
start |«

check forward pass

© 2012 Chris Clifton

4/16/2012

30

CS54100: Database Systems 4/16/2012

Real world actions
S %
E.g., dispense cash at ATM
Ti=zaita2......Qj...... an
|
$
: Solution
= %

(1) execute real-world actions after commit
(2) try to make idempotent

© 2012 Chris Clifton 31

CS54100: Database

Systems

o N T

Solution: Make copies of data!

| o> ATM o
Gives _
)) lastTid: []
(amt’ Tld, tlme) time: 1
l give(amt)
$
)
#.=% Media failure (loss of non-volatile
storage)
— A

© 2012 Chris Clifton

4/16/2012

32

CS54100: Database Systems 4/16/2012

Example 1 Triple modular
redundancy

*
o {4

» Keep 3 copies on separate disks
« Output(X) --> three outputs
* Input(X) --> three inputs + vote

< T e T

Example #2 Redundant writes,
Y5 Single reads

e é
» Keep N copies on separate disks
» Output(X) --> N outputs
* Input(X) --> Input one copy

{ - if ok, done
- else try another one

& Assumes bad data can be detected

© 2012 Chris Clifton 33

CS54100: Database Systems

backup

database

log

« If active database is lost,

— restore active database from backup

active

database

— bring up-to-date using redo entries in log

When can log be discarded?

(RN

db
dump

last
needed
undo

check-
point

—
not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

time

© 2012 Chris Clifton

4/16/2012

34

CS54100: Database Systems 4/16/2012

-3 More on transaction processing
i AT . @
Topics:
« Cascading rollback, recoverable schedule

* Deadlocks
— Prevention
— Detection

* View serializability
« Distributed transactions
« Long transactions (nested, compensation)

Fall 2007 Chris Clifton - CS541 88

>3 Concurrency control & recovery
o 3
Example: Tj Ti

Wi(A)
ri(A)
Commit Ti

Abort T;

@ Cascading rollback (Bad!)

Fall 2007 Chris Clifton - CS541 89

© 2012 Chris Clifton 35

CS54100: Database Systems 4/16/2012

- %
* Schedule is conflict serializable
e Tj ——Ti
* But not recoverable
Fall 2007 Chris Clifton - CS541 90
#

* Need to make “final’ decision for each
transaction:

— commit decision - system guarantees
transaction will or has completed, no matter
what

—abort decision - system guarantees
transaction will or has been rolled back

(has no effect)

Fall 2007 Chris Clifton - CS541 91

© 2012 Chris Clifton 36

CS54100: Database Systems 4/16/2012
:'j ?: : To model this, two new actions:
| . . @
e Ci - transaction Ti commits
* Ai - transaction Ti aborts
Fall 2007 Chris Clifton - CS541 92
Back to example:
J \,)‘
&
Ci <« can we commit
here?
Fall 2007 Chris Clifton - CS541 93
© 2012 Chris Clifton 37

CS54100: Database Systems 4/16/2012

=%} Definition
o 4
Ti reads from Tjin S (Tj =g Ti) if

(1) wi(A) <s ri(A)

(2) aj s ri(A) (% does not precede)

(3) If wj(A) <gwWk(A) <g ri(A) then
ak <g ri(A)

Fall 2007 Chris Clifton - CS541 94

251 Definition

L |

Schedule S is recoverable if
whenever Tj =¢ Ti and j#iandCie S
then Cj <g Ci

Fall 2007 Chris Clifton - CS541 95

© 2012 Chris Clifton 38

CS54100: Database Systems 4/16/2012

T

*
o {4

Note: in transactions, reads and writes
precede commit or abort

< If Ci e Ti, then ri(A) < Ci
Wi(A) < Ci

& If Ai e Ti, then ri(A) < Ai
Wi(A) < Ai

» Also, one of Ci, Ai per transaction

Fall 2007 Chris Clifton - CS541 96

#-~% How to achieve recoverable
<N%¢ schedules?

Fall 2007 Chris Clifton - CS541 97

© 2012 Chris Clifton 39

CS54100: Database Systems 4/16/2012

#-=% With 2PL, hold write locks to
O commit (strict 2PL) R
Tj Ti
Wi(A)
Cj-
Uj(A)
ri(A)
Fall 2007 Chris Clifton - CS541 98
G . o
2453 < With validation, no change!
..L__.\,)"
Y
Fall 2007 Chris Clifton - CS541 99

© 2012 Chris Clifton 40

CS54100: Database Systems 4/16/2012

* S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

« S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.

Fall 2007 Chris Clifton - CS541 100

© 2012 Chris Clifton 41

