
CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 1

CS54100: Database Systems

Keys and Dependencies

18 January 2012

Prof. Chris Clifton

Fall 2007 Chris Clifton - CS541 2

Functional Dependencies

X  A = assertion about a relation R that
whenever two tuples agree on all the
attributes of X, then they must also agree
on attribute A

Why do we care?

Knowing functional dependencies provides a
formal mechanism to divide up relations
(normalization)

Saves space

Prevents storing data that violates dependencies

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 2

Example

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

• Reasonable FD's to assert:

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

name addr beersLiked manf f av oriteBeer

Janeway Voy ager Bud A.B. WickedAle

Janeway Voy ager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud

Fall 2007 Chris Clifton - CS541 4

• Shorthand: combine FD's with common

left side by concatenating their right sides.

• Sometimes, several attributes jointly

determine another attribute, although

neither does by itself. Example:
beer bar  price

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 3

Fall 2007 Chris Clifton - CS541 5

Keys of Relations

K is a key for relation R if:

1. K  all attributes of R. (Uniqueness)

2. For no proper subset of K is (1) true. (Minimality)

• If K at least satisfies (1), then K is a superkey.

Conventions
• Pick one key; underline key attributes in the relation

schema.

• X, etc., represent sets of attributes; A etc., represent
single attributes.

• No set formers in FD’s, e.g., ABC instead of
{A, B, C}.

Example
Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

• {name, beersLiked} FD’s all attributes, as seen.

– Shows {name, beersLiked} is a superkey.

• name  beersLiked is false, so name not a superkey.

• beersLiked  name also false, so beersLiked not a
 superkey.

• Thus, {name, beersLiked} is a key.

• No other keys in this example.

– Neither name nor beersLiked is on the right of any observed

FD, so they must be part of any superkey.

• Important point: “key” in a relation refers to tuples, not the
entities they represent. If an entity is represented by several
tuples, then entity-key will not be the same as relation-key.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 4

Fall 2007 Chris Clifton - CS541 7

Example 2

• Keys are {Lastname, Firstname} and

{StudentID}

Lastname Firstname Student ID Major

 Key Key

 (2 attributes)

Superkey

Note: There are alternate keys

Fall 2007 Chris Clifton - CS541 8

Who Determines Keys/FD’s?

• We could assert a key K.

– Then the only FD’s asserted are that K  A for every attribute
A.

– No surprise: K is then the only key for those FD’s, according to
the formal definition of “key.”

• Or, we could assert some FD’s and deduce one or more
keys by the formal definition.
– E/R diagram implies FD’s by key declarations and many-one

relationship declarations.

• Rule of thumb: FD’s either come from keyness, many-1
relationship, or from physics.
– E.g., “no two courses can meet in the same room at the same

time” yields room time  course.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 5

CS54100: Database Systems

Keys and Dependencies

20 January 2012

Prof. Chris Clifton

Fall 2007 Chris Clifton - CS541 10

Functional Dependencies (FD’s)

and Many-One Relationships

• Consider R(A1,…, An) and X is a key

then X  Y for any attributes Y in A1,…, An

even if they overlap with X. Why?

• Suppose R is used to represent a many  one

relationship:

 E1 entity set  E2 entity set

where X key for E1, Y key for E2,

Then, X  Y holds,

And Y  X does not hold unless the relationship is one-

one.

• What about many-many relationships?

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 6

Fall 2007 Chris Clifton - CS541 11

Inferring FD’s

And this is important because …

• When we talk about improving relational designs, we

often need to ask “does this FD hold in this relation?”

Given FD’s X1 A1, X2  A2,…, Xn  An, does FD Y 

B necessarily hold in the same relation?

• Start by assuming two tuples agree in Y. Use given FD’s

to infer other attributes on which they must agree. If B is

among them, then yes, else no.

Algorithm

Define Y+ = closure of Y = set of attributes

functionally determined by Y:

• Basis: Y+:=Y.

• Induction: If X  Y+, and X  A is a given

FD, then add A to Y+.

• End when Y+ cannot be changed.

X
A

Y new Y+ +

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 7

Fall 2007 Chris Clifton - CS541 13

Example

A  B, BC  D.

• A+ = AB.

• C+=C.

• (AC)+ = ABCD.

A

C

B

D

Fall 2007 Chris Clifton - CS541 14

Given Versus Implied FD’s

Typically, we state a few FD’s that are

known to hold for a relation R.

• Other FD’s may follow logically from the

given FD’s; these are implied FD’s.

• We are free to choose any basis for the

FD’s of R – a set of FD’s that imply all the

FD’s that hold for R.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 8

Fall 2007 Chris Clifton - CS541 15

Finding All Implied FD’s

Motivation: Suppose we have a relation
ABCD with some FD’s F. If we decide to
decompose ABCD into ABC and AD, what
are the FD’s for ABC, AD?

• Example: F = AB  C, C  D, D  A. It
looks like just AB  C holds in ABC, but in
fact C  A follows from F and applies to
relation ABC.

• Problem is exponential in worst case.

Algorithm

• For each set of attributes X compute X+.

– But skip X = , X = all attributes.

– Add X  A for each A in X+–X.

• Drop XY  A if X  A holds.

– Consequence: If X+ is all attributes, then there is no

point in computing closure of supersets of X.

• Finally, project the FD’s by selecting only those

FD’s that involve only the attributes of the

projection.

– Notice that after we project the discovered FD’s onto

some relation, the eliminated FD’s can be inferred in

the projected relation.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 9

Example

F = AB  C, C  D, D  A. What FD’s follow?

• A+ = A; B+=B (nothing).

• C+=ACD (add C  A).

• D+=AD (nothing new).

• (AB)+=ABCD (add AB  D; skip all supersets of AB).

• (BC)+=ABCD (nothing new; skip all supersets of BC).

• (BD)+=ABCD (add BD  C; skip all supersets of BD).

• (AC)+=ACD; (AD)+=AD; (CD)+=ACD (nothing new).

• (ACD)+=ACD (nothing new).

• All other sets contain AB, BC, or BD, so skip.
• Thus, the only interesting FD’s that follow from F are:

C  A, AB  D, BD  C.

Fall 2007 Chris Clifton - CS541 18

Example 2

• Set of FD’s in ABCGHI:

 A  B
A  C
CG  H
CG  I
B  H

• Compute (CG)+, (BG)+, (AG)+

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 10

Fall 2007 Chris Clifton - CS541 19

Example 3

In ABC with FD’s A  B, B  C, project onto AC.

1. A+ = ABC; yields A  B, A  C.

2. B+ = BC; yields B  C.

3. AB+ = ABC; yields AB  C;
• drop in favor of A  C

4. AC+ = ABC yields AC  B;
• drop in favor of A  B

5. C+ = C and BC+ = BC; adds nothing.

• Resulting FD’s: A  B, A  C, B  C.

• Projection onto AC: A  C.

Fall 2007 Chris Clifton - CS541 21

FDs: Armstrong’s Axioms

• Reflexivity:

– If {B1, B2, …, Bm}  {A1, A2, …, An}  A1A2∙∙∙An 

B1B2∙∙∙Bm

– Also called “trivial FDs”

• Augmentation:

– A1A2∙∙∙An  B1B2∙∙∙Bm 

A1A2∙∙∙AnC1C2∙∙∙Ck  B1B2∙∙∙BmC1C2∙∙∙Ck

• Transitivity:

– A1A2∙∙∙An  B1B2∙∙∙Bm and B1B2∙∙∙Bm  C1C2∙∙∙Ck 

A1A2∙∙∙An  C1C2∙∙∙Ck

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 11

CS54100: Database Systems

Normalization

23 January 2012

Prof. Chris Clifton

Normalization

Goal = BCNF = Boyce-Codd Normal Form =
all FD’s follow from the fact “key  everything.”

• Formally, R is in BCNF if for every nontrivial FD

for R, say X  A, then X is a superkey.

– “Nontrivial” = right-side attribute not in left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one

occurrence of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact is

lost when tuple is deleted.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 12

Example of Problems
Drinkers(name, addr, beersLiked, manf, favoriteBeer)

FD’s:
1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

• ???’s are redundant, since we can figure them out from
the FD’s.

• Update anomalies: If Janeway gets transferred to the
Intrepid,
will we change addr in each of her tuples?

• Deletion anomalies: If nobody likes Bud, we lose track of
Bud’s manufacturer.

name addr beersLiked manf f av oriteBeer

Janeway Voy ager Bud A.B. WickedAle

Janeway ??? WickedAle Pete's ???

Spock Enterprise Bud ??? Bud

Why are these problems?

Each of the given FD’s is a BCNF violation:

• Key = {name, beersLiked}

– Each of the given FD’s has a left side that is a proper
subset of the key.

Another Example
Beers(name, manf, manfAddr).

• FD’s = name  manf, manf  manfAddr.

• Only key is name.
– Manf  manfAddr violates BCNF with a left side

unrelated to any key.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 13

Lossless Join

• Goal: All legal values can be stored in

relations

– Recover originals through join

• Formally: X, Y is a lossless join

decomposition of R w.r.t. F if rR

satisfying dependencies in F,

 πX(r) πY(r) = r

CS54100

Fall 2007 Chris Clifton - CS541 29

Decomposition to Reach

BCNF

Setting: relation R, given FD’s F.

Suppose relation R has BCNF violation X  B.

• We need only look among FD’s of F for a BCNF
violation, not those that follow from F.

• Proof: If Y  A is a BCNF violation and follows
from F, then the computation of Y+ used at least
one FD X  B from F.
– X must be a subset of Y.

– Thus, if Y is not a superkey, X cannot be a superkey
either, and X  B is also a BCNF violation.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 14

1. Compute X+.
– Cannot be all attributes – why?

2. Decompose R into X+ and (R–X+)  X.

3. Find the FD’s for the decomposed relations.
– Project the FD’s from F = calculate all

consequents of F that involve only attributes from
X+ or only from (RX+)  X.

R X+ X

Example
R = Drinkers(name, addr, beersLiked, manf,

favoriteBeer)

F =

1. name  addr

2. name  favoriteBeer

3. beersLiked  manf

Pick BCNF violation name  addr.

• Close the left side: name + = name addr favoriteBeer.

• Decomposed relations:
Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

• Projected FD’s (skipping a lot of work that leads nowhere
interesting):
– For Drinkers1: name  addr and name  favoriteBeer.

– For Drinkers2: beersLiked  manf.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 15

(Repeating)

• Decomposed relations:
Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

• Projected FD’s:
– For Drinkers1: name  addr and name 

favoriteBeer.

– For Drinkers2: beersLiked  manf.

• BCNF violations?
– For Drinkers1, name is key and all left sides of

FD’s are superkeys.

– For Drinkers2, {name, beersLiked} is the key,
and beersLiked  manf violates BCNF.

Decompose Drinkers2

• First set of decomposed relations:
Drinkers1(name, addr, favoriteBeer)

Drinkers2(name, beersLiked, manf)

• Close beersLiked+ = beersLiked, manf.

• Decompose Drinkers2 into:
Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

• Resulting relations are all in BCNF:
Drinkers1(name, addr, favoriteBeer)

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 16

3NF
One FD structure causes problems:

• If you decompose, you can’t check all the FD’s
only in the decomposed relations.

• If you don’t decompose, you violate BCNF.

Abstractly: AB  C and C  B.

• Example 1: title city  theatre and
theatre  city.

• Example 2: street city  zip,
zip  city.

Keys: {A, B} and {A, C}, but C  B has a left side
that is not a superkey.

• Suggests decomposition into BC and AC.
– But you can’t check the FD AB  C in only these

relations.

Fall 2007 Chris Clifton - CS541 35

Example

A = street, B = city, C = zip.

Join:

street zip

545 Tech Sq. 02138

545 Tech Sq. 02139

city zip

Cambridge 02138

Cambridge 02139

city street zip

Cambridge 545 Tech Sq. 02138

Cambridge 545 Tech Sq. 02139

zip  city

street city  zip

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 17

Fall 2007 Chris Clifton - CS541 36

“Elegant” Workaround

Define the problem away.

• A relation R is in 3NF iff (if and only if)
for every nontrivial FD X  A, either:

1. X is a superkey, or

2. A is prime = member of at least one
key.

• Thus, the canonical problem goes away:
you don’t have to decompose because all
attributes are prime.

What 3NF Gives You
There are two important properties of a decomposition:

1. We should be able to recover from the decomposed
relations the data of the original.

– Recovery involves projection and join, which we shall defer
until we’ve discussed relational algebra.

2. We should be able to check that the FD’s for the
original relation are satisfied by checking the
projections of those FD’s in the decomposed relations.

• Without proof, we assert that it is always possible to
decompose into BCNF and satisfy (1).

• Also without proof, we can decompose into 3NF and
satisfy both (1) and (2).

• But it is not possible to decompose into BNCF and get
both (1) and (2).

– Street-city-zip is an example of this point.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 18

3NF Synthesis

• Given a canonical cover FC for F

• Schema S = 

•  A→BFc

– If there is no Ri  S such that AB  Ri

• S = S + AB

• If there is no Ri  S containing a candidate

key for R

– S = S + (any candidate key for R)

CS54100

CS54100: Database Systems

Multivalued Dependencies

25 January 2012

Prof. Chris Clifton

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 19

Fall 2007 Chris Clifton - CS541 40

Multivalued Dependencies

The multivalued dependency X  Y holds

in a relation R if whenever we have two

tuples of R that agree in all the attributes

of X, then we can swap their Y

components and get two new tuples that

are also in R.

 X Y others

Example
Drinkers(name, addr, phones,

beersLiked) with MVD Name  phones.
If Drinkers has the two tuples:

 name addr phones beersLiked

 sue a p1 b1

 sue a p2 b2

it must also have the same tuples with phones
components swapped:
 name addr phones beersLiked

 sue a p2 b1

 sue a p1 b2

Note: we must check this condition for all pairs of
tuples that agree on name, not just one pair.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 20

MVD Rules

1. Every FD is an MVD.

– Because if X Y, then swapping Y’s between
tuples that agree on X doesn’t create new
tuples.

– Example, in Drinkers: name  addr.

2. Complementation: if X  Y, then X 
Z, where Z is all attributes not in X or Y.
– Example: since name  phones

holds in Drinkers, so does
name  addr beersLiked.

Splitting Doesn’t Hold

Sometimes you need to have several attributes on the right

of an MVD. For example:
Drinkers(name, areaCode, phones, beersLiked, beerManf)

name areaCode phones beersLiked beerManf

Sue 831 555-1111 Bud A.B.

Sue 831 555-1111 Wicked Ale Pete’s

Sue 408 555-9999 Bud A.B.

Sue 408 555-9999 Wicked Ale Pete’s

• name  areaCode phones holds, but neither

 name  areaCode nor name  phones do.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 21

4NF

Eliminate redundancy due to multiplicative effect of
MVD’s.

• Roughly: treat MVD’s as FD's for decomposition, but
not for finding keys.

• Formally: R is in Fourth Normal Form if whenever
MVD
X  Y is nontrivial (Y is not a subset of X, and X
 Y is not all attributes), then X is a superkey.
– Remember, X  Y implies X  Y, so 4NF is more

stringent
than BCNF.

• Decompose R, using
4NF violation X  Y,
into XY and X  (R—Y).

R Y X

Example

Drinkers(name, addr, phones, beersLiked)

• FD: name  addr

• Nontrivial MVD’s: name  phones and

name  beersLiked.

• Only key: {name, phones, beersLiked}

• All three dependencies above violate 4NF.

• Successive decomposition yields 4NF relations:
D1(name, addr)

D2(name, phones)

D3(name, beersLiked)

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 22

4NF Decomposition

• Schema S = R, D+ be the closure of the

functional and multivalued dependencies

• While  Ri  S not in 4NF w.r.t. D+

– Choose a nontrivial multivalued dependency

A B that holds on Ri, where A  Ri  D+,

and A  B = 

– S = (S – Ri)  (Ri-B)  (A,B)

CS54100

