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Functional Dependencies 

X  A = assertion about a relation R that 
whenever two tuples agree on all the 
attributes of X, then they must also agree 
on attribute A 

Why do we care? 

Knowing functional dependencies provides a 
formal mechanism to divide up relations 
(normalization) 

Saves space 

Prevents storing data that violates dependencies 



CS54100:  Database Systems 1/27/2012 

© 2012 Chris Clifton 2 

Example 

Drinkers(name, addr, beersLiked, manf, favoriteBeer) 

 

 

 

• Reasonable FD's to assert: 

1. name  addr 

2. name  favoriteBeer 

3. beersLiked  manf 

name addr beersLiked manf f av oriteBeer

Janeway Voy ager Bud A.B. WickedAle

Janeway Voy ager WickedAle Pete's WickedAle

Spock Enterprise Bud A.B. Bud
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• Shorthand: combine FD's with common 

left side by concatenating their right sides. 

• Sometimes, several attributes jointly 

determine another attribute, although 

neither does by itself. Example: 
beer bar  price 
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Keys of Relations 

K is a key for relation R if: 

1. K  all attributes of R. (Uniqueness) 

2. For no proper subset of K is (1) true. (Minimality) 

• If K at least satisfies (1), then K is a superkey. 

Conventions 
• Pick one key; underline key attributes in the relation 

schema. 

• X, etc., represent sets of attributes; A etc., represent 
single attributes. 

• No set formers in FD’s, e.g., ABC instead of 
{A, B, C}. 

Example 
Drinkers(name, addr, beersLiked, manf, 

favoriteBeer) 

• {name, beersLiked} FD’s all attributes, as seen. 

– Shows {name, beersLiked} is a superkey. 

•  name  beersLiked is false, so name not a superkey. 

•  beersLiked  name also false, so beersLiked not a 
  superkey. 

• Thus, {name, beersLiked} is a key. 

• No other keys in this example. 

– Neither name nor beersLiked is on the right of any observed 

FD, so they must be part of any superkey. 

• Important point: “key” in a relation refers to tuples, not the 
entities they represent.  If an entity is represented by several 
tuples, then entity-key will not be the same as relation-key. 
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Example 2 

• Keys are {Lastname, Firstname} and 

{StudentID}  

Lastname    Firstname           Student ID         Major 

 

 Key                     Key 

        (2 attributes) 

Superkey 
 

Note: There are alternate keys 
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Who Determines Keys/FD’s? 

• We could assert a key K. 

– Then the only FD’s asserted are that K  A for every attribute 
A. 

– No surprise: K is then the only key for those FD’s, according to 
the formal definition of “key.” 

• Or, we could assert some FD’s and deduce one or more 
keys by the formal definition. 
– E/R diagram implies FD’s by key declarations and many-one 

relationship declarations. 

• Rule of thumb: FD’s either come from keyness, many-1 
relationship, or from physics. 
– E.g., “no two courses can meet in the same room at the same 

time” yields room time  course. 
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Functional Dependencies (FD’s) 

and Many-One Relationships 

• Consider R(A1,…, An)  and X is a key 

then X  Y  for any attributes Y in A1,…, An 

even if they overlap with X.  Why? 

• Suppose R is used to represent a many  one 

relationship: 

 E1 entity set  E2 entity set 

where X key for E1, Y key for E2, 

Then, X  Y holds, 

And Y  X does not hold unless the relationship is one-

one. 

• What about many-many relationships? 
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Inferring FD’s 

And this is important because … 

• When we talk about improving relational designs, we 

often need to ask “does this FD hold in this relation?” 

Given FD’s X1 A1, X2  A2,…, Xn  An, does FD Y  

B necessarily hold in the same relation? 

• Start by assuming two tuples agree in Y. Use given FD’s 

to infer other attributes on which they must agree. If B is 

among them, then yes, else no. 

Algorithm 

Define Y+ = closure of Y = set of attributes 

functionally determined by Y: 

• Basis: Y+:=Y. 

• Induction: If X  Y+, and X  A is a given 

FD, then add A to Y+. 

 

 

 

• End when Y+ cannot be changed. 

X
A

Y new Y+ +
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Example 

A  B, BC  D. 

• A+ = AB. 

• C+=C. 

• (AC)+ = ABCD. 

A

C

B

D
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Given Versus Implied FD’s 

Typically, we state a few FD’s that are 

known to hold for a relation R. 

• Other FD’s may follow logically from the 

given FD’s; these are implied FD’s. 

• We are free to choose any basis for the 

FD’s of R – a set of FD’s that imply all the 

FD’s that hold for R. 
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Finding All Implied FD’s 

Motivation: Suppose we have a relation 
ABCD with some FD’s F. If we decide to 
decompose ABCD into ABC and AD, what 
are the FD’s for ABC, AD? 

• Example: F = AB  C, C  D, D  A. It 
looks like just AB  C holds in ABC, but in 
fact C  A follows from F and applies to 
relation ABC. 

• Problem is exponential in worst case. 

Algorithm 

• For each set of attributes X compute X+. 

– But skip X = , X = all attributes. 

– Add X  A for each A in X+–X. 

• Drop XY  A if X  A holds. 

– Consequence: If X+ is all attributes, then there is no 

point in computing closure of supersets of X. 

• Finally, project the FD’s by selecting only those 

FD’s that involve only the attributes of the 

projection. 

– Notice that after we project the discovered FD’s onto 

some relation, the eliminated FD’s can be inferred in 

the projected relation. 
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Example 

F = AB  C, C  D, D  A. What FD’s follow? 

• A+ = A; B+=B (nothing). 

• C+=ACD (add C  A). 

• D+=AD (nothing new). 

• (AB)+=ABCD (add AB  D; skip all supersets of AB). 

• (BC)+=ABCD (nothing new; skip all supersets of BC). 

• (BD)+=ABCD (add BD  C; skip all supersets of BD). 

• (AC)+=ACD; (AD)+=AD; (CD)+=ACD (nothing new). 

• (ACD)+=ACD (nothing new). 

• All other sets contain AB, BC, or BD, so skip. 
• Thus, the only interesting FD’s that follow from F are: 

C  A, AB  D, BD  C. 
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Example 2 

• Set of FD’s in ABCGHI: 

 A  B 
A  C 
CG  H 
CG  I 
B  H 

• Compute (CG)+, (BG)+, (AG)+ 
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Example 3 

In ABC with FD’s A  B, B  C, project onto AC. 

1. A+ = ABC; yields A  B, A  C. 

2. B+ = BC; yields B  C. 

3. AB+ = ABC; yields AB  C; 
• drop in favor of A  C 

4. AC+ = ABC yields AC  B; 
• drop in favor of A  B 

5. C+ = C and BC+ = BC; adds nothing. 

• Resulting FD’s: A  B, A  C, B  C. 

• Projection onto AC: A  C. 
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FDs:  Armstrong’s Axioms 

• Reflexivity: 

– If {B1, B2, …, Bm}  {A1, A2, …, An}  A1A2∙∙∙An  

B1B2∙∙∙Bm 

– Also called “trivial FDs” 

• Augmentation: 

– A1A2∙∙∙An  B1B2∙∙∙Bm  

A1A2∙∙∙AnC1C2∙∙∙Ck  B1B2∙∙∙BmC1C2∙∙∙Ck 

• Transitivity: 

– A1A2∙∙∙An  B1B2∙∙∙Bm and B1B2∙∙∙Bm  C1C2∙∙∙Ck  

A1A2∙∙∙An  C1C2∙∙∙Ck 
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Normalization 

Goal = BCNF = Boyce-Codd Normal Form = 
all FD’s follow from the fact “key    everything.” 

• Formally, R is in BCNF if for every nontrivial FD 

for R, say X  A, then X is a superkey. 

– “Nontrivial” = right-side attribute not in left side. 

Why? 
1. Guarantees no redundancy due to FD’s. 

2. Guarantees no update anomalies = one 

occurrence of a fact is updated, not all. 

3. Guarantees no deletion anomalies = valid fact is 

lost when tuple is deleted. 



CS54100:  Database Systems 1/27/2012 

© 2012 Chris Clifton 12 

Example of Problems 
Drinkers(name, addr, beersLiked, manf, favoriteBeer) 

 
 
 
 
FD’s: 
1. name  addr 

2. name  favoriteBeer 

3. beersLiked  manf 

• ???’s are redundant, since we can figure them out from 
the FD’s. 

• Update anomalies: If Janeway gets transferred to the 
Intrepid, 
will we change addr in each of her tuples? 

• Deletion anomalies: If nobody likes Bud, we lose track of 
Bud’s manufacturer. 

name addr beersLiked manf f av oriteBeer

Janeway Voy ager Bud A.B. WickedAle

Janeway ??? WickedAle Pete's ???

Spock Enterprise Bud ??? Bud

Why are these problems? 

Each of the given FD’s is a BCNF violation: 

• Key = {name, beersLiked} 

– Each of the given FD’s has a left side that is a proper 
subset of the key. 

Another Example 
Beers(name, manf, manfAddr). 

• FD’s = name    manf, manf    manfAddr. 

• Only key is name. 
– Manf    manfAddr violates BCNF with a left side 

unrelated to any key. 
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Lossless Join 

• Goal:  All legal values can be stored in 

relations 

– Recover originals through join 

• Formally:  X, Y is a lossless join 

decomposition of R w.r.t. F if rR 

satisfying dependencies in F, 

 πX(r)    πY(r) = r 

CS54100 
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Decomposition to Reach 

BCNF 

Setting: relation R, given FD’s F. 

Suppose relation R has BCNF violation X  B. 

• We need only look among FD’s of F for a BCNF 
violation, not those that follow from F. 

• Proof: If Y  A is a BCNF violation and follows 
from F, then the computation of Y+ used at least 
one FD X  B from F. 
– X must be a subset of Y. 

– Thus, if Y is not a superkey, X cannot be a superkey 
either, and X  B is also a BCNF violation. 



CS54100:  Database Systems 1/27/2012 

© 2012 Chris Clifton 14 

1. Compute X+. 
– Cannot be all attributes – why? 

2. Decompose R into X+ and (R–X+)  X. 

 

 

 

 

3. Find the FD’s for the decomposed relations. 
– Project the FD’s from F = calculate all 

consequents of F that involve only attributes from 
X+ or only from (RX+)  X. 

R                             X+  X 

Example 
R = Drinkers(name, addr, beersLiked, manf, 

favoriteBeer) 

F = 

1. name  addr 

2. name  favoriteBeer 

3. beersLiked  manf 

Pick BCNF violation name  addr. 

• Close the left side: name + = name addr favoriteBeer. 

• Decomposed relations: 
Drinkers1(name, addr, favoriteBeer) 

Drinkers2(name, beersLiked, manf) 

• Projected FD’s (skipping a lot of work that leads nowhere 
interesting): 
– For Drinkers1: name  addr and name  favoriteBeer. 

– For Drinkers2: beersLiked  manf. 
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(Repeating) 

• Decomposed relations: 
Drinkers1(name, addr, favoriteBeer) 

Drinkers2(name, beersLiked, manf) 

• Projected FD’s: 
– For Drinkers1: name  addr and name  

favoriteBeer. 

– For Drinkers2: beersLiked  manf. 

 

• BCNF violations? 
– For Drinkers1, name is key and all left sides of 

FD’s are superkeys. 

– For Drinkers2, {name, beersLiked} is the key, 
and beersLiked  manf violates BCNF. 

Decompose Drinkers2 

• First set of decomposed relations: 
Drinkers1(name, addr, favoriteBeer) 

Drinkers2(name, beersLiked, manf) 

 

• Close beersLiked+ = beersLiked, manf. 

• Decompose Drinkers2 into: 
Drinkers3(beersLiked, manf) 

Drinkers4(name, beersLiked) 

• Resulting relations are all in BCNF: 
Drinkers1(name, addr, favoriteBeer) 

Drinkers3(beersLiked, manf) 

Drinkers4(name, beersLiked) 
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3NF 
One FD structure causes problems: 

• If you decompose, you can’t check all the FD’s 
only in the decomposed relations. 

• If you don’t decompose, you violate BCNF. 

Abstractly: AB  C and C  B. 

• Example 1: title city  theatre and 
theatre  city. 

• Example 2: street city  zip, 
zip  city. 

Keys: {A, B} and {A, C}, but C  B has a left side 
that is not a superkey. 

• Suggests decomposition into BC and AC. 
– But you can’t check the FD AB  C in only these 

relations. 

Fall 2007 Chris Clifton - CS541 35 

Example 

A = street, B = city, C = zip. 

 

 

 

 

Join: 

street zip

545 Tech Sq. 02138

545 Tech Sq. 02139

city zip

Cambridge 02138

Cambridge 02139

city street zip

Cambridge 545 Tech Sq. 02138

Cambridge 545 Tech Sq. 02139

zip  city 

street city  zip 
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“Elegant” Workaround 

Define the problem away. 

• A relation R is in 3NF iff (if and only if) 
for every nontrivial FD X  A, either: 

1. X is a superkey, or 

2. A is  prime = member of at least one 
key. 

• Thus, the canonical problem goes away: 
you don’t have to decompose because all 
attributes are prime. 

What 3NF Gives You 
There are two important properties of a decomposition: 

1. We should be able to recover from the decomposed 
relations the data of the original. 

– Recovery involves projection and join, which we shall defer 
until we’ve discussed relational algebra. 

2. We should be able to check that the FD’s for the 
original relation are satisfied by checking the 
projections of those FD’s in the decomposed relations. 

• Without proof, we assert that it is always possible to 
decompose into BCNF and satisfy (1). 

• Also without proof, we can decompose into 3NF and 
satisfy both (1) and (2). 

• But it is not possible to decompose into BNCF and get 
both (1) and (2). 

– Street-city-zip is an example of this point. 
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3NF Synthesis 

• Given a canonical cover FC for F 

• Schema S =  

•  A→BFc  

– If there is no Ri  S such that AB  Ri 

• S = S + AB 

• If there is no Ri  S containing a candidate 

key for R 

– S = S + (any candidate key for R) 

CS54100 

CS54100:  Database Systems 

Multivalued Dependencies 

25 January 2012 

Prof. Chris Clifton 



CS54100:  Database Systems 1/27/2012 

© 2012 Chris Clifton 19 

Fall 2007 Chris Clifton - CS541 40 

Multivalued Dependencies 

The multivalued dependency X  Y holds 

in a relation R if whenever we have two 

tuples of R that agree in all the attributes 

of X, then we can swap their Y 

components and get two new tuples that 

are also in R. 

 

      X         Y         others 

Example 
Drinkers(name, addr, phones, 

beersLiked) with MVD Name    phones. 
If Drinkers has the two tuples: 

   name addr phones beersLiked 

    sue a p1  b1 

   sue a p2  b2 

it must also have the same tuples with phones 
components swapped: 
    name addr phones beersLiked 

    sue a p2  b1 

   sue a p1  b2 

Note: we must check this condition for all pairs of 
tuples that agree on name, not just one pair. 
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MVD Rules 

1. Every FD is an MVD. 

– Because if X Y, then swapping Y’s between 
tuples that agree on X doesn’t create new 
tuples. 

– Example, in Drinkers: name    addr. 

2. Complementation: if X  Y, then X  
Z, where Z is all attributes not in X or Y. 
– Example: since name    phones 

holds in Drinkers, so does 
name   addr beersLiked. 

Splitting Doesn’t Hold 

Sometimes you need to have several attributes on the right 

of an MVD. For example: 
Drinkers(name, areaCode, phones, beersLiked, beerManf) 

name    areaCode          phones        beersLiked         beerManf 

Sue  831  555-1111 Bud  A.B. 

Sue  831  555-1111 Wicked Ale Pete’s 

Sue  408  555-9999 Bud  A.B. 

Sue  408  555-9999  Wicked Ale Pete’s 

•  name   areaCode phones    holds, but neither 

 name  areaCode nor name  phones do. 
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4NF 

Eliminate redundancy due to multiplicative effect of 
MVD’s. 

• Roughly: treat MVD’s as FD's for decomposition, but 
not for finding keys. 

• Formally: R is in Fourth Normal Form if whenever 
MVD 
X  Y is nontrivial (Y is not a subset of X, and X 
 Y is not all attributes), then X is a superkey. 
– Remember, X  Y implies X  Y, so 4NF is more 

stringent 
than BCNF. 

• Decompose R, using 
4NF violation X  Y, 
into XY and X  (R—Y). 

R                            Y  X 

Example 

Drinkers(name, addr, phones, beersLiked) 

• FD: name  addr 

• Nontrivial MVD’s: name  phones and 

name  beersLiked. 

• Only key: {name, phones, beersLiked} 

• All three dependencies above violate 4NF. 

• Successive decomposition yields 4NF relations: 
D1(name, addr) 

D2(name, phones) 

D3(name, beersLiked) 
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4NF Decomposition 

• Schema S = R, D+ be the closure of the 

functional and multivalued dependencies 

• While  Ri  S not in 4NF w.r.t. D+ 

– Choose a nontrivial multivalued dependency 

A B that holds on Ri, where A  Ri  D+, 

and A  B =  

– S = (S – Ri)  (Ri-B)  (A,B) 
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