
CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 1

CS54100: Database Systems

SQL DDL

27 January 2012

Prof. Chris Clifton

Defining a Database Schema

CREATE TABLE name (list of elements).
• Principal elements are attributes and their types, but key

declarations and constraints also appear.
• Similar CREATE X commands for other schema elements X:

views, indexes, assertions, triggers.
• “DROP X name” deletes the created element of kind X with

that name.

Example
 CREATE TABLE Sells (

 bar CHAR(20),

 beer VARCHAR(20),

 price REAL

);

 DROP TABLE Sells;

Spring 2012 Chris Clifton - CS54100 2

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 2

Constraints

Commercial relational systems allow much more “fine-tuning”
of constraints than do the modeling languages we learned earlier.

• In essence: SQL programming is used to describe constraints.

Outline
1. Primary key declarations.

2. Foreign-keys = referential integrity constraints.

3. Attribute- and tuple-based checks = constraints within relations.

4. SQL Assertions = global constraints.
– Not found in Oracle.

5. Oracle Triggers.
– A substitute for assertions.

Spring 2012 Chris Clifton - CS54100 3

 Declaring Keys

Use PRIMARY KEY or UNIQUE.

• But only one primary key, many UNIQUEs
allowed.

• SQL permits implementations to create an index
(data structure to speed access given a key
value) in response to PRIMARY KEY only.
– But PostgreSQL and Oracle create indexes for both.

• SQL does not allow nulls in primary key, but
allows them in “unique” columns (which may
have two or more nulls, but not repeated non-
null values).

Spring 2012 Chris Clifton - CS54100 4

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 3

 Declaring Keys

Two places to declare:

1. After an attribute’s type, if the attribute is

a key by itself.

2. As a separate element.

– Essential if key is >1 attribute.

Spring 2012 Chris Clifton - CS54100 5

 Example

 CREATE TABLE Sells (

 bar CHAR(20),

 beer VARCHAR(20),

 price REAL,

 PRIMARY KEY(bar,beer)

);

Spring 2012 Chris Clifton - CS54100 6

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 4

 Example

 CREATE TABLE Sells (

 bar CHAR(20),

 beer VARCHAR(20),

 price REAL,

 UNIQUE(bar,beer)

);

is different than:
CREATE TABLE Sells (

 bar CHAR(20) UNIQUE,

 beer VARCHAR(20) UNIQUE,

 price REAL

);

Spring 2012 Chris Clifton - CS54100 7

 Other Properties You Can Give to

Attributes

1. NOT NULL = every tuple must have a real
value for this attribute.

2. DEFAULT value = a value to use whenever no
other value of this attribute is known.

 Example
CREATE TABLE Drinkers (

 name CHAR(30) PRIMARY KEY,

 addr CHAR(50)

 DEFAULT '123 Sesame St',

 phone CHAR(16)

);

Spring 2012 Chris Clifton - CS54100 8

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 5

 INSERT INTO Drinkers(name)

 VALUES('Sally')

results in the following tuple:

 name addr phone

 Sally 123 Sesame St. NULL

• Primary key is by default not NULL.

• This insert is legal.
– OK to list a subset of the attributes and values for only this

subset.

• But if we had declared
 phone CHAR(16) NOT NULL

 then the insertion could not be made.

Spring 2012 Chris Clifton - CS54100 9

Interesting Defaults

• DEFAULT CURRENT_TIMESTAMP

• SEQUENCE

CREATE SEQUENCE customer_seq;

CREATE TABLE Customer (

 customerID INTEGER

 DEFAULT

nextval('customer_seq'),

 name VARCHAR(30)

);

Spring 2012 Chris Clifton - CS54100 10

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 6

Foreign Keys

In relation R a clause that “attribute A references S(B)”
says that whatever values appear in the A column of R
must also appear in the B column of relation S.
• B must be declared the primary key for S.

Example
CREATE TABLE Beers (

 name CHAR(20) PRIMARY KEY,

 manf CHAR(20)

);

CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20) REFERENCES Beers(name),

 price REAL

);

Spring 2012 Chris Clifton - CS54100 11

Alternative: add another element declaring the foreign
key, as:
CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20),

 price REAL,

 FOREIGN KEY beer REFERENCES

 Beers(name)

);

• Extra element essential if the foreign key is more
than one attribute.

Spring 2012 Chris Clifton - CS54100 12

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 7

What Happens When

a Foreign Key Constraint is Violated?

• Two ways:

1. Insert or update a Sells tuple so it refers to a nonexistent
beer.

– Always rejected.

2. Delete or update a Beers tuple that has a beer value some
Sells tuples refer to.

a) Default: reject.

b) Cascade: Ripple changes to referring Sells tuple.

Example
• Delete “Bud.” Cascade deletes all Sells tuples that

mention Bud.

• Update “Bud” to “Budweiser.” Change all Sells tuples with
“Bud” in beer column to be “Budweiser.”

Spring 2012 Chris Clifton - CS54100 13

c) Set Null: Change referring tuples to have
NULL in referring components.

Example
• Delete “Bud.” Set-null makes all Sells

tuples with “Bud” in the beer component

have NULL there.

• Update “Bud” to “Budweiser.” Same

change.

Spring 2012 Chris Clifton - CS54100 14

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 8

Selecting a Policy

Add ON [DELETE, UPDATE] [CASCADE, SET NULL] to
declaration of foreign key.

Example
CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20),

 price REAL,

 FOREIGN KEY beer REFERENCES Beers(name)

 ON DELETE SET NULL

 ON UPDATE CASCADE

);

• “Correct” policy is a design decision.
– E.g., what does it mean if a beer goes away? What if a beer

changes its name?

Spring 2012 Chris Clifton - CS54100 15

Attribute-Based Checks

Follow an attribute by a condition that must hold

for that attribute in each tuple of its relation.

• Form: CHECK (condition).

– Condition may involve the checked attribute.

– Other attributes and relations may be involved, but

only in subqueries.

– Oracle: No subqueries allowed in condition.

• Condition is checked only when the associated

attribute changes (i.e., an insert or update

occurs).

Spring 2012 Chris Clifton - CS54100 16

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 9

Example

CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20) CHECK(

 beer IN (SELECT name

 FROM Beers)

),

 price REAL CHECK(

 price <= 5.00

)

);

• Check on beer is like a foreign-key constraint, except:

– The check occurs only when we add a tuple or change the beer
in an existing tuple, not when we delete a tuple from Beers.

Spring 2012 Chris Clifton - CS54100 17

Spring 2012 Chris Clifton - CS54100 19

Tuple-Based Checks

Separate element of table declaration.

• Form: like attribute-based check.

• But condition can refer to any attribute of

the relation.

– Or to other relations/attributes in subqueries.

– Again: Oracle forbids the use of subqueries.

• Checked whenever a tuple is inserted or

updated.

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 10

Spring 2012 Chris Clifton - CS54100 20

Example

Only Joe's Bar can sell beer for more than
$5.
CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20),

 price REAL,

 CHECK(bar = 'Joe''s Bar' OR

 price <= 5.00)

);

Spring 2012 Chris Clifton - CS54100 21

SQL Assertions

• Database-schema constraint.

• Not present in Oracle.

• Checked whenever a mentioned relation

changes.

• Syntax:

 CREATE ASSERTION < name>

 CHECK(<condition>);

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 11

Example

No bar may charge an average of more than $5 for
beer.
Sells(bar, beer, price)

CREATE ASSERTION NoRipoffBars

CHECK(NOT EXISTS(

 SELECT bar

 FROM Sells

 GROUP BY bar

 HAVING 5.0 < AVG(price)
)
);

• Checked whenever Sells changes.

Spring 2012 Chris Clifton - CS54100 22

Example

There cannot be more bars than drinkers.

Bars(name, addr, license)

Drinkers(name, addr, phone)

CREATE ASSERTION FewBar

CHECK(

 (SELECT COUNT(*) FROM Bars) <=

 (SELECT COUNT(*) FROM Drinkers)

);

• Checked whenever Bars or Drinkers changes.

Spring 2012 Chris Clifton - CS54100 23

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 12

Triggers (Oracle Version)

Often called event-condition-action rules.

• Event = a class of changes in the DB, e.g., “insertions
into Beers.”

• Condition = a test as in a where-clause for whether or

not the trigger applies.

• Action = one or more SQL statements.

• Differ from checks or SQL assertions in that:

1. Triggers invoked by the event; the system doesn’t have to

figure out when a trigger could be violated.

2. Condition not available in checks.

Spring 2012 Chris Clifton - CS54100 24

Example

Whenever we insert a new tuple into Sells, make
sure the beer mentioned is also mentioned in
Beers, and insert it (with a null manufacturer) if not.
Sells(bar, beer, price)

CREATE OR REPLACE TRIGGER BeerTrig
AFTER INSERT ON Sells
FOR EACH ROW
WHEN(new.beer NOT IN
 (SELECT name FROM Beers))
 BEGIN
 INSERT INTO Beers(name)
 VALUES(:new.beer);
 END;
.
run

Spring 2012 Chris Clifton - CS54100 25

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 13

Options

1. Can omit OR REPLACE. But if you do, it is an
error if a trigger of this name exists.

2. AFTER can be BEFORE.
3. If the relation is a view, AFTER can be INSTEAD

OF.
– Useful for allowing “modifications” to a view; you modify

the underlying relations instead.

4. INSERT can be DELETE or UPDATE OF
<attribute>.
– Also, several conditions like INSERT ON Sells can be

connected by OR.

5. FOR EACH ROW can be omitted, with an important
effect: the action is done once for the relation(s)
consisting of all changes.

Spring 2012 Chris Clifton - CS54100 26

Notes

• There are two special variables new and old,

representing the new and old tuple in the change.

– old makes no sense in an insert, and new makes no sense in a

delete.

• Notice: in WHEN we use new and old without a colon,

but in actions, a preceding colon is needed.

• The action is a PL/SQL statement.

– Simplest form: surround one or more SQL statements with
BEGIN and END.

– However, select-from-where has a limited form.

Spring 2012 Chris Clifton - CS54100 27

CS54100: Database Systems 1/27/2012

© 2012 Chris Clifton 14

• Triggers are part of the database schema,

like tables or views.

• Important Oracle constraint: the action

cannot change the relation that triggers

the action.

– Worse, the action cannot even change a

relation connected to the triggering relation by

a constraint, e.g., a foreign-key constraint.

Spring 2012 Chris Clifton - CS54100 28

Example

Maintain a list of all the bars that raise their price for
some beer by more than $1.
Sells(bar, beer, price)

RipoffBars(bar)

CREATE TRIGGER PriceTrig

AFTER UPDATE OF price ON Sells

FOR EACH ROW

WHEN(new.price > old.price + 1.00)

 BEGIN

 INSERT INTO RipoffBars

 VALUES(:new.bar);

 END;

.

run

Spring 2012 Chris Clifton - CS54100 29

