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Goal:  Integrity Across 

Sequence of Operations 
• Update should complete entirely 

– update stipend set stipend = stipend*1.03; 

– What if it gets halfway and the machine 
crashes? 

• What about multiple operations? 

– Withdraw x from Account1 

– Deposit x into Account2 

• Simultaneous operations? 

– Print paychecks while stipend being updated 
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Solution:  Transaction 

• Sequence of operations grouped into a 

transaction 

– Externally viewed as Atomic:  All happens at 

once 

– DBMS manages so even the programmer 

gets this view 
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ACID properties 

Transactions have: 

• Atomicity 
– All or nothing 

• Consistency 
– Changes to values maintain integrity 

• Isolation 
– Transaction occurs as if nothing else happening 

• Durability 
– Once completed, changes are permanent 
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Transactions 

 Concurrent execution of user programs is essential for 
good DBMS performance. 

 Because disk accesses are frequent, and relatively slow, it is 
important to keep the cpu humming by working on several 
user programs concurrently. 

 A user’s program may carry out many operations on 
the data retrieved from the database, but the DBMS is 
only concerned about what data is read/written 
from/to the database. 

 A transaction is the DBMS’s abstract view of a user 
program:  a sequence of reads and writes. 
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Concurrency in a DBMS 

 Users submit transactions, and can think of each 
transaction as executing by itself. 

 Concurrency is achieved by the DBMS, which interleaves 
actions (reads/writes of DB objects) of various transactions. 

 Each transaction must leave the database in a consistent 
state if the DB is consistent when the transaction begins. 

• DBMS will enforce some ICs, depending on the ICs 
declared in CREATE TABLE statements. 

• Beyond this, the DBMS does not really understand the 
semantics of the data.  (e.g., it does not understand how 
the interest on a bank account is computed). 

 Issues:  Effect of interleaving transactions, and crashes. 
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Atomicity of Transactions 

 A transaction might commit after completing all its 
actions, or it could abort (or be aborted by the DBMS) 
after executing some actions. 

 A very important property guaranteed by the DBMS 
for all transactions is that they are atomic.  That is, a 
user can think of a Xact as always executing all its 
actions in one step, or not executing any actions at all. 

 DBMS logs all actions so that it can undo the actions of 
aborted transactions. 
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Example 

 Consider two transactions (Xacts): 

T1: BEGIN   A=A+100,   B=B-100   END 
T2: BEGIN   A=1.06*A,   B=1.06*B   END 

 Intuitively, the first transaction is transferring $100 
from B’s account to A’s account.  The second is 
crediting both accounts with a 6% interest payment. 

 There is no guarantee that T1 will execute before T2 or 
vice-versa, if both are submitted together.  However, 
the net effect must be equivalent to these two 
transactions running serially in some order. 
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Example (Contd.) 

 Consider a possible interleaving (schedule): 

T1:  A=A+100,          B=B-100    
T2:              A=1.06*A,     B=1.06*B 

 This is OK.  But what about: 

T1:  A=A+100,            B=B-100    
T2:              A=1.06*A, B=1.06*B 

 The DBMS’s view of the second schedule: 

T1:  R(A), W(A),                  R(B), W(B) 
T2:      R(A), W(A), R(B), W(B) 
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Scheduling Transactions 

 Serial schedule: Schedule that does not interleave the 
actions of different transactions. 

 Equivalent schedules:  For any database state, the effect 
(on the set of objects in the database) of executing the 
first schedule is identical to the effect of executing the 
second schedule. 

 Serializable schedule:  A schedule that is equivalent to 
some serial execution of the transactions. 

(Note: If each transaction preserves consistency, every 
serializable schedule preserves consistency. ) 
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Anomalies with Interleaved Execution 

 Reading Uncommitted Data (WR Conflicts, 
“dirty reads”): 
 
 

 

 Unrepeatable Reads (RW Conflicts): 

 

T1:  R(A), W(A),                   R(B), W(B), Abort 
T2:   R(A), W(A), C 

T1: R(A),             R(A), W(A), C 
T2:  R(A), W(A), C 
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Anomalies (Continued) 

 Overwriting Uncommitted Data (WW 
Conflicts): 

 
T1: W(A),        W(B), C 
T2:  W(A), W(B), C 
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Aborting a Transaction 

 If a transaction Ti is aborted, all its actions have to be 
undone.  Not only that, if Tj reads an object last 
written by Ti,  Tj must be aborted as well! 

 Most systems avoid such cascading aborts by releasing 
a transaction’s locks only at commit time. 

 If Ti writes an object, Tj can read this only after Ti commits. 

 In order to undo the actions of an aborted transaction, 
the DBMS maintains a log in which every write is 
recorded.  This mechanism is also used to recover 
from system crashes:  all active Xacts at the time of the 
crash are aborted when the system comes back up. 
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The Log 

 The following actions are recorded in the log: 

 Ti writes an object:  the old value and the new value. 

• Log record must go to disk before the changed page! 

 Ti commits/aborts:  a log record indicating this action. 

 Log records are chained together by Xact id, so it’s 
easy to undo a specific Xact. 

 Log is often duplexed and archived on stable storage. 

 All log related activities (and in fact, all CC related 
activities such as lock/unlock, dealing with deadlocks 
etc.) are handled transparently by the DBMS. 
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Recovering From a Crash 

 There are 3 phases in the Aries recovery algorithm: 

 Analysis:  Scan the log forward (from the most recent 
checkpoint) to identify all Xacts that were active, and all dirty 
pages in the buffer pool at the time of the crash. 

 Redo:  Redoes all updates to dirty pages in the buffer pool, 
as needed, to ensure that all logged updates are in fact 
carried out and written to disk. 

 Undo:  The  writes of all Xacts that were active at the crash 
are undone (by restoring the before value of the update, 
which is in the log record for the update), working 
backwards in the log.  (Some care must be taken to handle 
the case of a crash occurring during the recovery process!) 
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Chapters 16-17 

Concurrency Control 

     T1  T2 … Tn 
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DB 
(consistency 
constraints) 

Example: 

T1: Read(A)  T2: Read(A) 

  A  A+100  A  A2 

  Write(A)   Write(A) 

  Read(B)   Read(B) 

  B  B+100  B  B2 

  Write(B)   Write(B) 

Constraint:  A=B 
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Schedule A 

T1    T2 

Read(A); A  A+100 

Write(A); 

Read(B); B   B+100; 

Write(B); 

     Read(A);A   A2; 

     Write(A); 

         Read(B);B   B2; 

     Write(B); 

    

A B 

25 25 

 

125 

 

 125 

 

250 

 

 250 

250 250 

Schedule B 

T1    T2 

     Read(A);A   A2; 

     Write(A); 

     Read(B);B   B2; 

     Write(B); 

Read(A); A  A+100 

Write(A); 

Read(B); B   B+100; 

Write(B); 

         

A B 

25 25 

 

50 

 

 50 

 

150 

 

 150 

150 150 
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Schedule C 

T1    T2 

Read(A); A  A+100 

Write(A); 

     Read(A);A   A2; 

     Write(A); 

Read(B); B   B+100; 

Write(B); 

         Read(B);B   B2; 

     Write(B); 

    

A B 

25 25 

 

125 

 

250 

 

 125 

 

 250 

250 250 

Schedule D 

T1    T2 

Read(A); A  A+100 

Write(A); 

     Read(A);A   A2; 

     Write(A); 

         Read(B);B   B2; 

     Write(B); 

Read(B); B   B+100; 

Write(B); 

 

    

A B 

25 25 

 

125 

 

250 

 

 50 

 

 150 

250 150 
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Schedule E 

T1    T2’ 

Read(A); A  A+100 

Write(A); 

     Read(A);A   A1; 

     Write(A); 

         Read(B);B   B1; 

     Write(B); 

Read(B); B   B+100; 

Write(B); 

 

    

A B 

25 25 

 

125 

 

125 

 

 25 

 

 125 

125 125 

Same as Schedule D 

but with new T2’ 

• Want schedules that are “good”,  

 regardless of 

– initial state and 

– transaction semantics 

• Only look at order of read and writes 

 

Example:  

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

4/2/2012 Chris Clifton - CS541 24 
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Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B) 

 

        T1           T2 

Example:  

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

However, for Sd: 

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B) 

• as a matter of fact, 

       T2 must precede T1  

        in any equivalent schedule, 

        i.e.,  T2  T1 
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T1    T2  Sd cannot be rearranged 

     into a serial schedule 

    Sd is not “equivalent” to 

     any serial schedule 

    Sd is “bad” 

•   T2  T1  

•   Also, T1  T2 

Returning to Sc 

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 

 

    T1  T2    T1  T2 

 no cycles  Sc is “equivalent” to a 

    serial schedule 

    (in this case T1,T2) 
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Concepts 

Transaction: sequence of ri(x), wi(x) actions 

Conflicting actions:  r1(A)    w2(A)    w1(A) 

             w2(A)   r1(A)     w2(A) 

Schedule: represents chronological order

  in which actions are executed 

Serial schedule: no interleaving of actions

     or transactions 
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What about concurrent actions? 

Ti issues System Input(X)    t  x 
read(x,t) issues completes 
   input(x) 

time 

T2 issues 
write(B,S) 

System 
issues 

input(B) 

input(B) 
completes 

B  S 

System 
issues 

output(B) 
output(B) 
completes 
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So net effect is either 

•  S=…r1(x)…w2(b)…  or 

•  S=…w2(B)…r1(x)… 

4/2/2012 Chris Clifton - CS541 31 

• Assume equivalent to either r1(A) w2(A) 

     or w2(A) r1(A) 

•  low level synchronization mechanism 

• Assumption called “atomic actions” 

What about conflicting, concurrent actions 

on same object? 

  start r1(A)   end r1(A) 
 

start w2(A)   end w2(A) 

 

 

time 
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Definition 

S1, S2 are conflict equivalent schedules 

 if S1 can be transformed into S2 by a series 

of swaps on non-conflicting actions. 
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Definition 

A schedule is conflict serializable if it is 

conflict equivalent to some serial 

schedule. 
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Precedence graph P(S)  (S is schedule) 

Nodes: transactions in S 

Arcs:  Ti  Tj whenever 

   - pi(A), qj(A) are actions in S 

   - pi(A) <S  qj(A) 

   - at least one of pi, qj is a  write 
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Exercise: 

• What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) 

w4(D) 

 

 

 

 

 

• Is S serializable? 
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Lemma 

S1, S2 conflict equivalent  P(S1)=P(S2) 
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Proof: 

Assume P(S1)  P(S2) 

  Ti: Ti  Tj in S1 and not in S2 

 S1 = …pi(A)... qj(A)…   pi, qj 

   S2 = …qj(A)…pi(A)...   conflict 

 

 S1, S2 not conflict equivalent  
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Note: P(S1)=P(S2)  S1, S2 conflict equivalent 

Counter example: 

 

S1=w1(A) r2(A)     w2(B) r1(B) 

  

S2=r2(A) w1(A)     r1(B) w2(B)  

Theorem 

P(S1) acyclic  S1 conflict serializable 
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() Assume S1 is conflict serializable 

  Ss: Ss, S1 conflict equivalent 

 P(Ss) = P(S1)  

 P(S1) acyclic since P(Ss) is acyclic 



Chris Clifton - CS541 Fall 2007 

21 1- 

() Assume P(S1) is acyclic 

Transform S1 as follows: 
(1) Take T1 to be transaction with no incident arcs 

(2) Move all T1 actions to the front 

  S1 = …….  qj(A)…….p1(A)….. 

 
(3) we now have S1 = < T1 actions ><... rest ...> 

(4) repeat above steps to serialize rest! 

T1 

T2    T3 

   T4 

Theorem 

P(S1) acyclic  S1 conflict serializable 

How to enforce serializable schedules? 

Option 1:  run system, recording P(S); 

 at end of day, check for P(S)cycles and 

declare if execution was good 
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How to enforce serializable schedules? 

Option 2:  prevent P(S) cycles from  

   occurring  

    T1  T2 …..  Tn 
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Scheduler 

DB 

A locking protocol 

Two new actions: 

 lock (exclusive): li (A) 

   unlock:   ui (A) 
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scheduler 

T1     T2 

lock 
table 
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Rule #1:  Well-formed transactions 

Ti:  … li(A) … pi(A) … ui(A) ... 
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Rule #2    Legal scheduler 

S = …….. li(A) ………... ui(A) ……... 
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 no lj(A) 
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Exercise: 

• What schedules are legal? 

What transactions are well-formed? 

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) 

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

S2 = l1(A)r1(A)w1(B)u1(A)u1(B) 

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) 

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B) 

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 
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• What schedules are legal? 

What transactions are well-formed? 

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) 

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

S2 = l1(A)r1(A)w1(B)u1(A)u1(B) 

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) 

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B) 

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

Exercise: 
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Schedule F 

4/2/2012 Chris Clifton - CS541 49 

T1         T2 

l1(A);Read(A) 

A   A+100;Write(A);u1(A)    

     l2(A);Read(A) 

     A   Ax2;Write(A);u2(A) 

     l2(B);Read(B) 

     B   Bx2;Write(B);u2(B)  

l1(B);Read(B) 

B   B+100;Write(B);u1(B)  

     

 

 

T1         T2           25   25  

l1(A);Read(A) 

A   A+100;Write(A);u1(A)            125 

     l2(A);Read(A) 

     A   Ax2;Write(A);u2(A)     250 

     l2(B);Read(B) 

     B   Bx2;Write(B);u2(B)       50 

l1(B);Read(B) 

B   B+100;Write(B);u1(B)         150 

               250 150 

A   B 

Schedule F 
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Rule #3  Two phase locking (2PL) 
     for transactions 

Ti = ……. li(A) ………... ui(A) ……... 
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no unlocks      no locks 

# locks 

held by 

Ti 

 

 

 

        Time 

         Growing   Shrinking 

           Phase    Phase 
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Schedule G 

T1       T2 

l1(A);Read(A) 

A   A+100;Write(A) 

l1(B); u1(A)            

      l2(A);Read(A) 

      A   Ax2;Write(A);l2(B)    

delayed 

Schedule G 

T1         T2 

l1(A);Read(A) 

A   A+100;Write(A) 

l1(B); u1(A)            

        l2(A);Read(A) 

        A   Ax2;Write(A);l2(B) 

Read(B);B    B+100 

Write(B); u1(B)  

 

delayed 
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Schedule G 

T1         T2 

l1(A);Read(A) 

A   A+100;Write(A) 

l1(B); u1(A)            

        l2(A);Read(A) 

        A   Ax2;Write(A);l2(B) 

Read(B);B    B+100 

Write(B); u1(B)   

        l2(B); u2(A);Read(B) 

        B    Bx2;Write(B);u2(B);  

 

delayed 

Schedule H    (T2 reversed) 
 

 

T1     T2 

l1(A); Read(A)    l2(B);Read(B) 

A   A+100;Write(A)   B   Bx2;Write(B) 

l1(B)     l2(A) 

 
delayed delayed 
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• Assume deadlocked transactions are 

rolled back 

– They have no effect 

– They do not appear in schedule 

 

E.g., Schedule H = 

     This space intentionally 

     left blank! 

Next step: 

Show that rules #1,2,3  conflict- 

         serializable 

         schedules 
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Conflict rules for  li(A), ui(A): 

 

• li(A), lj(A) conflict  

• li(A), uj(A) conflict 

 
Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,... 

Theorem  Rules #1,2,3    conflict 

        (2PL)      serializable 

          schedule  

To help in proof: 

Definition    Shrink(Ti) = SH(Ti) =  

   first unlock action of Ti 
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Lemma 

Ti  Tj in S  SH(Ti) <S  SH(Tj) 

Proof of lemma: 

Ti  Tj means that 

 S = … pi(A) …  qj(A) …;    p,q conflict 

By rules 1,2: 

 S = … pi(A) … ui(A) … lj(A) ... qj(A) … 

By rule 3:    SH(Ti)         SH(Tj) 

So,  SH(Ti) <S SH(Tj) 

Proof: 

(1) Assume P(S) has cycle  

   T1  T2 …. Tn  T1 

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1) 

(3) Impossible, so P(S) acyclic 

(4)  S is conflict serializable 

Theorem  Rules #1,2,3   conflict 

        (2PL)      serializable 

          schedule  
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• Beyond this simple 2PL protocol, it is all 

a matter of improving performance and 

allowing more concurrency…. 

– Shared locks 

– Multiple granularity 

– Inserts, deletes and phantoms 

– Other types of C.C. mechanisms 

Shared locks 

So far: 

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) … 

 

    Do not conflict 

 
Instead: 

S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)  
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Lock actions 

l-ti(A): lock A in t mode (t is S or X) 

u-ti(A): unlock t mode (t is S or X) 

 

Shorthand: 

ui(A): unlock whatever modes  

   Ti has locked A 

 

Rule #1    Well formed transactions 

Ti =... l-S1(A) … r1(A) …  u1 (A) … 

Ti =... l-X1(A) … w1(A) …  u1 (A) … 
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• What about transactions that read and 

write same object? 

 

Option 1:  Request exclusive lock 

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) … 

Option 2:  Upgrade   
(E.g.,  need to read, but don’t know if will write…) 

 

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)… 
 

 

Think of 
- Get 2nd lock on A, or 
- Drop S, get X lock 

• What about transactions that read and 
   write same object? 
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Rule #2   Legal scheduler 

S = ....l-Si(A) …  … ui(A) … 

 
    no l-Xj(A) 
 

S = ... l-Xi(A) …    … ui(A) … 

 
     no l-Xj(A) 

     no l-Sj(A) 

A way to summarize Rule #2 

Compatibility matrix 

 

Comp     S   X 

    S     true      false 

    X false      false 
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Rule # 3     2PL transactions 

No change except for upgrades: 

(I)  If upgrade gets more locks 

  (e.g., S  {S, X})  then no change! 

(II) If upgrade releases read (shared) 

 lock (e.g., S  X) 

  - can be allowed in growing phase 

Proof:  similar to X locks case 

Detail: 

l-ti(A), l-rj(A) do not conflict if comp(t,r) 

l-ti(A), u-rj(A) do not conflict if comp(t,r) 

 

Theorem  Rules 1,2,3   Conf.serializable 

   for S/X locks           schedules 
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Lock types beyond S/X 

Examples: 

   (1) increment lock 

   (2) update lock 

Example (1): increment lock 

• Atomic increment action: INi(A) 

   {Read(A); A  A+k; Write(A)} 

• INi(A), INj(A) do not conflict! 

    A=7 

A=5      A=17 

    A=15 

 

INi(A) 

+2 

INj(A) 

+10 

+10 

INj(A) 

+2 

INi(A) 
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Comp   S X I 

    S  

    X  

    I  

Comp   S X I 

    S T F F 

    X F F F 

    I F F T 
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Update locks 

A common deadlock problem with upgrades: 

T1    T2 

l-S1(A) 

      l-S2(A) 

l-X1(A) 

      l-X2(A) 

     --- Deadlock --- 

 

Solution 

If Ti wants to read A and knows it 

may later want to write A, it requests 

update lock (not shared) 
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Comp   S X U 

    S  

    X  

    U    

 

         

             New request 

Lock  
already 
held in 

Comp   S X U 

    S T F T 

    X F F F 

    U   TorF F F 

 

        -> symmetric table? 

             New request 

Lock  
already 
held in 
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Note: object A may be locked in different 

   modes at the same time... 

 

S1=...l-S1(A)…l-S2(A)…l-U3(A)…  l-S4(A)…? 

          l-U4(A)…?  

• To grant a lock in mode t, mode t must 

be compatible with all currently held 

locks on object 

How does locking work in practice? 

• Every system is different 

 (E.g., may not even provide  

    CONFLICT-SERIALIZABLE schedules) 

• But here is one (simplified) way ... 
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(1) Don’t trust transactions to   

  request/release locks 

(2) Hold all locks until transaction   

  commits 

# 
locks 

time 

Sample Locking System: 

   Ti 

      Read(A),Write(B) 

 

 
      l(A),Read(A),l(B),Write(B)… 
 
 
 
      Read(A),Write(B) 

Scheduler, part I 

Scheduler, part II 

DB 

lock 
table 
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Lock table    Conceptually 

  

A  

B 
C 

 

... 

Lock info for B 

Lock info for C 

If null, object is unlocked 
E
v
e
ry

 p
o
ss

ib
le

 o
b
je

ct
 

But use hash table: 
A 

 

 

 

 

 

If object not found in hash table, it is 

unlocked 

Lock info for A A 

... 
... 

H 
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Lock info for A - example 
             transaction mode wait? Next T_link 

Object:A 
Group mode:U 
Waiting:yes 
List: 

T1 S no 

T2 U no 

T3 X yes  

To other T3  

records 

What are the objects we lock? 

         

 

 

        ? 

 

Relation A 

Relation B 

... 

Tuple A 

Tuple B 

Tuple C 

... 

Disk  
block 

A 

Disk  
block 

B 

... 

DB DB DB 
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• Locking works in any case, but should we 

choose small or large objects? 

• If we lock large objects (e.g., Relations) 

– Need few locks 

– Low concurrency 

• If we lock small objects (e.g., tuples,fields) 

– Need more locks 

– More concurrency 

We can have it both ways!! 

Ask any janitor to give you the solution... 

hall 

Stall 1 Stall 2 Stall 3 Stall 4 

restroom 
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Example 
  

R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 

, T2(S) 

Example 
  

R1 

t1 
t2 t3 

t4 

T1(IS) 

T1(S) 

, T2(IX) 

T2(IX) 
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Multiple granularity 

Comp   Requestor 

      IS   IX  S   SIX  X 

       IS 

      Holder   IX 

        S 

     SIX 

        X 

Multiple granularity 

Comp   Requestor 

      IS   IX  S   SIX  X 

       IS 

      Holder   IX 

        S 

     SIX 

        X 

T T T T F 

F 

F 

F 

F F F F F 

F F F T 

F T F T 

F F T T 
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Parent  Child can be 
locked in  locked in 
 
 IS 
 IX 
 S 
 SIX 
 X 

P 

C 

Parent  Child can be 
locked in  locked in 
 
 IS 
 IX 
 S 
 SIX 
 X 

P 

C 

IS, S 
IS, S, IX, X, SIX 
[S, IS] not necessary 
X, IX, [SIX] 
none 
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Rules 

(1) Follow multiple granularity comp function 

(2) Lock root of tree first, any mode 

(3) Node Q can be locked by Ti in S or IS only if       

     parent(Q) locked by Ti in IX or IS 

(4) Node Q can be locked by Ti in X,SIX,IX only  

     if parent(Q) locked by Ti in IX,SIX 

(5) Ti is two-phase 

(6) Ti can unlock node Q only if none of Q’s       

     children are locked by Ti 

• End 11/4 
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Exercise: 

• Can T2 access object f2.2 in X mode? 

What locks will T2 get? 

R1 

t1 

t2 t3 
t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 

T1(X) 

Exercise: 

• Can T2 access object f2.2 in X mode? 

What locks will T2 get? 

R1 

t1 

t2 t3 
t4 T1(X) 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 
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Exercise: 

• Can T2 access object f3.1 in X mode? 

What locks will T2 get? 

R1 

t1 

t2 t3 
t4 T1(S) 

f2.1 f2.2 f3.1 f3.2 

T1(IS) 

Exercise: 

• Can T2 access object f2.2 in S mode? 

What locks will T2 get? 

R1 

t1 

t2 t3 
t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(SIX) 

T1(X) 
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Exercise: 

• Can T2 access object f2.2 in X mode? 

What locks will T2 get? 

R1 

t1 

t2 t3 
t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(SIX) 

T1(X) 

Insert + delete operations 

 

 

 

 

         Insert 

A 

Z 

a 

... 
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Modifications to locking rules: 
(1) Get exclusive lock on A before 

deleting A 

(2) At insert A operation by Ti, 

 Ti is given exclusive lock on A 

Still have a problem: Phantoms 

Example: relation R (E#,name,…) 

   constraint: E# is key 

   use tuple locking 

 

R   E# Name …. 

  o1 55 Smith  

  o2 75 Jones  
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T1: Insert <99,Gore,…> into R 

T2: Insert <99,Bush,…> into R 

   T1       T2 

S1(o1)       S2(o1) 

S1(o2)       S2(o2) 

Check Constraint    Check Constraint 

 

Insert o3[99,Gore,..] 

        Insert o4[99,Bush,..] 

 

... 

... 

Solution 
• Use multiple granularity tree 

• Before insert of node Q, 

   lock parent(Q) in 

   X mode 

R1 

t1 
t2 t3 
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Back to example 

T1: Insert<99,Gore>    T2: Insert<99,Bush> 

  T1      T2 

X1(R) 

      

 

Check constraint   

Insert<99,Gore> 

U(R) 

     X2(R) 

     Check constraint 

     Oops! e# = 99 already in R! 

      

X2(R) delayed 

Instead of using R, can use index on R: 
Example: 

R 

Index 
0<E#<100 

Index 
100<E#<200 

E#=2 E#=5 E#=107 E#=109 ... 

... 

... 
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• This approach can be generalized to 

multiple indexes... 

Fall 2007 Chris Clifton - CS541 112 

CS 541 

Concurrency Control 

November 13, 2007 
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Next: 
• Tree-based concurrency control 

• Validation concurrency control 

Example 

A 

B C 

D 

E F 

• all objects accessed 
  through root, 
  following pointers 

T1 lock 

T1 lock T1 lock 

 can we release A lock 
    if we no longer need A?? 
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Idea: traverse like “Monkey Bars” 

A 

B C 

D 

E F 

T1 lock 

T1 lock T1 lock 

T1 lock 

Why does this work? 

• Assume all Ti start at root; exclusive lock 

• Ti  Tj   Ti locks root before Tj 

 

 

 

 

 

• Actually works if we don’t always 

   start at root 

Root 

Q   Ti  Tj 
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Rules: tree protocol (exclusive locks) 
(1) First lock by Ti may be on any item 

(2) After that, item Q can be locked by Ti 

 only if parent(Q) locked by Ti 

(3) Items may be unlocked at any time 

(4) After Ti unlocks Q, it cannot relock Q 

• Tree-like protocols are used typically for 
B-tree concurrency control 

 

 

 

 

E.g., during insert, do not release parent lock, until you 
are certain child does not have to split 

Root 
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Validation 

Transactions have 3 phases: 

(1) Read 

– all DB values read 

– writes to temporary storage 

– no locking 

(2) Validate 

– check if schedule so far is serializable 

(3) Write 

– if validate ok, write to DB 

Key idea 

• Make validation atomic 

• If T1, T2, T3, … is validation order, then 

resulting schedule will be conflict 

equivalent to Ss = T1 T2 T3... 
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To implement validation, system keeps 

two sets: 

• FIN = transactions that have finished  

  phase 3 (and are all done) 

• VAL = transactions that have   

  successfully finished phase 2  

  (validation) 

Example of what validation must prevent: 
  RS(T2)={B}   RS(T3)={A,B} 

  WS(T2)={B,D}   WS(T3)={C} 

time 

T2 

start 

T2 

validated 

T3 

validated 
T3 

start 

 =  
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T2 
finish 

phase 3 

Example of what validation must prevent: 
  RS(T2)={B}   RS(T3)={A,B} 

  WS(T2)={B,D}   WS(T3)={C} 

time 

T2 

start 

T2 

validated 

T3 

validated 
T3 

start 

 =  

allow 

T3 

start 

Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 

  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 

validated 

T3 

validated 

finish 

T2 
BAD:  w3(D)  w2(D) 
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finish 

T2 

Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 

  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 

validated 

T3 

validated 

allow 

finish 

T2 

Validation rules for Tj: 

(1) When Tj starts phase 1:  

  ignore(Tj)  FIN 

(2) at Tj Validation: 

   if check (Tj) then   

    [ VAL  VAL U {Tj}; 

      do write phase; 

      FIN  FIN U {Tj}  ] 



Chris Clifton - CS541 Fall 2007 

64 1- 

Check (Tj): 

  For Ti  VAL - IGNORE (Tj)  DO 

   IF [ WS(Ti)   RS(Tj)   OR 

   Ti  FIN ] THEN RETURN false; 

  RETURN true; 

 

   
Is this check too restrictive ? 

Improving Check(Tj) 

For Ti  VAL - IGNORE (Tj)  DO  

 IF [ WS(Ti)   RS(Tj)   OR 

  (Ti  FIN  AND WS(Ti)  WS(Tj)  )] 

   THEN RETURN false; 

RETURN true; 
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Exercise: 

T: RS(T)={A,B} 
     WS(T)={A,C} 

V: RS(V)={B} 
     WS(V)={D,E} 

U: RS(U)={B} 
        WS(U)={D} 

W: RS(W)={A,D} 
       WS(W)={A,C} 

start 
validate 
finish 

Validation (also called optimistic 

concurrency control) is useful in some 

cases: 

  - Conflicts rare 

  - System resources plentiful 

  - Have real time constraints 
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Summary 

Have studied C.C. mechanisms used in 

practice 

 - 2 PL 

 - Multiple granularity 

 - Tree (index) protocols 

 - Validation 


