
Chris Clifton - CS541 Fall 2007

1 1-

CS 54100

Transactions

Chris Clifton

2 April, 2012

Goal: Integrity Across

Sequence of Operations
• Update should complete entirely

– update stipend set stipend = stipend*1.03;

– What if it gets halfway and the machine
crashes?

• What about multiple operations?

– Withdraw x from Account1

– Deposit x into Account2

• Simultaneous operations?

– Print paychecks while stipend being updated

4/2/2012 Chris Clifton - CS541 2

Chris Clifton - CS541 Fall 2007

2 1-

Solution: Transaction

• Sequence of operations grouped into a

transaction

– Externally viewed as Atomic: All happens at

once

– DBMS manages so even the programmer

gets this view

4/2/2012 Chris Clifton - CS541 3

ACID properties

Transactions have:

• Atomicity
– All or nothing

• Consistency
– Changes to values maintain integrity

• Isolation
– Transaction occurs as if nothing else happening

• Durability
– Once completed, changes are permanent

4/2/2012 Chris Clifton - CS541 4

Chris Clifton - CS541 Fall 2007

3 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Transactions

 Concurrent execution of user programs is essential for
good DBMS performance.

 Because disk accesses are frequent, and relatively slow, it is
important to keep the cpu humming by working on several
user programs concurrently.

 A user’s program may carry out many operations on
the data retrieved from the database, but the DBMS is
only concerned about what data is read/written
from/to the database.

 A transaction is the DBMS’s abstract view of a user
program: a sequence of reads and writes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Concurrency in a DBMS

 Users submit transactions, and can think of each
transaction as executing by itself.

 Concurrency is achieved by the DBMS, which interleaves
actions (reads/writes of DB objects) of various transactions.

 Each transaction must leave the database in a consistent
state if the DB is consistent when the transaction begins.

• DBMS will enforce some ICs, depending on the ICs
declared in CREATE TABLE statements.

• Beyond this, the DBMS does not really understand the
semantics of the data. (e.g., it does not understand how
the interest on a bank account is computed).

 Issues: Effect of interleaving transactions, and crashes.

Chris Clifton - CS541 Fall 2007

4 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Atomicity of Transactions

 A transaction might commit after completing all its
actions, or it could abort (or be aborted by the DBMS)
after executing some actions.

 A very important property guaranteed by the DBMS
for all transactions is that they are atomic. That is, a
user can think of a Xact as always executing all its
actions in one step, or not executing any actions at all.

 DBMS logs all actions so that it can undo the actions of
aborted transactions.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Example

 Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

 Intuitively, the first transaction is transferring $100
from B’s account to A’s account. The second is
crediting both accounts with a 6% interest payment.

 There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together. However,
the net effect must be equivalent to these two
transactions running serially in some order.

Chris Clifton - CS541 Fall 2007

5 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Example (Contd.)

 Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

 This is OK. But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

 The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Scheduling Transactions

 Serial schedule: Schedule that does not interleave the
actions of different transactions.

 Equivalent schedules: For any database state, the effect
(on the set of objects in the database) of executing the
first schedule is identical to the effect of executing the
second schedule.

 Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Chris Clifton - CS541 Fall 2007

6 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Anomalies with Interleaved Execution

 Reading Uncommitted Data (WR Conflicts,
“dirty reads”):

 Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Anomalies (Continued)

 Overwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Chris Clifton - CS541 Fall 2007

7 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Aborting a Transaction

 If a transaction Ti is aborted, all its actions have to be
undone. Not only that, if Tj reads an object last
written by Ti, Tj must be aborted as well!

 Most systems avoid such cascading aborts by releasing
a transaction’s locks only at commit time.

 If Ti writes an object, Tj can read this only after Ti commits.

 In order to undo the actions of an aborted transaction,
the DBMS maintains a log in which every write is
recorded. This mechanism is also used to recover
from system crashes: all active Xacts at the time of the
crash are aborted when the system comes back up.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

The Log

 The following actions are recorded in the log:

 Ti writes an object: the old value and the new value.

• Log record must go to disk before the changed page!

 Ti commits/aborts: a log record indicating this action.

 Log records are chained together by Xact id, so it’s
easy to undo a specific Xact.

 Log is often duplexed and archived on stable storage.

 All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with deadlocks
etc.) are handled transparently by the DBMS.

Chris Clifton - CS541 Fall 2007

8 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Recovering From a Crash

 There are 3 phases in the Aries recovery algorithm:

 Analysis: Scan the log forward (from the most recent
checkpoint) to identify all Xacts that were active, and all dirty
pages in the buffer pool at the time of the crash.

 Redo: Redoes all updates to dirty pages in the buffer pool,
as needed, to ensure that all logged updates are in fact
carried out and written to disk.

 Undo: The writes of all Xacts that were active at the crash
are undone (by restoring the before value of the update,
which is in the log record for the update), working
backwards in the log. (Some care must be taken to handle
the case of a crash occurring during the recovery process!)

CS 54100

Concurrency Control

Chris Clifton

2 April, 2012

Chris Clifton - CS541 Fall 2007

9 1-

Chapters 16-17

Concurrency Control

 T1 T2 … Tn

4/2/2012 Chris Clifton - CS541 17

DB
(consistency
constraints)

Example:

T1: Read(A) T2: Read(A)

 A  A+100 A  A2

 Write(A) Write(A)

 Read(B) Read(B)

 B  B+100 B  B2

 Write(B) Write(B)

Constraint: A=B

4/2/2012 Chris Clifton - CS541 18

Chris Clifton - CS541 Fall 2007

10 1-

Schedule A

T1 T2

Read(A); A  A+100

Write(A);

Read(B); B  B+100;

Write(B);

 Read(A);A  A2;

 Write(A);

 Read(B);B  B2;

 Write(B);

A B

25 25

125

 125

250

 250

250 250

Schedule B

T1 T2

 Read(A);A  A2;

 Write(A);

 Read(B);B  B2;

 Write(B);

Read(A); A  A+100

Write(A);

Read(B); B  B+100;

Write(B);

A B

25 25

50

 50

150

 150

150 150

Chris Clifton - CS541 Fall 2007

11 1-

Schedule C

T1 T2

Read(A); A  A+100

Write(A);

 Read(A);A  A2;

 Write(A);

Read(B); B  B+100;

Write(B);

 Read(B);B  B2;

 Write(B);

A B

25 25

125

250

 125

 250

250 250

Schedule D

T1 T2

Read(A); A  A+100

Write(A);

 Read(A);A  A2;

 Write(A);

 Read(B);B  B2;

 Write(B);

Read(B); B  B+100;

Write(B);

A B

25 25

125

250

 50

 150

250 150

Chris Clifton - CS541 Fall 2007

12 1-

Schedule E

T1 T2’

Read(A); A  A+100

Write(A);

 Read(A);A  A1;

 Write(A);

 Read(B);B  B1;

 Write(B);

Read(B); B  B+100;

Write(B);

A B

25 25

125

125

 25

 125

125 125

Same as Schedule D

but with new T2’

• Want schedules that are “good”,

 regardless of

– initial state and

– transaction semantics

• Only look at order of read and writes

Example:

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

4/2/2012 Chris Clifton - CS541 24

Chris Clifton - CS541 Fall 2007

13 1-

Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

 T1 T2

Example:

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

However, for Sd:

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

• as a matter of fact,

 T2 must precede T1

 in any equivalent schedule,

 i.e., T2  T1

Chris Clifton - CS541 Fall 2007

14 1-

T1 T2 Sd cannot be rearranged

 into a serial schedule

 Sd is not “equivalent” to

 any serial schedule

 Sd is “bad”

• T2  T1

• Also, T1  T2

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1  T2 T1  T2

 no cycles  Sc is “equivalent” to a

 serial schedule

 (in this case T1,T2)

Chris Clifton - CS541 Fall 2007

15 1-

Concepts

Transaction: sequence of ri(x), wi(x) actions

Conflicting actions: r1(A) w2(A) w1(A)

 w2(A) r1(A) w2(A)

Schedule: represents chronological order

 in which actions are executed

Serial schedule: no interleaving of actions

 or transactions

4/2/2012 Chris Clifton - CS541 29

What about concurrent actions?

Ti issues System Input(X) t  x
read(x,t) issues completes
 input(x)

time

T2 issues
write(B,S)

System
issues

input(B)

input(B)
completes

B  S

System
issues

output(B)
output(B)
completes

Chris Clifton - CS541 Fall 2007

16 1-

So net effect is either

• S=…r1(x)…w2(b)… or

• S=…w2(B)…r1(x)…

4/2/2012 Chris Clifton - CS541 31

• Assume equivalent to either r1(A) w2(A)

 or w2(A) r1(A)

•  low level synchronization mechanism

• Assumption called “atomic actions”

What about conflicting, concurrent actions

on same object?

 start r1(A) end r1(A)

start w2(A) end w2(A)

time

Chris Clifton - CS541 Fall 2007

17 1-

Definition

S1, S2 are conflict equivalent schedules

 if S1 can be transformed into S2 by a series

of swaps on non-conflicting actions.

4/2/2012 Chris Clifton - CS541 33

Definition

A schedule is conflict serializable if it is

conflict equivalent to some serial

schedule.

4/2/2012 Chris Clifton - CS541 34

Chris Clifton - CS541 Fall 2007

18 1-

Precedence graph P(S) (S is schedule)

Nodes: transactions in S

Arcs: Ti  Tj whenever

 - pi(A), qj(A) are actions in S

 - pi(A) <S qj(A)

 - at least one of pi, qj is a write

4/2/2012 Chris Clifton - CS541 35

Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A)

w4(D)

• Is S serializable?

4/2/2012 Chris Clifton - CS541 36

Chris Clifton - CS541 Fall 2007

19 1-

CS 54100

Transactions

Chris Clifton

4 April, 2012

Lemma

S1, S2 conflict equivalent  P(S1)=P(S2)

4/2/2012 Chris Clifton - CS541 38

Proof:

Assume P(S1)  P(S2)

  Ti: Ti  Tj in S1 and not in S2

 S1 = …pi(A)... qj(A)… pi, qj

 S2 = …qj(A)…pi(A)... conflict

 S1, S2 not conflict equivalent

Chris Clifton - CS541 Fall 2007

20 1-

Note: P(S1)=P(S2)  S1, S2 conflict equivalent

Counter example:

S1=w1(A) r2(A) w2(B) r1(B)

S2=r2(A) w1(A) r1(B) w2(B)

Theorem

P(S1) acyclic  S1 conflict serializable

4/2/2012 Chris Clifton - CS541 40

() Assume S1 is conflict serializable

  Ss: Ss, S1 conflict equivalent

 P(Ss) = P(S1)

 P(S1) acyclic since P(Ss) is acyclic

Chris Clifton - CS541 Fall 2007

21 1-

() Assume P(S1) is acyclic

Transform S1 as follows:
(1) Take T1 to be transaction with no incident arcs

(2) Move all T1 actions to the front

 S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = < T1 actions ><... rest ...>

(4) repeat above steps to serialize rest!

T1

T2 T3

 T4

Theorem

P(S1) acyclic  S1 conflict serializable

How to enforce serializable schedules?

Option 1: run system, recording P(S);

 at end of day, check for P(S)cycles and

declare if execution was good

4/2/2012 Chris Clifton - CS541 42

Chris Clifton - CS541 Fall 2007

22 1-

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from

 occurring

 T1 T2 ….. Tn

4/2/2012 Chris Clifton - CS541 43

Scheduler

DB

A locking protocol

Two new actions:

 lock (exclusive): li (A)

 unlock: ui (A)

4/2/2012 Chris Clifton - CS541 44

scheduler

T1 T2

lock
table

Chris Clifton - CS541 Fall 2007

23 1-

Rule #1: Well-formed transactions

Ti: … li(A) … pi(A) … ui(A) ...

4/2/2012 Chris Clifton - CS541 45

Rule #2 Legal scheduler

S = …….. li(A) ………... ui(A) ……...

4/2/2012 Chris Clifton - CS541 46

 no lj(A)

Chris Clifton - CS541 Fall 2007

24 1-

Exercise:

• What schedules are legal?

What transactions are well-formed?

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

4/2/2012 Chris Clifton - CS541 47

• What schedules are legal?

What transactions are well-formed?

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

Chris Clifton - CS541 Fall 2007

25 1-

Schedule F

4/2/2012 Chris Clifton - CS541 49

T1 T2

l1(A);Read(A)

A A+100;Write(A);u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);u2(A)

 l2(B);Read(B)

 B Bx2;Write(B);u2(B)

l1(B);Read(B)

B B+100;Write(B);u1(B)

T1 T2 25 25

l1(A);Read(A)

A A+100;Write(A);u1(A) 125

 l2(A);Read(A)

 A Ax2;Write(A);u2(A) 250

 l2(B);Read(B)

 B Bx2;Write(B);u2(B) 50

l1(B);Read(B)

B B+100;Write(B);u1(B) 150

 250 150

A B

Schedule F

Chris Clifton - CS541 Fall 2007

26 1-

Rule #3 Two phase locking (2PL)
 for transactions

Ti = ……. li(A) ………... ui(A) ……...

4/2/2012 Chris Clifton - CS541 51

no unlocks no locks

locks

held by

Ti

 Time

 Growing Shrinking

 Phase Phase

Chris Clifton - CS541 Fall 2007

27 1-

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);l2(B)

delayed

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);l2(B)

Read(B);B B+100

Write(B); u1(B)

delayed

Chris Clifton - CS541 Fall 2007

28 1-

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);l2(B)

Read(B);B B+100

Write(B); u1(B)

 l2(B); u2(A);Read(B)

 B Bx2;Write(B);u2(B);

delayed

Schedule H (T2 reversed)

T1 T2

l1(A); Read(A) l2(B);Read(B)

A A+100;Write(A) B Bx2;Write(B)

l1(B) l2(A)

delayed delayed

Chris Clifton - CS541 Fall 2007

29 1-

• Assume deadlocked transactions are

rolled back

– They have no effect

– They do not appear in schedule

E.g., Schedule H =

 This space intentionally

 left blank!

Next step:

Show that rules #1,2,3  conflict-

 serializable

 schedules

Chris Clifton - CS541 Fall 2007

30 1-

Conflict rules for li(A), ui(A):

• li(A), lj(A) conflict

• li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

Theorem Rules #1,2,3  conflict

 (2PL) serializable

 schedule

To help in proof:

Definition Shrink(Ti) = SH(Ti) =

 first unlock action of Ti

Chris Clifton - CS541 Fall 2007

31 1-

Lemma

Ti  Tj in S  SH(Ti) <S SH(Tj)

Proof of lemma:

Ti  Tj means that

 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:

 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)

So, SH(Ti) <S SH(Tj)

Proof:

(1) Assume P(S) has cycle

 T1  T2 …. Tn  T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4)  S is conflict serializable

Theorem Rules #1,2,3  conflict

 (2PL) serializable

 schedule

Chris Clifton - CS541 Fall 2007

32 1-

• Beyond this simple 2PL protocol, it is all

a matter of improving performance and

allowing more concurrency….

– Shared locks

– Multiple granularity

– Inserts, deletes and phantoms

– Other types of C.C. mechanisms

Shared locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

Instead:

S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

Chris Clifton - CS541 Fall 2007

33 1-

Lock actions

l-ti(A): lock A in t mode (t is S or X)

u-ti(A): unlock t mode (t is S or X)

Shorthand:

ui(A): unlock whatever modes

 Ti has locked A

Rule #1 Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …

Chris Clifton - CS541 Fall 2007

34 1-

• What about transactions that read and

write same object?

Option 1: Request exclusive lock

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

Option 2: Upgrade
(E.g., need to read, but don’t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

• What about transactions that read and
 write same object?

Chris Clifton - CS541 Fall 2007

35 1-

Rule #2 Legal scheduler

S =l-Si(A) … … ui(A) …

 no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

 no l-Xj(A)

 no l-Sj(A)

A way to summarize Rule #2

Compatibility matrix

Comp S X

 S true false

 X false false

Chris Clifton - CS541 Fall 2007

36 1-

Rule # 3 2PL transactions

No change except for upgrades:

(I) If upgrade gets more locks

 (e.g., S  {S, X}) then no change!

(II) If upgrade releases read (shared)

 lock (e.g., S  X)

 - can be allowed in growing phase

Proof: similar to X locks case

Detail:

l-ti(A), l-rj(A) do not conflict if comp(t,r)

l-ti(A), u-rj(A) do not conflict if comp(t,r)

Theorem Rules 1,2,3  Conf.serializable

 for S/X locks schedules

Chris Clifton - CS541 Fall 2007

37 1-

Lock types beyond S/X

Examples:

 (1) increment lock

 (2) update lock

Example (1): increment lock

• Atomic increment action: INi(A)

 {Read(A); A  A+k; Write(A)}

• INi(A), INj(A) do not conflict!

 A=7

A=5 A=17

 A=15

INi(A)

+2

INj(A)

+10

+10

INj(A)

+2

INi(A)

Chris Clifton - CS541 Fall 2007

38 1-

Comp S X I

 S

 X

 I

Comp S X I

 S T F F

 X F F F

 I F F T

Chris Clifton - CS541 Fall 2007

39 1-

Update locks

A common deadlock problem with upgrades:

T1 T2

l-S1(A)

 l-S2(A)

l-X1(A)

 l-X2(A)

 --- Deadlock ---

Solution

If Ti wants to read A and knows it

may later want to write A, it requests

update lock (not shared)

Chris Clifton - CS541 Fall 2007

40 1-

Comp S X U

 S

 X

 U

 New request

Lock
already
held in

Comp S X U

 S T F T

 X F F F

 U TorF F F

 -> symmetric table?

 New request

Lock
already
held in

Chris Clifton - CS541 Fall 2007

41 1-

Note: object A may be locked in different

 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?

 l-U4(A)…?

• To grant a lock in mode t, mode t must

be compatible with all currently held

locks on object

How does locking work in practice?

• Every system is different

 (E.g., may not even provide

 CONFLICT-SERIALIZABLE schedules)

• But here is one (simplified) way ...

Chris Clifton - CS541 Fall 2007

42 1-

(1) Don’t trust transactions to

 request/release locks

(2) Hold all locks until transaction

 commits

locks

time

Sample Locking System:

 Ti

 Read(A),Write(B)

 l(A),Read(A),l(B),Write(B)…

 Read(A),Write(B)

Scheduler, part I

Scheduler, part II

DB

lock
table

Chris Clifton - CS541 Fall 2007

43 1-

Lock table Conceptually

A 

B
C



...

Lock info for B

Lock info for C

If null, object is unlocked
E
v
e
ry

 p
o
ss

ib
le

 o
b
je

ct

But use hash table:
A

If object not found in hash table, it is

unlocked

Lock info for A A

...
...

H

Chris Clifton - CS541 Fall 2007

44 1-

Lock info for A - example
 transaction mode wait? Next T_link

Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 X yes 

To other T3

records

What are the objects we lock?

 ?

Relation A

Relation B

...

Tuple A

Tuple B

Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

Chris Clifton - CS541 Fall 2007

45 1-

• Locking works in any case, but should we

choose small or large objects?

• If we lock large objects (e.g., Relations)

– Need few locks

– Low concurrency

• If we lock small objects (e.g., tuples,fields)

– Need more locks

– More concurrency

We can have it both ways!!

Ask any janitor to give you the solution...

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

Chris Clifton - CS541 Fall 2007

46 1-

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(IX)

Chris Clifton - CS541 Fall 2007

47 1-

Multiple granularity

Comp Requestor

 IS IX S SIX X

 IS

 Holder IX

 S

 SIX

 X

Multiple granularity

Comp Requestor

 IS IX S SIX X

 IS

 Holder IX

 S

 SIX

 X

T T T T F

F

F

F

F F F F F

F F F T

F T F T

F F T T

Chris Clifton - CS541 Fall 2007

48 1-

Parent Child can be
locked in locked in

 IS
 IX
 S
 SIX
 X

P

C

Parent Child can be
locked in locked in

 IS
 IX
 S
 SIX
 X

P

C

IS, S
IS, S, IX, X, SIX
[S, IS] not necessary
X, IX, [SIX]
none

Chris Clifton - CS541 Fall 2007

49 1-

Rules

(1) Follow multiple granularity comp function

(2) Lock root of tree first, any mode

(3) Node Q can be locked by Ti in S or IS only if

 parent(Q) locked by Ti in IX or IS

(4) Node Q can be locked by Ti in X,SIX,IX only

 if parent(Q) locked by Ti in IX,SIX

(5) Ti is two-phase

(6) Ti can unlock node Q only if none of Q’s

 children are locked by Ti

• End 11/4

Chris Clifton - CS541 Fall 2007

50 1-

Exercise:

• Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1

t2 t3
t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

Exercise:

• Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1

t2 t3
t4 T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

Chris Clifton - CS541 Fall 2007

51 1-

Exercise:

• Can T2 access object f3.1 in X mode?

What locks will T2 get?

R1

t1

t2 t3
t4 T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

Exercise:

• Can T2 access object f2.2 in S mode?

What locks will T2 get?

R1

t1

t2 t3
t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Chris Clifton - CS541 Fall 2007

52 1-

Exercise:

• Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1

t2 t3
t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Insert + delete operations

 Insert

A

Z

a

...

Chris Clifton - CS541 Fall 2007

53 1-

Modifications to locking rules:
(1) Get exclusive lock on A before

deleting A

(2) At insert A operation by Ti,

 Ti is given exclusive lock on A

Still have a problem: Phantoms

Example: relation R (E#,name,…)

 constraint: E# is key

 use tuple locking

R E# Name ….

 o1 55 Smith

 o2 75 Jones

Chris Clifton - CS541 Fall 2007

54 1-

T1: Insert <99,Gore,…> into R

T2: Insert <99,Bush,…> into R

 T1 T2

S1(o1) S2(o1)

S1(o2) S2(o2)

Check Constraint Check Constraint

Insert o3[99,Gore,..]

 Insert o4[99,Bush,..]

...

...

Solution
• Use multiple granularity tree

• Before insert of node Q,

 lock parent(Q) in

 X mode

R1

t1
t2 t3

Chris Clifton - CS541 Fall 2007

55 1-

Back to example

T1: Insert<99,Gore> T2: Insert<99,Bush>

 T1 T2

X1(R)

Check constraint

Insert<99,Gore>

U(R)

 X2(R)

 Check constraint

 Oops! e# = 99 already in R!

X2(R) delayed

Instead of using R, can use index on R:
Example:

R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109 ...

...

...

Chris Clifton - CS541 Fall 2007

56 1-

• This approach can be generalized to

multiple indexes...

Fall 2007 Chris Clifton - CS541 112

CS 541

Concurrency Control

November 13, 2007

Chris Clifton - CS541 Fall 2007

57 1-

Next:
• Tree-based concurrency control

• Validation concurrency control

Example

A

B C

D

E F

• all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

 can we release A lock
 if we no longer need A??

Chris Clifton - CS541 Fall 2007

58 1-

Idea: traverse like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lock T1 lock

T1 lock

Why does this work?

• Assume all Ti start at root; exclusive lock

• Ti  Tj  Ti locks root before Tj

• Actually works if we don’t always

 start at root

Root

Q Ti  Tj

Chris Clifton - CS541 Fall 2007

59 1-

Rules: tree protocol (exclusive locks)
(1) First lock by Ti may be on any item

(2) After that, item Q can be locked by Ti

 only if parent(Q) locked by Ti

(3) Items may be unlocked at any time

(4) After Ti unlocks Q, it cannot relock Q

• Tree-like protocols are used typically for
B-tree concurrency control

E.g., during insert, do not release parent lock, until you
are certain child does not have to split

Root

Chris Clifton - CS541 Fall 2007

60 1-

Validation

Transactions have 3 phases:

(1) Read

– all DB values read

– writes to temporary storage

– no locking

(2) Validate

– check if schedule so far is serializable

(3) Write

– if validate ok, write to DB

Key idea

• Make validation atomic

• If T1, T2, T3, … is validation order, then

resulting schedule will be conflict

equivalent to Ss = T1 T2 T3...

Chris Clifton - CS541 Fall 2007

61 1-

To implement validation, system keeps

two sets:

• FIN = transactions that have finished

 phase 3 (and are all done)

• VAL = transactions that have

 successfully finished phase 2

 (validation)

Example of what validation must prevent:
 RS(T2)={B} RS(T3)={A,B}

 WS(T2)={B,D} WS(T3)={C}

time

T2

start

T2

validated

T3

validated
T3

start

 = 

Chris Clifton - CS541 Fall 2007

62 1-

T2
finish

phase 3

Example of what validation must prevent:
 RS(T2)={B} RS(T3)={A,B}

 WS(T2)={B,D} WS(T3)={C}

time

T2

start

T2

validated

T3

validated
T3

start

 = 

allow

T3

start

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}

 WS(T2)={D,E} WS(T3)={C,D}

time

T2

validated

T3

validated

finish

T2
BAD: w3(D) w2(D)

Chris Clifton - CS541 Fall 2007

63 1-

finish

T2

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}

 WS(T2)={D,E} WS(T3)={C,D}

time

T2

validated

T3

validated

allow

finish

T2

Validation rules for Tj:

(1) When Tj starts phase 1:

 ignore(Tj)  FIN

(2) at Tj Validation:

 if check (Tj) then

 [VAL  VAL U {Tj};

 do write phase;

 FIN FIN U {Tj}]

Chris Clifton - CS541 Fall 2007

64 1-

Check (Tj):

 For Ti  VAL - IGNORE (Tj) DO

 IF [WS(Ti)  RS(Tj)   OR

 Ti  FIN] THEN RETURN false;

 RETURN true;

Is this check too restrictive ?

Improving Check(Tj)

For Ti  VAL - IGNORE (Tj) DO

 IF [WS(Ti)  RS(Tj)   OR

 (Ti  FIN AND WS(Ti)  WS(Tj)  )]

 THEN RETURN false;

RETURN true;

Chris Clifton - CS541 Fall 2007

65 1-

Exercise:

T: RS(T)={A,B}
 WS(T)={A,C}

V: RS(V)={B}
 WS(V)={D,E}

U: RS(U)={B}
 WS(U)={D}

W: RS(W)={A,D}
 WS(W)={A,C}

start
validate
finish

Validation (also called optimistic

concurrency control) is useful in some

cases:

 - Conflicts rare

 - System resources plentiful

 - Have real time constraints

Chris Clifton - CS541 Fall 2007

66 1-

Summary

Have studied C.C. mechanisms used in

practice

 - 2 PL

 - Multiple granularity

 - Tree (index) protocols

 - Validation

