
CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 1

CS54100: Database Systems

Building a DBMS

10 February 2012

Prof. Chris Clifton

Slides adapted from those developed by
Stanford University Prof. Hector Garcia-

Molina

Spring 2012 Chris Clifton - CS54100 2

Isn’t Implementing a Database

System Simple?

Relations Statements Results

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 2

Spring 2012 Chris Clifton - CS54100 3

Introducing the

Database Management System

• The latest from Megatron Labs
• Incorporates latest relational technology
• UNIX compatible

Spring 2012 Chris Clifton - CS54100 4

Megatron 3000 Implementation

Details

First sign non-disclosure agreement

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 3

Spring 2012 Chris Clifton - CS54100 5

Megatron 3000 Implementation

Details

• Relations stored in files (ASCII)

 e.g., relation R is in /usr/db/R

Smith # 123 # CS

Jones # 522 # EE

.

.

.

Spring 2012 Chris Clifton - CS54100 6

Megatron 3000 Implementation

Details

• Directory file (ASCII) in /usr/db/directory

R1 # A # INT # B # STR …

R2 # C # STR # A # INT …

.

.

.

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 4

Spring 2012 Chris Clifton - CS54100 7

Megatron 3000

Sample Sessions

% MEGATRON3000

 Welcome to MEGATRON 3000!

&

& quit

%

.

.

.

Spring 2012 Chris Clifton - CS54100 8

Megatron 3000

Sample Sessions

& select *

 from R #

 Relation R

 A B C

 SMITH 123 CS

&

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 5

Spring 2012 Chris Clifton - CS54100 9

Megatron 3000

Sample Sessions

& select A,B

 from R,S

 where R.A = S.A and S.C > 100 #

 A B

 123 CAR

 522 CAT

&

Spring 2012 Chris Clifton - CS54100 10

Megatron 3000

Sample Sessions

& select *

 from R | LPR #

&

Result sent to LPR (printer).

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 6

Spring 2012 Chris Clifton - CS54100 11

Megatron 3000

Sample Sessions

& select *

 from R

 where R.A < 100 | T #

&

New relation T created.

Spring 2012 Chris Clifton - CS54100 12

Megatron 3000

• To execute “select * from R where condition”:

 (1) Read dictionary to get R attributes

 (2) Read R file, for each line:

 (a) Check condition

 (b) If OK, display

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 7

Spring 2012 Chris Clifton - CS54100 13

Megatron 3000

• To execute “select * from R

 where condition | T”:

 (1) Process select as before

 (2) Write results to new file T

 (3) Append new line to dictionary

Spring 2012 Chris Clifton - CS54100 14

Megatron 3000

• To execute “select A,B from R,S where condition”:

 (1) Read dictionary to get R,S attributes

 (2) Read R file, for each line:

 (a) Read S file, for each line:

 (i) Create join tuple

 (ii) Check condition

 (iii) Display if OK

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 8

What’s wrong with the

Megatron 3000 DBMS?

• Tuple layout on disk

– Change string from ‘Cat’ to ‘Cats’ and we

have to rewrite file

– ASCII storage is expensive

– Deletions are expensive

• Search expensive; no indexes

– Cannot find tuple with given key quickly

– Always have to read full relation

Spring 2012 Chris Clifton - CS54100 15

What’s wrong with the

Megatron 3000 DBMS?

• No buffer manager

– Need caching

• Brute force query processing
• select *

from R,S

where R.A = S.A and S.B > 1000

– Do select first?

– More efficient join?

Spring 2012 Chris Clifton - CS54100 16

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 9

What’s wrong with the

Megatron 3000 DBMS?

• No concurrency control

• No reliability

– Can lose data

– Can leave operations half done

• No security

– File system insecure

– File system security is coarse

Spring 2012 Chris Clifton - CS54100 17

What’s wrong with the

Megatron 3000 DBMS?

• No application program interface (API)

– How can a payroll program get at the data?

• No GUI

• Cannot interact with other DBMSs.

• Poor dictionary facilities

– How do we know what is in the database?

• Lousy salesman!!

Spring 2012 Chris Clifton - CS54100 18

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 10

Spring 2012 Chris Clifton - CS54100 19

What do we need to know?

• File & System Structure
 Records in blocks, dictionary, buffer management,…

• Indexing & Hashing
 B-Trees, hashing,…

• Query Processing
 Query costs, join strategies,…

• Crash Recovery
 Failures, stable storage,…

Spring 2012 Chris Clifton - CS54100 20

What do we need to know?

• Concurrency Control
 Correctness, locks,…

• Transaction Processing
 Logs, deadlocks,…

• Security & Integrity
 Authorization, encryption,…

• Distributed Databases
 Interoperation, distributed recovery,…

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 11

Spring 2012 Chris Clifton - CS54100 21

System Structure

Buffer Manager

Query Parser User

User Transaction Transaction Manager

Strategy Selector

Recovery Manager Concurrency Control

File Manager Log Lock Table M.M. Buffer

Statistical Data
Indexes

User Data System Data

Spring 2012 Chris Clifton - CS54100 22

Hardware

DBMS

Data Storage

Hardware Constraints

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 12

Spring 2012 Chris Clifton - CS54100 23

P

M C

Typical
Computer

Secondary
Storage

... ...

Spring 2012 Chris Clifton - CS54100 24

Processor
 Fast, slow, reduced instruction set,
 with cache, pipelined…
 Speed: 100  500  1000 MIPS

Memory
 Fast, slow, non-volatile, read-only,…
 Access time: 10-6  10-9 sec.
 1 s  1 ns

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 13

Secondary storage
 Many flavors:
 - Disk: Floppy (hard, soft)
 Removable Packs
 Winchester
 Ram disks
 Optical, CD-ROM…
 Arrays
 - Tape Reel, cartridge
 Robots

 Spring 2012 Chris Clifton - CS54100 25

Focus on: “Typical Disk”

Terms: Platter, Head, Actuator
 Cylinder, Track
 Sector (physical),
 Block (logical), Gap

…

Spring 2012 Chris Clifton - CS54100 26

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 14

Top View

Spring 2012 27 Chris Clifton - CS54100

“Typical” Numbers
 Diameter: 1 inch  15 inches
 Cylinders: 100  2000
 Surfaces: 1 (CDs) 
 (Tracks/cyl) 2 (floppies)  30
 Sector Size: 512B  50K
 Capacity: 360 KB (old floppy)
  TB

Spring 2012 Chris Clifton - CS54100 28

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 15

Spring 2012 Chris Clifton - CS54100 29

Disk Access Time

block x
in memory

?

I want
block X

Spring 2012 Chris Clifton - CS54100 30

Time = Seek Time +
 Rotational Delay +
 Transfer Time +
 Other

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 16

Spring 2012 Chris Clifton - CS54100 31

Seek Time

3 or 5x

x

1 N

Cylinders Traveled

Time

Spring 2012 Chris Clifton - CS54100 32

Average Random Seek Time

   SEEKTIME (i  j)

S =

 N(N-1)

 N N

i=1 j=1
ji

“Typical” S: 5 ms  10 ms

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 17

Spring 2012 Chris Clifton - CS54100 33

Rotational Delay

Head Here

Block I Want

Spring 2012 Chris Clifton - CS54100 34

Average Rotational Delay

R = 1/2 revolution

“typical” R = 2 ms (15000 RPM)

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 18

Spring 2012 Chris Clifton - CS54100 35

Complication

• May have to wait for start of track
 before we an read desired block

Head Here

Block We Want

Track Start

Spring 2012 Chris Clifton - CS54100 36

Transfer Rate: t

• “typical” t: 1  3 MB/second

• transfer time: block size

 t

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 19

Spring 2012 Chris Clifton - CS54100 37

Other Delays

• CPU time to issue I/O

• Contention for controller

• Contention for bus, memory

“Typical” Value: 0

Spring 2012 Chris Clifton - CS54100 38

• So far: Random Block Access

• What about: Reading “Next” block?

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 20

Spring 2012 Chris Clifton - CS54100 39

If we do things right
(e.g., Double Buffer, Stagger Blocks…)

Time to get = Block Size + Negligible

 block t

 - skip gap

 - switch track

 - once in a while,

 next cylinder

Spring 2012 Chris Clifton - CS54100 40

Rule of Random I/O: Expensive

Thumb Sequential I/O: Much less

• Ex: 1 KB Block
» Random I/O:  10 ms.

» Sequential I/O:  1 ms.

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 21

Spring 2012 Chris Clifton - CS54100 41

Cost for Writing similar to Reading

…. unless we want to verify!
 need to add (full) rotation + Block size
 t

Spring 2012 Chris Clifton - CS54100 42

To Modify a Block?

To Modify Block:

 (a) Read Block

 (b) Modify in Memory

 (c) Write Block

 [(d) Verify?]

CS54100: Database Systems 3/6/2012

© 2012 Chris Clifton 22

Spring 2012 Chris Clifton - CS54100 43

Block Address:

• Physical Device

• Cylinder #

• Surface #

• Sector

Spring 2012 Chris Clifton - CS54100 44

Complication: Bad Blocks

• Messy to handle
• May map via software to

integer sequence
1
2
. Map Actual Block Addresses
.
m

