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Isn’t Implementing a Database 

System Simple? 

Relations Statements Results 
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Introducing the 

Database Management System 

• The latest from Megatron Labs 
• Incorporates latest relational technology 
• UNIX compatible 
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Megatron 3000 Implementation 

Details 

First sign non-disclosure agreement 
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Megatron 3000 Implementation 

Details 

• Relations stored in files (ASCII) 

 e.g., relation R is in /usr/db/R 

Smith # 123 # CS 

Jones # 522 # EE 

 

 

. 

. 

. 
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Megatron 3000 Implementation 

Details 

• Directory file (ASCII) in /usr/db/directory 

R1 # A # INT # B # STR … 

R2 # C # STR # A # INT … 

 

 

. 

. 

. 
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Megatron 3000 

Sample Sessions 

% MEGATRON3000 

   Welcome to MEGATRON 3000! 

& 

 

 

& quit 

% 

. 

. 

. 
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Megatron 3000 

Sample Sessions 

& select * 

  from R # 

 

    Relation R 

   A       B    C 

   SMITH  123   CS 

 

& 
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Megatron 3000 

Sample Sessions 

& select A,B 

  from R,S 

  where R.A = S.A and S.C > 100 # 

 

   A    B 

  123  CAR 

  522  CAT 

 

& 
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Megatron 3000 

Sample Sessions 

& select * 

  from R | LPR # 

& 

Result sent to LPR (printer). 
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Megatron 3000 

Sample Sessions 

& select * 

  from R 

  where R.A < 100 | T # 

& 

New relation T created. 

Spring 2012 Chris Clifton - CS54100 12 

Megatron 3000 

• To execute “select * from R where condition”: 

  (1) Read dictionary to get R attributes 

  (2) Read R file, for each line: 

   (a) Check condition 

   (b) If OK, display 
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Megatron 3000 

• To execute “select * from R 

             where condition | T”: 

  (1) Process select as before 

  (2) Write results to new file T 

  (3) Append new line to dictionary 
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Megatron 3000 

• To execute “select A,B from R,S where condition”: 

  (1) Read dictionary to get R,S attributes 

  (2) Read R file, for each line: 

   (a) Read S file, for each line: 

    (i) Create join tuple 

    (ii) Check condition 

    (iii) Display if OK 
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What’s wrong with the 

Megatron 3000 DBMS? 

• Tuple layout on disk 

– Change string from ‘Cat’ to ‘Cats’ and we 

have to rewrite file 

– ASCII storage is expensive 

– Deletions are expensive 

• Search expensive; no indexes 

– Cannot find tuple with given key quickly 

– Always have to read full relation 
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What’s wrong with the 

Megatron 3000 DBMS? 

• No buffer manager 

– Need caching 

• Brute force query processing 
• select * 

from R,S 

where R.A = S.A and S.B > 1000 

– Do select first? 

– More efficient join? 
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What’s wrong with the 

Megatron 3000 DBMS? 

• No concurrency control 

• No reliability 

– Can lose data 

– Can leave operations half done 

• No security 

– File system insecure 

– File system security is coarse 
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What’s wrong with the 

Megatron 3000 DBMS? 

• No application program interface (API) 

– How can a payroll program get at the data? 

• No GUI 

• Cannot interact with other DBMSs. 

• Poor dictionary facilities 

– How do we know what is in the database? 

• Lousy salesman!! 
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What do we need to know? 

• File & System Structure 
  Records in blocks, dictionary, buffer management,… 

• Indexing & Hashing 
  B-Trees, hashing,… 

• Query Processing 
  Query costs, join strategies,… 

• Crash Recovery 
  Failures, stable storage,… 
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What do we need to know? 

• Concurrency Control 
  Correctness, locks,… 

• Transaction Processing 
  Logs, deadlocks,… 

• Security & Integrity 
  Authorization, encryption,… 

• Distributed Databases 
  Interoperation, distributed recovery,… 
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System Structure 

Buffer Manager 

Query Parser User 

User Transaction Transaction Manager 

Strategy Selector 

Recovery Manager Concurrency Control 

File Manager Log Lock Table M.M. Buffer 

Statistical Data 
Indexes 

User Data System Data 

Spring 2012 Chris Clifton - CS54100 22 

Hardware 

DBMS 

Data Storage 

Hardware Constraints 
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P 

M C 

Typical 
Computer 

Secondary 
Storage 

... ... 
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Processor 
 Fast, slow, reduced instruction set, 
  with cache, pipelined… 
 Speed: 100   500    1000 MIPS 

Memory 
 Fast, slow, non-volatile, read-only,… 
 Access time: 10-6     10-9  sec. 
    1 s     1 ns 
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Secondary storage 
 Many flavors: 
  - Disk:  Floppy (hard, soft) 
    Removable Packs 
    Winchester 
    Ram disks 
    Optical, CD-ROM… 
    Arrays 
  - Tape Reel, cartridge 
    Robots 
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Focus on: “Typical Disk” 

Terms:  Platter, Head, Actuator 
  Cylinder, Track 
  Sector (physical), 
  Block (logical), Gap 

…
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Top View 
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“Typical” Numbers 
 Diameter:  1 inch  15 inches 
 Cylinders: 100    2000 
 Surfaces: 1 (CDs)  
 (Tracks/cyl)    2 (floppies)  30 
 Sector Size: 512B   50K 
 Capacity: 360 KB (old floppy) 
     TB 
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Disk Access Time  

block x 
in memory 

? 

I want 
block X 
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Time =  Seek Time + 
  Rotational Delay + 
  Transfer Time + 
  Other 
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Seek Time 

3 or 5x 

x 

1 N 

Cylinders Traveled 

Time 
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Average Random Seek Time 

 

           SEEKTIME (i  j) 

S = 

           N(N-1) 

 N  N 

i=1 j=1 
ji 

“Typical” S: 5 ms  10 ms 
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Rotational Delay 

Head Here 

Block I Want 
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Average Rotational Delay 

R = 1/2 revolution 
 
“typical” R = 2 ms (15000 RPM) 
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Complication 

 

• May have to wait for start of track  
   before we an read desired block 

Head Here 

Block We Want 

Track Start 
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Transfer Rate: t 

• “typical” t:  1    3  MB/second 

• transfer time:  block size 

     t 
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Other Delays 

• CPU time to issue I/O 

• Contention for controller 

• Contention for bus, memory 

“Typical” Value: 0 
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• So far: Random Block Access 

• What about: Reading “Next” block? 
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If we do things right   
(e.g., Double Buffer,  Stagger Blocks…) 

Time to get   =  Block Size  + Negligible 

    block       t 

 

      - skip gap 

      - switch track 

      - once in a while, 

          next cylinder 
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Rule of  Random I/O: Expensive 

Thumb         Sequential I/O: Much less 

• Ex: 1 KB Block 
» Random I/O:      10 ms. 

» Sequential I/O:  1 ms. 
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Cost for Writing similar to Reading 

…. unless we want to verify! 
    need to add (full) rotation + Block size 
          t 
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To Modify a Block? 

To Modify Block: 

 (a) Read Block 

 (b) Modify in Memory 

 (c) Write Block 

 [(d) Verify?] 
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Block Address: 

• Physical Device 

• Cylinder # 

• Surface # 

• Sector 
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Complication: Bad Blocks 

• Messy to handle 
• May map via software to 

integer sequence 
1 
2 
.  Map     Actual Block Addresses 
. 
m 


