
Chris Clifton - CS541 Fall 2007

1 1-

Chris Clifton - CS54100 1

CS 54100

Procedures, Authorization,

Transactions

16 April, 2012

PL/SQL
• Oracle’s version of PSM (Persistent, Stored Modules).

– Use via sqlplus.

• A compromise between completely procedural
programming and SQL’s very high-level, but limited
statements.

• Allows local variables, loops, procedures, examination of
relations one tuple at a time.

• Rough form:
DECLARE

 declarations

BEGIN

 executable statements

END;

.

run;

• DECLARE portion is optional.

• Dot and run (or a slash in place of run;) are needed to
end the statement and execute it.

Chris Clifton - CS541 Fall 2007

2 1-

Simplest Form: Sequence of

Modifications
Likes(drinker, beer)

BEGIN

 INSERT INTO Likes

 VALUES('Sally', 'Bud');

 DELETE FROM Likes

 WHERE drinker = 'Fred' AND

 beer = 'Miller';

END;

.

run;

Procedures
Stored database objects that use a PL/SQL

statement in their body.

Procedure Declarations
CREATE OR REPLACE PROCEDURE

 <name>(<arglist>) AS

 <declarations>

 BEGIN

 <PL/SQL statements>

 END;

.

run;

Chris Clifton - CS541 Fall 2007

3 1-

• Argument list has name-mode-type

triples.

– Mode: IN, OUT, or IN OUT for read-only,

write-only, read/write, respectively.

– Types: standard SQL + generic types like

NUMBER = any integer or real type.

– Since types in procedures must match their

types in the DB schema, you should

generally use an expression of the form

 relation.attribute %TYPE

 to capture the type correctly.

Example

A procedure to take a beer and price and add it to Joe’s menu.
Sells(bar, beer, price)

CREATE PROCEDURE joeMenu(

 b IN Sells.beer %TYPE,

 p IN Sells.price %TYPE

) AS

 BEGIN

 INSERT INTO Sells

 VALUES('Joe''s Bar', b, p);

 END;

.

run;

• Note “run” only stores the procedure; it doesn’t execute the
procedure.

Chris Clifton - CS541 Fall 2007

4 1-

Invoking Procedures

A procedure call may appear in the body of

a PL/SQL statement.

• Example:

BEGIN

 joeMenu('Bud', 2.50);

 joeMenu('MooseDrool', 5.00);

END;

.

run;

Assignment
Assign expressions to declared variables with
:=.

Branches
IF <condition> THEN
 <statement(s)>
ELSE

 <statement(s)>
END IF;

• But in nests, use ELSIF in place of ELSE IF.

Loops
LOOP

 . . .

 EXIT WHEN <condition>
 . . .

END LOOP;

Chris Clifton - CS541 Fall 2007

5 1-

Queries in PL/SQL

1. Single-row selects allow retrieval into a

variable of the result of a query that is

guaranteed to produce one tuple.

2. Cursors allow the retrieval of many

tuples, with the cursor and a loop used to

process each in turn.

Single-Row Select
• Select-from-where in PL/SQL must have an INTO clause

listing variables into which a tuple can be placed.

• It is an error if the select-from-where returns more than one
tuple; you should have used a cursor.

Example
• Find the price Joe charges for Bud (and drop it on the

floor).
Sells(bar, beer, price)

DECLARE

 p Sells.price %TYPE;

BEGIN

 SELECT price

 INTO p

 FROM Sells

 WHERE bar = 'Joe''s Bar' AND beer = 'Bud';

END;
.

run

Chris Clifton - CS541 Fall 2007

6 1-

Cursors

Declare by:

CURSOR <name> IS

 select-from-where statement

• Cursor gets each tuple from the relation produced by the select-

from-where, in turn, using a fetch statement in a loop.

– Fetch statement:

 FETCH <cursor name> INTO

 variable list;

• Break the loop by a statement of the form:

 EXIT WHEN <cursor name> %NOTFOUND;

– True when there are no more tuples to get.

• Open and close the cursor with OPEN and CLOSE.

Example

A procedure that examines the menu for

Joe’s Bar and raises by $1.00 all prices

that are less than $3.00.

 Sells(bar, beer, price)

• This simple price-change algorithm can be

implemented by a single UPDATE

statement, but more complicated price

changes could not.

Chris Clifton - CS541 Fall 2007

7 1-

CREATE PROCEDURE joeGouge() AS

 theBeer Sells.beer%TYPE;

 thePrice Sells.price%TYPE;

 CURSOR c IS

 SELECT beer, price

 FROM Sells

 WHERE bar = 'Joe''s bar';

 BEGIN

 OPEN c;

 LOOP

 FETCH c INTO theBeer, thePrice;

 EXIT WHEN c%NOTFOUND;

 IF thePrice < 3.00 THEN

 UDPATE Sells

 SET price = thePrice + 1.00

 WHERE bar = 'Joe''s Bar'

 AND beer = theBeer;

 END IF;

 END LOOP;

 CLOSE c;

 END;

.

run

Row Types

Anything (e.g., cursors, table names) that

has a tuple type can have its type

captured with %ROWTYPE.

• We can create temporary variables that

have tuple types and access their

components with dot.

• Handy when we deal with tuples with

many attributes.

Chris Clifton - CS541 Fall 2007

8 1-

Example
The same procedure with a tuple variable bp.

CREATE PROCEDURE joeGouge() AS

 CURSOR c IS

 SELECT beer, price

 FROM Sells

 WHERE bar = 'Joe''s bar';

 bp c%ROWTYPE;

 BEGIN

 OPEN c;

 LOOP

 FETCH c INTO bp;

 EXIT WHEN c%NOTFOUND;

 IF bp.price < 3.00 THEN

 UDPATE Sells

 SET price = bp.price + 1.00

 WHERE bar = 'Joe''s Bar'

 AND beer = bp.beer;

 END IF;

 END LOOP;

 CLOSE c;

 END;
.
run

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

SQL in Application Code

 SQL commands can be called from within a
host language (e.g., C++ or Java) program.

 SQL statements can refer to host variables
(including special variables used to return status).

 Must include a statement to connect to the right
database.

 Two main integration approaches:

 Embed SQL in the host language (Embedded SQL,
SQLJ)

 Create special API to call SQL commands (JDBC)

Chris Clifton - CS541 Fall 2007

9 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

SQL in Application Code (Contd.)

Impedance mismatch:

 SQL relations are (multi-) sets of records, with
no a priori bound on the number of records.
No such data structure exist traditionally in
procedural programming languages such as
C++. (Though now: STL)

 SQL supports a mechanism called a cursor to
handle this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Embedded SQL

 Approach: Embed SQL in the host language.
 A preprocessor converts the SQL statements into

special API calls.

 Then a regular compiler is used to compile the
code.

 Language constructs:
 Connecting to a database:

EXEC SQL CONNECT

 Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION

 Statements:
EXEC SQL Statement;

Chris Clifton - CS541 Fall 2007

10 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Embedded SQL: Variables

EXEC SQL BEGIN DECLARE SECTION

char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

 Two special “error” variables:
 SQLCODE (long, is negative if an error has occurred)

 SQLSTATE (char[6], predefined codes for common errors)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Cursor that gets names of sailors who’ve
reserved a red boat, in alphabetical order

 Note that it is illegal to replace S.sname by, say,
S.sid in the ORDER BY clause! (Why?)

 Can we add S.sid to the SELECT clause and
replace S.sname by S.sid in the ORDER BY clause?

EXEC SQL DECLARE sinfo CURSOR FOR

 SELECT S.sname

 FROM Sailors S, Boats B, Reserves R

 WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

 ORDER BY S.sname

Chris Clifton - CS541 Fall 2007

11 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Dynamic SQL

 SQL query strings are now always known at compile
time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

 Example:

char c_sqlstring[]=

{“DELETE FROM Sailors WHERE raiting>5”};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;

EXEC SQL EXECUTE readytogo;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Database APIs: Alternative to
embedding

Rather than modify compiler, add library with database
calls (API)

 Special standardized interface: procedures/objects

 Pass SQL strings from language, presents result sets
in a language-friendly way

 Sun’s JDBC: Java API

 Supposedly DBMS-neutral
 a “driver” traps the calls and translates them into DBMS-

specific code

 database can be across a network

Chris Clifton - CS541 Fall 2007

12 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

JDBC: Architecture

 Four architectural components:

 Application (initiates and terminates connections,
submits SQL statements)

 Driver manager (load JDBC driver)

 Driver (connects to data source, transmits requests
and returns/translates results and error codes)

 Data source (processes SQL statements)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

JDBC Architecture (Contd.)

Four types of drivers:

Bridge:
 Translates SQL commands into non-native API.

Example: JDBC-ODBC bridge. Code for ODBC and JDBC
driver needs to be available on each client.

Direct translation to native API, non-Java driver:
 Translates SQL commands to native API of data source.

Need OS-specific binary on each client.

Network bridge:
 Send commands over the network to a middleware server

that talks to the data source. Needs only small JDBC driver
at each client.

Direction translation to native API via Java driver:
 Converts JDBC calls directly to network protocol used by

DBMS. Needs DBMS-specific Java driver at each client.

Chris Clifton - CS541 Fall 2007

13 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

JDBC Classes and Interfaces

Steps to submit a database query:

 Load the JDBC driver

 Connect to the data source

 Execute SQL statements

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

JDBC Driver Management

 All drivers are managed by the
DriverManager class

 Loading a JDBC driver:

 In the Java code:
Class.forName(“oracle/jdbc.driver.Oracledriver”);

 When starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver

Chris Clifton - CS541 Fall 2007

14 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Connections in JDBC

We interact with a data source through sessions. Each
connection identifies a logical session.

 JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:
String url=“jdbc:oracle:www.bookstore.com:3083”;

Connection con;

try{

 con = DriverManager.getConnection(url,usedId,password);

} catch SQLException excpt { …}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Connection Class Interface
 public int getTransactionIsolation() and

void setTransactionIsolation(int level)
Sets isolation level for the current connection.

 public boolean getReadOnly() and
void setReadOnly(boolean b)
Specifies whether transactions in this connection are read-
only

 public boolean getAutoCommit() and
void setAutoCommit(boolean b)
If autocommit is set, then each SQL statement is
considered its own transaction. Otherwise, a transaction is
committed using commit(), or aborted using rollback().

 public boolean isClosed()
Checks whether connection is still open.

Chris Clifton - CS541 Fall 2007

15 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Executing SQL Statements

 Three different ways of executing SQL
statements:
 Statement (both static and dynamic SQL

statements)

 PreparedStatement (semi-static SQL statements)

 CallableStatment (stored procedures)

 PreparedStatement class:
Precompiled, parametrized SQL statements:
 Structure is fixed

 Values of parameters are determined at run-time

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Executing SQL Statements (Contd.)

String sql=“INSERT INTO Sailors VALUES(?,?,?,?)”;

PreparedStatment pstmt=con.prepareStatement(sql);

pstmt.clearParameters();

pstmt.setInt(1,sid);

pstmt.setString(2,sname);

pstmt.setInt(3, rating);

pstmt.setFloat(4,age);

// we know that no rows are returned, thus we use
executeUpdate()

int numRows = pstmt.executeUpdate();

Chris Clifton - CS541 Fall 2007

16 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

ResultSets

 PreparedStatement.executeUpdate only returns the
number of affected records

 PreparedStatement.executeQuery returns data,
encapsulated in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);

// rs is now a cursor

While (rs.next()) {

 // process the data

}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

ResultSets (Contd.)

A ResultSet is a very powerful cursor:

 previous(): moves one row back

 absolute(int num): moves to the row with the
specified number

 relative (int num): moves forward or
backward

 first() and last()

Chris Clifton - CS541 Fall 2007

17 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

Examining Database Metadata

DatabaseMetaData object gives information
about the database system and the catalog.

DatabaseMetaData md = con.getMetaData();

// print information about the driver:

System.out.println(
“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

Database Metadata (Contd.)

DatabaseMetaData md=con.getMetaData();

ResultSet trs=md.getTables(null,null,null,null);

String tableName;

While(trs.next()) {

 tableName = trs.getString(“TABLE_NAME”);

 System.out.println(“Table: “ + tableName);

 //print all attributes

 ResultSet crs = md.getColumns(null,null,tableName, null);

 while (crs.next()) {

 System.out.println(crs.getString(“COLUMN_NAME” + “, “);

 }

}

Chris Clifton - CS541 Fall 2007

18 1-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

A (Semi-)Complete Example

Connection con = // connect

 DriverManager.getConnection(url, ”login", ”pass");

Statement stmt = con.createStatement(); // set up stmt

String query = "SELECT name, rating FROM Sailors";

ResultSet rs = stmt.executeQuery(query);

try { // handle exceptions

 // loop through result tuples

 while (rs.next()) {

 String s = rs.getString(“name");

 Int n = rs.getFloat(“rating");

 System.out.println(s + " " + n);

 }

} catch(SQLException ex) {

 System.out.println(ex.getMessage ()

 + ex.getSQLState () + ex.getErrorCode ());

}

