Chris Clifton - CS541

PURDUE

CS 54100
Procedures, Authorization,
Transactions

16 April, 2012

Inagna
Center for
Database

Systems
Chris Clifton - CS54100 1

PL/SQL

Oracle’s version of PSM (Persistent, Stored Modules).
— Usevia sglplus.
A compromise between completely procedural
programming and SQL'’s very high-level, but limited
statements.
Allows local variables, loops, procedures, examination of
relations one tuple at a time.
Rough form:
DECLARE
declarations
BEGIN
executable statements
END;

run;

DECLARE portion is optional.

Dot and run (or a slash in place of run;) are needed to
end the statement and execute it.

Fall 2007

Chris Clifton - CS541

Simplest Form: Sequence of

~ Modifications
Likes (drinker, beer)

BEGIN
INSERT INTO Likes
VALUES ('Sally', 'Bud');
DELETE FROM Likes

WHERE drinker = 'Fred' AND
beer = 'Miller';
END;
run;
Procedures

Stored database objects that use a PL/SQL
statement in their body.

Procedure Declarations

CREATE OR REPLACE PROCEDURE
<name> (<arglist>) AS
<declarations>
BEGIN
<PL/SQL statements>
END;

run;

Fall 2007

Chris Clifton - CS541

« Argument list has name-mode-type
triples.

— Mode: IN, OUT, or IN OUT for read-only,
write-only, read/write, respectively.

— Types: standard SQL + generic types like
NUMBER = any integer or real type.

— Since types in procedures must match their
types in the DB schema, you should
generally use an expression of the form

relation.attribute $TYPE
to capture the type correctly.

Example

A procedure to take a beer and price and add it to Joe's menu.

Sells (bar, beer, price)

CREATE PROCEDURE joeMenu (
b IN Sells.beer STYPE,
p IN Sells.price STYPE
) AS
BEGIN
INSERT INTO Sells
VALUES ('Joe''s Bar', b, p):;
END;

run;

* Note “run” only stores the procedure; it doesn’t execute the
procedure.

Fall 2007

Chris Clifton - CS541

Invoking Procedures
A procedure call may appear in the body of
a PL/SQL statement.
« Example:
BEGIN
joeMenu ('Bud', 2.50);

joeMenu ('MooseDrool', 5.00);
END;

run;

Assignment

Assign expressions to declared variables with

Branches

IF <condition> THEN
<statement(s)>
ELSE
<statement(s)>
END IF;

« Butin nests, use ELSIF in place of ELSE IF.
Loops

LOOP
EXIT WHEN <condition>

END LOOP;

Fall 2007

Chris Clifton - CS541 Fall 2007

Queries in PL/SQL

1. Single-row selects allow retrieval into a
variable of the result of a query that is
guaranteed to produce one tuple.

2. Cursors allow the retrieval of many
tuples, with the cursor and a loop used to
process each in turn.

Single-Row Select

» Select-from-where in PL/SQL must have an INTO clause
listing variables into which a tuple can be placed.

* |tis an error if the select-from-where returns more than one
tuple; you should have used a cursor.

Example

» Find the price Joe charges for Bud (and drop it on the
floor).
Sells (bar, beer, price)

DECLARE

p Sells.price S%TYPE;
BEGIN

SELECT price

INTO p

FROM Sells

WHERE bar = 'Joe''s Bar' AND beer = 'Bud';
END;

run

Chris Clifton - CS541

cursors

Declare by:
CURSOR <name> IS
select-from-where statement
» Cursor gets each tuple from the relation produced by the select-
from-where, in turn, using a fetch statement in a loop.
— Fetch statement:
FETCH <cursor name> INTO
variable list;
Break the loop by a statement of the form:
EXIT WHEN <cursor name> $NOTFOUND;
— True when there are no more tuples to get.
Open and close the cursor with OPEN and CLOSE.

Example

A procedure that examines the menu for
Joe’s Bar and raises by $1.00 all prices
that are less than $3.00.

Sells (bar, beer, price)

» This simple price-change algorithm can be
implemented by a single UPDATE
statement, but more complicated price
changes could not.

Fall 2007

Chris Clifton - CS541

CREATE PROCEDURE joeGouge () AS
theBeer Sells.beer%TYPE;
thePrice Sells.price$TYPE;
CURSOR ¢ IS

SELECT beer, price
FROM Sells

WHERE bar = 'Joe''s bar';
BEGIN
OPEN c;
LOOP
FETCH ¢ INTO theBeer, thePrice;
EXIT WHEN c$NOTFOUND;
IF thePrice < 3.00 THEN
UDPATE Sells
SET price = thePrice + 1.00
WHERE bar = 'Joe''s Bar'
AND beer = theBeer;
END TIF;
END LOOP;
CLOSE c;
END;
run

Row Types

Anything (e.g., cursors, table names) that
has a tuple type can have its type
captured with $ROWTYPE.

« We can create temporary variables that
have tuple types and access their
components with dot.

« Handy when we deal with tuples with
many attributes.

Fall 2007

Chris Clifton - CS541

Fall 2007

Example

The same procedure with a tuple variable bp.
CREATE PROCEDURE joeGouge () AS
CURSOR c IS

SELECT beer, price

FROM Sells

WHERE bar = 'Joe''s bar';
bp c%ROWTYPE;
BEGIN

OPEN c;
LOOP

FETCH c INTO bp;

EXIT WHEN c%NOTFOUND;

IF bp.price < 3.00 THEN

UDPATE Sells

SET price = bp.price + 1.00
WHERE bar
AND beer =

'Joe''s Bar'
bp.beer;

END IF;

END LOOP;

CLOSE c;

END;

run

SQL in Application Code |

% SQL commands can be called from within a
host language (e.g., C++ or Java) program.
» SQL statements can refer to host variables
(including special variables used to return status).

= Must include a statement to connect to the right
database.

< Two main integration approaches:

* Embed SQL in the host language (Embedded SQL,
SQLYJ)

= Create special API to call SQL commands (JDBC)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

19

Chris Clifton - CS541 Fall 2007

SQL in Application Code (Contd.) [

Impedance mismatch:

< SQL relations are (multi-) sets of records, with
no a priori bound on the number of records.
No such data structure exist traditionally in
procedural programming languages such as
C++. (Though now: STL)

= SQL supports a mechanism called a cursor to
handle this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

\
/

i

Embedded SQL

% Approach: Embed SQL in the host language.

= A preprocessor converts the SQL statements into
special API calls.

* Then a regular compiler is used to compile the
code.

< Language constructs:

* Connecting to a database:
EXEC SQL CONNECT

* Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION

= Statements:
EXEC SQL Statement;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Chris Clifton - CS541 Fall 2007

gR !/

Embedded SQL: Variables %

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

< Two special “error” variables:

= SQLCODE (long, is negative if an error has occurred)
= SQLSTATE (char[6], predefined codes for common errors)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Cursor that gets names of sailors who’ve@%
reserved a red boat, in alphabetical order =

EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
ORDER BY S.sname

< Note that it is illegal to replace S.sname by, say,
S.sid in the ORDER BY clause! (Why?)

< Can we add S.sid to the seLECT clause and
replace S.sname by S.sid in the ORDER BY clause?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

1- 10

Chris Clifton - CS541 Fall 2007

Dynamic SQL =

% SQL query strings are now always known at compile
time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

< Example:

char c_sqlstring[]=
{“DELETE FROM Sailors WHERE raiting>57};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Database APIs: Alternative to b,

o]

embedding -

w
T

§

Rather than modify compiler, add library with database
calls (APT)

<« Special standardized interface: procedures/objects

< Pass SQL strings from language, presents result sets
in a language-friendly way

< Sun’s [DBC: Java API

% Supposedly DBMS-neutral

= a“driver” traps the calls and translates them into DBMS-
specific code

= database can be across a network

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

I- 11

Chris Clifton - CS541 Fall 2007

JDBC: Architecture =

+ Four architectural components:

» Application (initiates and terminates connections,
submits SQL statements)

* Driver manager (load JDBC driver)

» Driver (connects to data source, transmits requests
and returns/translates results and error codes)

» Data source (processes SQL statements)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

JDBC Architecture (Contd.) =

Four types of drivers:
Bridge:

= Translates SQL commands into non-native API.
Example: JDBC-ODBC bridge. Code for ODBC and JDBC
driver needs to be available on each client.
Direct translation to native API, non-Java driver:

= Translates SQL commands to native API of data source.
Need OS-specific binary on each client.
Network bridge:

= Send commands over the network to a middleware server
that talks to the data source. Needs only small JDBC driver
at each client.

Direction translation to native API via Java driver:

= Converts JDBC calls directly to network protocol used by

DBMS. Needs DBMS-specific Java driver at each client.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

1- 12

Chris Clifton - CS541

JDBC Classes and Interfaces

Steps to submit a database query:
< Load the JDBC driver

< Connect to the data source

< Execute SQL statements

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

30

JDBC Driver Management

< All drivers are managed by the
DriverManager class
% Loading a JDBC driver:
* In the Java code:
Class.forName(“oracle/jdbc.driver.Oracledriver”);

* When starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

| 48
8\
.

saL:
1999

31

Fall 2007

1- 13

Chris Clifton - CS541 Fall 2007

Connections in [DBC 2

We interact with a data source through sessions. Each
connection identifies a logical session.

< JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:

String url=“jdbc:oracle:www.bookstore.com:3083”;
Connection con;
try{

con = DriverManager.getConnection(url,usedld,password);
} catch SQLException excpt { ...}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Connection Class Interface =

public int getTransactionlsolation() and
void setTransactionlsolation(int level)
Sets isolation level for the current connection.

> public boolean getReadOnly() and

void setReadOnly(boolean b)

Specifies whether transactions in this connection are read-
only

- public boolean getAutoCommit() and

void setAutoCommit(boolean b)

If autocommit is set, then each SQL statement is
considered its own transaction. Otherwise, a transaction is
committed using commit(), or aborted using rollback().

public boolean isClosed()
Checks whether connection is still open.

K3
o

o

D>

D>

o

D>

D>

®,
o

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

1- 14

Chris Clifton - CS541 Fall 2007

Executing SQL Statements e

< Three different ways of executing SQL
statements:

= Statement (both static and dynamic SQL
statements)

» PreparedStatement (semi-static SQL statements)
= CallableStatment (stored procedures)

<+ PreparedStatement class:
Precompiled, parametrized SQL statements:

= Structure is fixed
» Values of parameters are determined at run-time

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

By
Executing SQL Statements (Contd.):@
String sql=“INSERT INTO Sailors VALUES(?,?,?,?)”;
PreparedStatment pstmt=con.prepareStatement(sql);
pstmt.clearParameters();

pstmt.setint(1,sid);

pstmt.setString(2,sname);

pstmt.setint(3, rating);

pstmt.setFloat(4,age);

/l we know that no rows are returned, thus we use
executeUpdate()

int numRows = pstmt.executeUpdate();

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

I- 15

Chris Clifton - CS541 Fall 2007

ResultSets

/

$

+ PreparedStatement.executeUpdate only returns the
number of affected records

+ PreparedStatement.executeQuery returns data,
encapsulated in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);
/l rs is now a cursor
While (rs.next()) {

/] process the data

}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

1884

ResultSets (Contd.)

A ResultSet is a very powerful cursor:
+ previous(): moves one row back

+ absolute(int num): moves to the row with the
specified number

+ relative (int num): moves forward or
backward

« first() and last()

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

1- 16

Chris Clifton - CS541 Fall 2007

|
/

i

Examining Database Metadata

DatabaseMetaData object gives information
about the database system and the catalog.

DatabaseMetaData md = con.getMetaData();
// print information about the driver:

System.out.println(
“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

‘I
£

/

i

Database Metadata (Contd.)

DatabaseMetaData md=con.getMetaData();

ResultSet trs=md.getTables(null,null,null,null);

String tableName;

While(trs.next()) {
tableName = trs.getString(“TABLE_NAME”);
System.out.printin(“Table: “ + tableName);
/lprint all attributes
ResultSet crs = md.getColumns(null,null,tableName, null);
while (crs.next()) {

System.out.printin(crs.getString(“COLUMN_NAME” + “, “);

}
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

1- 17

Chris Clifton - CS541

A (Semi-)Complete Example %

Connection con = // connect
DriverManager.getConnection(url, "login”, "pass");
Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT name, rating FROM Sailors";
ResultSet rs = stmt.executeQuery(query);

try { // handle exceptions
[/l loop through result tuples
while (rs.next()) {
String s = rs.getString(“name");
Int n = rs.getFloat(“rating");
System.out.printin(s +" " + n);
}
} catch(SQLException ex) {
System.out.printin(ex.getMessage ()
+ ex.getSQLState () + ex.getErrorCode ());

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

Fall 2007

1-

18

