
CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 1

CS52600:

Information Security

Course Overview

8/23/2010

Prof. Chris Clifton
Portions of the material courtesy Professor Matt Bishop

2

What is Information Security?

• Confidentiality

– Is this all?

– Why not?

• Availability

– To whom?

• Authentication

– Still not there

• Integrity

It’s about more than network security!

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 2

3

Course Outline

1. Introduction: Role of security,
Types of security, Definitions.

2. Access Control Matrix model

3. Protection Models

4. Policy: Risk Analysis, Policy
Formation, Role of audit and
control.

5. Formal policy models.

6. Information Flow

7. Authentication and Identity

8. TBD (probably basics of
Cryptography

9. System Design principles. TCB
and security kernel construction,
Verification, Certification issues.

Midterm. Most likely date: 10/18.

Let me know of bad dates this week

10.System Design principles. TCB
and security kernel construction,
Verification, Certification issues.

11.Network Security. Distributed
cooperation and commit.
Distributed authentication issues.
Routing, flooding, spamming.
Firewalls.

12.Audit Mechanisms.
13.Malicious Code: Viruses, Worms,

etc.
14.Vulnerability Analysis.
15.Physical threats, operational

security, Legal and Societal
Issues

Final Exam
December 18, 9pm – earliest you

should count on leaving campus
before you see the exam schedule

4

Course Administration
www.cs.purdue.edu/homes/clifton/cs526/

• Teaching Assistant:
– Ashish Kundu

• Course Announcements
– Mailing list (directed to you@purdue.edu)
– http://www.cs.purdue.edu/~clifton/cs526/
– Discussion, grades, assignment submission through

blackboard

• Evaluation/Grading
– Midterm 25%, Final 36%
– Exercises, projects 36%

• 1-2 programming projects
• 9-11 written assignments (similar to exercises in the book)

• Let me know if you will be taking the qual1
– See web page for more

mailto:you@purdue.edu
mailto:you@purdue.edu
http://www.cs.purdue.edu/~clifton/cs526/

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 3

Course Text

• Recommended Text:

– Matthew Bishop
Computer Security: Art and Science
Addison-Wesley, 2003
ISBN 0-201-44099-7
http://nob.cs.ucdavis.edu/book/

– If you don’t have the latest printing, see the
above link for Errata pages

• Not required, but easier than
finding/reading original papers

8/25/2010 CS52600 5

6

Waiting List / Registration

• Send me “background information” as
follows:
Career ID, Infosec Masters , Expected graduation ,

Research focus , Had CS555 , Will take CS555 ,
Taking CS626 , likely TA next year

• Sample:
clifton, no , 6/1991 , Privacy and Data Mining , no , no , no , no

• Course is planned for spring as well

http://nob.cs.ucdavis.edu/book/

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 4

7

Introduction

• Components of computer security

• Threats

• Policies and mechanisms

• The role of trust

• Assurance

• Operational Issues

• Human Issues

8

Basic Components

• Confidentiality

– Keeping data and resources hidden

• Integrity

– Data integrity (integrity)

– Origin integrity (authentication)

• Availability

– Enabling access to data and resources

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 5

9

Classes of Threats

• Disclosure
– Snooping

• Deception
– Modification, spoofing, repudiation of origin, denial of

receipt

• Disruption
– Modification

• Usurpation
– Modification, spoofing, delay, denial of service

10

Policies and Mechanisms

• Policy says what is, and is not, allowed

– This defines “security” for the site/system/etc.

– Policy definition: Informal? Formal?

• Mechanisms enforce policies

• Composition of policies

– If policies conflict, discrepancies may create

security vulnerabilities

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 6

11

Goals of Security

• Prevention

– Prevent attackers from violating security
policy

• Detection

– Detect attackers‟ violation of security policy

• Recovery

– Stop attack, assess and repair damage

– Continue to function correctly even if attack
succeeds

12

Trust and Assumptions

• Underlie all aspects of security

• Policies

– Unambiguously partition system states

– Correctly capture security requirements

• Mechanisms

– Assumed to enforce policy

– Support mechanisms work correctly

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 7

13

Types of Mechanisms

secure precise broad

set of reachable states set of secure states

CS526: Information Security

Access Control Matrices

Prof. Chris Clifton

August 25, 2010

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 8

15

Assurance

• Specification

– Requirements analysis

– Statement of desired functionality

• Design

– How system will meet specification

• Implementation

– Programs/systems that carry out design

16

Operational Issues

• Cost-Benefit Analysis

– Is it cheaper to prevent or recover?

• Risk Analysis

– Should we protect something?

– How much should we protect this thing?

• Laws and Customs

– Are desired security measures illegal?

– Will people do them?

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 9

17

Human Issues

• Organizational Problems

– Power and responsibility

– Financial benefits

• People problems

– Outsiders and insiders

• Which do you think is the bigger problem?

– Social engineering

18

Tying the Definitions Together

Threats

Policy

Specification

Design

Implementation

Operation

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 10

19

Key Points

• Policy defines security, and mechanisms
enforce security

– Confidentiality

– Integrity

– Availability

• Trust and knowing assumptions

• Importance of assurance

• The human factor

Student Choice Topics

• Trusted Computing Systems
– How does software know underlying system can be

trusted?

– Case study of trusted system / verification

– Validation process

• Forensics
– Recovery/Prevention

– Tracing/Prosecution

• Digital Rights Management

• Legal issues

• …

20

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 11

CS526: Information Security

Access Control Matricies

Prof. Chris Clifton

August 25, 2010

22

Models: Access Control

• What is access control?

– Limiting who is allowed to do what

• What is an access control model?

– Specifying who is allowed to do what

• What makes this hard?

– Interactions between types of access

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 12

23

Basics

• State: Status of the system
– Protection state: subset that deals with protection

• Access Control Matrix
– Describes protection state

• Formally:
– Objects O

– Subjects S

– Matrix A S O

• Tuple (S, O, A) defines protection states of
system

24

Access Restriction Facility

• Subject: attributes (name, role, groups)

• Verbs: possible actions

– Default rule for each verb

• Objects associated with set of verbs

– Rule for each (object, verb) pair

– Rule may be function of subject attributes

• Can be converted to Access Control

Matrix

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 13

25

Access Control Matrix:

Boolean Evaluation Example

Internal Local State

University

Long

Distance

International

Public CR R

Student CR CR R R R

Staff CR CR CR R R

Account CR CR CR CR CR

TT

T

T

Transfer

T

T

T

T

T

T

26

Description

objects (entities)

su
b
je

ct
s

s1
s2

…

sn

o1 … om s1 … sn
• Subjects S = { s1,…,sn }

• Objects O = { o1,…,om }

• Rights R = { r1,…,rk }

• Entries A[si, oj] R

• A[si, oj] = { rx, …, ry }
means subject si has
rights rx, …, ry over
object oj

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 14

27

Example 2

• Procedures inc_ctr, dec_ctr, manage

• Variable counter

• Rights +, –, call

counter inc_ctr dec_ctr manage

inc_ctr +

dec_ctr –

manage call call call

28

Boolean Expression Evaluation

• ACM controls access to database fields

– Subjects have attributes

– Verbs define type of access

– Rules associated with objects, verb pair

• Subject attempts to access object

– Rule for object, verb evaluated, grants or

denies access

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 15

29

Example

• Subject annie
– Attributes role (artist), groups (creative)

• Verb paint
– Default 0 (deny unless explicitly granted)

• Object picture
– Rule:

paint: „artist‟ in subject.role and

„creative‟ in subject.groups and

time.hour >= 0 and time.hour < 5

31

Protection State Transitions

• State Xi = (Si, Oi, Ai)

• Transitions τi

– Single transition Xi ├τi+1
Xi+1

– Series of transitions X ├* Y

• Access control matrix may change

– Change command c associated with transition

– Xi ├ci+1 (pi+1,…,pi+1)
Xi+1

• Commands often called transformation
procedures

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 16

32

Special Privileges:

Copy, Ownership

• Copy (or grant)

– Possessor can extend privileges to another

• Own right

– Possessor can change their own privileges

• Principle of Attenuation of Privilege

– A subject may not give rights it does not

possess

33

Primitive Commands
(Harrison, Ruzzo, Ullman CACM’76)

• Create Object o
– Adds o to objects with no access

– S‟=S, O‟=O {o}, (x S‟)[a‟[x,o] =],
(x S‟)(y O)[a‟[x,y] = a[x,y]]

• Create Subject s
– Adds s to objects, subjects, sets relevant access

control to

• Enter r into a[s,o]

• Delete r from a[s,o]

• Destroy subject s, destroy object o

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 17

35

Create Subject

• Precondition: s S

• Primitive command: create subject s

• Postconditions:

– S´ = S { s }, O´ = O { s }

– (y O´)[a´[s, y] =], (x S´)[a´[x, s] =]

– (x S)(y O)[a´[x, y] = a[x, y]]

36

Create Object

• Precondition: o O

• Primitive command: create object o

• Postconditions:

– S´ = S, O´ = O { o }

– (x S´)[a´[x, o] =]

– (x S)(y O)[a´[x, y] = a[x, y]]

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 18

37

Add Right

• Precondition: s S, o O

• Primitive command: enter r into a[s, o]

• Postconditions:

– S´ = S, O´ = O

– a´[s, o] = a[s, o] { r }

– (x,y SxO – { s,o }) [a´[x, y] = a[x, y]]

38

Delete Right

• Precondition: s S, o O

• Primitive command: delete r from a[s, o]

• Postconditions:

– S´ = S, O´ = O

– a´[s, o] = a[s, o] – { r }

– (x,y SxO – { s,o }) [a´[x, y] = a[x, y]]

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 19

39

Destroy Subject

• Precondition: s S

• Primitive command: destroy subject s

• Postconditions:

– S´ = S – { s }, O´ = O – { s }

– (y O´)[a´[s, y] =], (x S´)[a´[x, s] =]

– (x S´)(y O´) [a´[x, y] = a[x, y]]

40

Destroy Object

• Precondition: o o

• Primitive command: destroy object o

• Postconditions:

– S´ = S, O´ = O – { o }

– (x S´)[a´[x, o] =]

– (x S´)(y O´) [a´[x, y] = a[x, y]]

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 20

41

Creating File

• Process p creates file f with r and w

permission
command create•file(p, f)

create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];

end

42

Mono-Operational Commands

• Make process p the owner of file g
command make•owner(p, g)

enter own into A[p, g];
end

• Mono-operational command

– Single primitive operation in this command

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 21

43

Conditional Commands

• Let p give q r rights over f, if p owns f
command grant•read•file•1(p, f, q)

if own in A[p, f]
then

enter r into A[q, f];
end

• Mono-conditional command

– Single condition in this command

44

Multiple Conditions

• Let p give q r and w rights over f, if p owns
f and p has c rights over q
command grant•readwrite•file•2(p, f, q)

if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 22

45

Copy Right

• Allows possessor to give rights to another

• Often attached to a right, so only applies

to that right

– r is read right that cannot be copied

– rc is read right that can be copied

• Is copy flag copied when giving r rights?

– Depends on model, instantiation of model

46

Own Right

• Usually allows possessor to change

entries in ACM column

– So owner of object can add, delete rights for

others

– May depend on what system allows

• Can‟t give rights to specific (set of) users

• Can‟t pass copy flag to specific (set of) users

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 23

47

Attenuation of Privilege

• Principle says you can‟t give rights you do

not possess

– Restricts addition of rights within a system

– Usually ignored for owner

• Why? Owner gives herself rights, gives them to

others, deletes her rights.

48

Key Points

• Access control matrix simplest abstraction

mechanism for representing protection

state

• Transitions alter protection state

• 6 primitive operations alter matrix

– Transitions can be expressed as commands

composed of these operations and, possibly,

conditions

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 24

49

What is Secure?

• A secure system doesn‟t allow violations of

policy

– Is this a good definition?

– Can we use it?

• Alternative view: based on rights

– Start with access control matrix A

– Leak: commands can add right r to an element of A

not containing r

– Safe: System is safe with respect to r if r cannot be

leaked

50

Formally:

• Given

– initial state X0 = (S0, O0, A0)

– Set of primitive commands c

• Can we reach a state Xn where s,o such

that An[s,o] includes a right r not in A0[s,o]?

– If so, the system is not safe

– But is “safe” secure?

Are commands correctly implemented?

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 25

51

Example: Unix File System

• Access Control Matrix

– Root has access to all files

– Owner has access to their own files

• Safe with respect to file access right?

– No chmod/chown command

– Only “root” can get root privileges

– Only user can authenticate as themselves

Is “Safe” definition useful?

52

Solution: Trust

• Safety doesn‟t distinguish leak from

authorized transfer of rights

• Subjects authorized to receive transfer of

rights deemed “trusted”

– Eliminate trusted subjects from matrix

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 26

53

Decidability Result
(Harrison, Ruzzo, Ullman CACM’76)

• Given a system where each command consists
of a single primitive command, There exists an
algorithm that will determine if a protection
system with initial state X0 is safe with respect to
right r.

• Proof: determine minimum commands k to leak
– Delete/destroy: Can‟t leak (or be detected)

– Create/enter: new subjects/objects “equal”, so treat
all new subjects as one

– If n rights, leak possible, must be able to leak in
n(|S0|+1)(|O0|+1)+1 commands

• Enumerate all possible to decide

54

Decidability: Non-Primitive

Commands

• It is undecidable if a given state of a given

protection system is safe for a given generic

right

• Proof: Reduction from halting problem

– Symbols, states rights

– Tape cell subject (can create new subjects)

– Right own: si owns si+1 for 1 ≤ i < k

– Cell si A si has A rights on itself

– Cell sk sk has end rights on itself

– State p, head at si si has p rights on itself

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 27

55

Example:

A B C D … s1 s2 s3 s4

s1 A own

s2 B own

s3 C, p own

s4 D, end

MatrixTuring Machine

56

Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After (k, C) = (k1, X, R)

where k is the current

state and k1 the next state

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 28

57

Command Mapping

(k, C) = (k1, X, R) at intermediate becomes

command ck,C(s3,s4)

if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]

then

delete k from A[s3,s3];

delete C from A[s3,s3];

enter X into A[s3,s3];

enter k1 into A[s4,s4];

end

58

Commands:

• Halting problem Turing Machine: Symbols A, B;
states p, q

• Cp,A(si,si-1) (move left)
– if own a[si-1,si] and p a[si,si] and A a[si,si]

• Delete p from a[si,si], A from a[si,si]

• Enter B into a[si,si], q into a[si-1,si-1]

• Similar commands for move right, move right at
end of tape

• Simulates Turing machine
– Leaks halting state halting state in the matrix

Halting state reached

This is undecidable!

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 29

59

Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After (k1, D) = (k2, Y, R)

where k1 is the current

state and k2 the next state

s5

s5

own

b k2 end

5

b

60

Command Mapping

(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)

if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]

then

delete end from A[s4,s4];

create subject s5;

enter own into A[s4,s5];

enter end into A[s5,s5];

delete k1 from A[s4,s4];

delete D from A[s4,s4];

enter Y into A[s4,s4];

enter k2 into A[s5,s5];

end

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 30

61

Rest of Proof

• Protection system exactly simulates a TM
– Exactly 1 end right in ACM

– 1 right in entries corresponds to state

– Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked

• If safety question decidable, then represent TM
as above and determine if qf leaks
– Implies halting problem decidable

• Conclusion: safety question undecidable

62

Other Results

(most from the same authors)

• Set of unsafe systems recursively enumerable

• Without create primitive, safety in P-SPACE

– Like halting problem reduction, but no unlimited tape

• Without delete/destroy, still undecidable

– Decidable if at most one condition allowed per

command

– Still holds if delete allowed

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 31

63

Mono-Operational Commands

• Answer: yes

• Sketch of proof:

Consider minimal sequence of commands c1,
…, ck to leak the right.

–Can omit delete, destroy

–Can merge all creates into one

Worst case: insert every right into every entry;
with s subjects and o objects initially, and n
rights, upper bound is k ≤ n(s+1)(o+1)

64

What Else Might We Add?

• Default Rule

– General default: Receive

– Object default: Call Internal

– Requires ability to override with negative and
positive access

• Time-based access

– Allow students to call on State University
system after hours?

• History-based access

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 32

65

Access Control by History

• Example: Statistical Database

– Allows queries for general statistics

– But not individual values

• Valid queries: Statistics on 20+ individuals

– Total salary of all Deans

– Salary of Computer Science Professors

• See a problem coming?

– Salary of CS Professors who aren‟t Deans

66

Solution: Query Set Overlap Control

(Dobkin, Jones & Lipton ‟79)

• Query valid if intersection of query
coverage and each previous query < r

• Given K minimum query size, r overlap:

– Need 1 + (K-1)/r queries to compromise

• Can represent as access control matrix

– Subjects: entities issuing queries

– Objects: Powerset of records

– Os(i) : objects referenced by s in queries 1..i

– A[s,o] = read iff
(1)
s

q i
q o r

O

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 33

67

Next

• Optional reading: Dobkin, Jones, and

Lipton (TODS 4(1), see course web site)

• Basic theorems on protection states

– Decidability of safety of a state with respect to

a right

• More Protection Models

68

Protection Study:

Your Homework

• What does it take to make sure your

homework is secure?

– Let‟s assume a Unix system (mentor.ics)

– Issues?

• Participation Expected!

CS18000: Programming I 8/25/2010

© 2010 Chris Clifton 34

69

Where does this leave us?

• Safety decidable for some models

– Are they practical?

• Safety only works if maximum rights
known in advance

– Policy must specify all rights someone could
get, not just what they have

– Where might this make sense?

• Next: Example of a decidable model

– Take-Grant Protection Model

