
CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 1

CS52600: Information Security

Protection Models

September 1, 2010

Prof. Chris Clifton

3

Take-Grant Protection Model

• A specific (not generic) system

– Set of rules for state transitions

• Safety decidable, and in time linear with

the size of the system

• Goal: find conditions under which rights

can be transferred from one entity to

another in the system

Jones, Lipton, Snyder FOCS’76

http://doi.ieeecomputersociety.org/10.1109/SFCS.1976.1

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 2

4

System

 objects (files, …)

l subjects (users, processes, …)

 don't care (either a subject or an object)

G ├x G' apply a rewriting rule x (witness) to

G to get G'

G ├* G' apply a sequence of rewriting rules
(witness) to G to get G'

R = { t, g, r, w, … } set of rights

5

Take-Grant Protection Model

• System is directed graph
– Subject:

– Object:

– (labeled) edge: {rights}

• Take rule: if t γ, α  β, can add transitive edge

• Grant rule: if g  δ, α  γ, can add (grant) edge between recipients

• Create, Remove rules

Both:

γ

β
α

α

β

- α

δ

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 3

6

Take-Grant Protection Model:

Sharing

• Given G0, can vertex x obtain α rights over
y?

– Can_share(α,x,y,G0) iff G0├* Gn using the
above rules and α edge from x to y in Gn

• tg-path: v0,…,vn where t or g edge
between any vi, vi+1

– Vertices tg-connected if tg-path between them

• Theorem: Any two subjects with tg-path of
length 1 can cause rights to be shared

7

Any two subjects with tg-path of

length 1 can share rights

• Four possible length 1

tg-paths

• Take rule

• Grant rule

• Sequence:
– Create

– Take

– Grant

– Take

γ {t}

α

β  α

β  α

α

γ {g}

β  α

α

γ {t}

γ {g}

α

β  α

Can_share(α,x,y,G0)

x y

gtg

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 4

8

Other definitions

• Island: Maximal tg-connected subject-only

subgraph

– Can_share all rights in island

– Proof: Induction from previous theorem

• Bridge: tg-path between subjects v0 and

vn with edges of the following form:

– All t

– 0+ t increasing, g, 0+ t decreasing
g tt

v0
vn

9

Example

l
p

l

u

m

v

l

w

m

x

l

y

l
s'

m

s
m

q

t

t t

t r

gg

g

• islands { p, u } { w } { y, s' }

• bridges u, v, w; w, x, y

• initial span p (associated word n)

• terminal span s's (associated word t)

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 5

10

Theorem: Can_share(α,x,y,G0)

(for subjects)

• Can_share(α,x,y,G0) if x and y are subjects and
there is an α edge from x to y in G0 or if:
–  a subject s  G0 with an s to y α edge, and

–  islands I1, …, In such that x  I1, s  In, and there is
a bridge from Ij to Ij+1

• Proof: Islands above, bridge – take in both
directions to grant link, then one takes “grant”
and grants to other

• If x and y are subjects, “only if” holds
– If no take/grant or two grants between objects, can’t

bridge gap. Otherwise it is either a bridge or an
island

g

v0
vn

g

11

What about objects?

• x initially spans to y if x is a subject and

there is a tg-path between them with t

edges ending in a g edge

– x can grant a right to y

• x terminally spans to y if x is a subject and

there is a tg-path between them with t

edges

– x can take a right from y

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 6

12

Theorem: Can_share(α,x,y,G0)

• Can_share(α,x,y,G0) iff there is an α edge from x to y in
G0 or if:
–  a vertex s  G0 with an s to y α edge,

–  a subject x’ such that x’=x or x’ initially spans to x,

–  a subject s’ such that s’=s or s’ terminally spans to s, and

–  islands I1, …, In such that x’  I1, s’  In, and there is a bridge
from Ij to Ij+1

• Proof: If: x’ grants to x, s’ takes from s, otherwise as
with subjects
– Only if: as before, plus object can’t give (receive) a right unless

someone can take (grant) it

• Corollary: There is an O(|V|+|E|) algorithm to test
can_share

CS52600: Information Security

Protection Models

September 3, 2010

Prof. Chris Clifton

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 7

14

Creating models from scratch

• G0 = , R a set of rights. G0 ├* G iff G is a finite

directed acyclic? graph, edges labeled from R,

and at least one subject with no incoming edge.

– If: construction (create)

– Only if: Can’t add an edge to initial subject

• A k-component, n-edge protection graph can be

constructed from t-rule applications, where

2(k-1)+n ≤ t ≤ 2(k-1)+3n

15

Use of the model

• Sharing rights with trusted entity

• Stealing (rights available with non-

cooperating subjects)

• Collusion

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 8

16

Sharing Rights through Trusted

Entity

• Subjects p and q communicate through

buffer object b

– Trusted entity s controls access to b

– p and q have private information u and v

g

g

q

p

b
s

rw
rw

rw

urw

vrw

17

Theft

• Can_steal(α,x,y,G0) if there is no α edge

from x to y in G0 and  G1, …, Gn s. t.:

–  α edge from x to y in Gn,,

–  rules ρ1,…, ρn that take Gi-1├ Gi , and

–  v,w  Gi, 1≤i<n, if  α edge from v to y in

G0 then ρi is not “v grants (α to y) to w”

• Ideal: Steal possible if x gets α on y

without anyone granting α on y to anyone

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 9

18

Theorem:

When Theft Possible

• Can_steal(α,x,y,G0) iff there is no α edge from x to y in
G0 and  G1, …, Gn s. t.:
–  subject x’ such that x’=x or x’ initially spans to x, and

–  s with α edge to y in G0 and can_share(t,x’,s,G0)

• Proof:
– : (easy – build path)

– : Assume can_steal:
• No α edge from definition.

• Can_share(α,x,y,G0) from definition: α from x to y in Gn

• s exists from can_share and Monday’s theorem

• Can_share(t,x’,s,G0): s can’t grant α (definition), someone else
must get α from s, show that this can only be accomplished with
take rule

19

Conspiracy

How many subjects needed to enable
Can_share(α,x,y,G0)?

• Access set A(y) with focus y is set of vertices y
 vertices to which y initially spans  vertices to
which y terminally spans

• Deletion set δ(y,y’): All z  A(y) ∩ A(y’) for
which
– y initially spans to z and y’ terminally spans to z 

– y terminally spans to z and y’ initially spans to z 

– z=y  z=y’

• Conspiracy graph: if δ(y,y’) not empty, edge
from y to y’

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 10

20

Conspiracy theorems:

• Can_share(α,x,y,G0) iff conspiracy path

from an item in an island containing x to

an item that can steal from y

• Conspirators required is shortest above

path in conspiracy graph

21

Protection Models:

Do we have a contradiction?

• Harrison-Ruzzo-Ullman model (commands
to change access control matrix

– Safety undecidable

• Take-Grant Protection Model

– Decidable in linear time

• What is the difference?

– Restrictions on allowable operations

• What might we get with other sets of
restrictions?

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 11

CS52600: Information Security

Protection Models

September 8, 2010

Prof. Chris Clifton

23

Schematic Protection Model

• Key idea: Protection Type τ
– Label that determines how control rights affect an

entity

– Take-Grant: subject and object are different
protection types

– Unix file system: File, Directory, ???

• Ticket: Describes a set of rights
– Entity has set dom(X) of tickets Y/z describing X’s

rights z over entities Y

• Inert right vs. Control right
– Inert right doesn’t affect protection state

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 12

24

Transferring Rights

• Link predicate: linki(X,Y)
– conjunction or disjunction of

• X/z  dom(X), X/z  dom(Y)

• Y/z  dom(X), Y/z  dom(Y)

• true

– Determines if X and Y “connected” to transfer right

– Example: link(X,Y) = Y/g  dom(X)  X/t  dom(Y)

• Filter function: conditions on transfer

• Copy X/r:c from Y to Z allowed iff i such that:
– X/rc  dom(Y)

– linki(Y,Z)

– τ(X)/r:c filteri(τ(Y), τ(Z))

25

Link Predicate

• Idea: linki(X, Y) if X can assert some
control right over Y

• Conjunction or disjunction of:

– X/z  dom(X)

– X/z  dom(Y)

– Y/z  dom(X)

– Y/z  dom(Y)

– true

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 13

26

Examples

• Take-Grant:

link(X, Y) = Y/g  dom(X) v X/t dom(Y)

• Broadcast:

link(X, Y) = X/b dom(X)

• Pull:

link(X, Y) = Y/p dom(Y)

27

Filter Function

• Range is set of copyable tickets

– Entity type, right

• Domain is subject pairs

• Copy a ticket X/r:c from dom(Y) to dom(Z)

– X/rc  dom(Y)

– linki(Y, Z)

– (Y)/r:c  fi((Y), (Z))

• One filter function per link function

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 14

28

Example

• f((Y), (Z)) = T  R

– Any ticket can be transferred (if other
conditions met)

• f((Y), (Z)) = T  RI

– Only tickets with inert rights can be
transferred (if other conditions met)

• f((Y), (Z)) = 

– No tickets can be transferred

30

Example

• Take-Grant Protection Model

– TS = { subjects }, TO = { objects }

– RC = { tc, gc }, RI = { rc, wc }

– link(p, q) = p/t  dom(q) v q/g dom(p)

– f(subject, subject) = { subject, object }  { tc,

gc, rc, wc }

– f(subject, object) = { subject, object }  { tc, gc,

rc, wc }

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 15

31

Create Operation

• Must handle type, tickets of new entity

• Relation can•create(a, b)

– Subject of type a can create entity of type b

• Rule of acyclic creates:

a b

c d

a b

c d

32

Types

• cr(a, b): tickets introduced when subject of

type a creates entity of type b

• B object: cr(a, b)  { b/r:c  RI }

• B subject: cr(a, b) has two parts

– crP(a, b) added to A, crC(a, b) added to B

– A gets B/r:c if b/r:c in crP(a, b)

– B gets A/r:c if a/r:c in crC(a, b)

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 16

33

Non-Distinct Types

cr(a, a): who gets what?

• self/r:c are tickets for creator

• a/r:c tickets for created

cr(a, a) = { a/r:c, self/r:c | r:c  R}

34

Attenuating Create Rule

cr(a, b) attenuating if:

1. crC(a, b)  crP(a, b) and

2. a/r:c  crP(a, b)  self/r:c  crP(a, b)

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 17

35

Example: File Permissions

• Types: users, files

• (Inert) Rights: { r:c, w:c, x:c }

– read, write, execute; copy on each

•  U, V  users, link(U, V) = true

– Anyone can grant a right to anyone if they
posses the right to do so (copy)

• f(user, user) = { file/r, file/w, file/x }

– Can copy read, write, execute

– But not copy right

36

Safety Analysis in SPM

• Idea: derive maximal state where changes

don’t affect analysis

– Similar to determining max flow

• Theorems:

– A maximal state exists for every system

– If parent gives child only rights parent has

(conditions somewhat more complex), can

easily derive maximal state

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 18

37

Typed Access Matrix Model

• Finite set T of types (TS  T for subjects)

• Protection State: (S, O, τ, A)
– τ:O T is a type function

– Operations same as Harrison-Ruzzo-Ullman except create adds
type

• τ is child type iff command creates create subject/object
of type τ (otherwise parent)

• If parent/child graph from all commands acyclic, then:
– Safety is decidable

– Safety is NP-Hard

– Safety is polynomial if all commands limited to three parameters

38

Comparing Models

• Expressive Power
– HRU/Access Control Matrix subsumes Take-Grant

– HRU subsumes Typed Access Control Matrix

– SPM subsumes Take-Grant
• Subject/Object protection types

• ticket is label on an edge

• take/grant are control rights

• What about SPM and HRU?
– SPM has no revocation (delete/destroy)

• HRU without delete/destroy (monotonic HRU)?
– MTAM subsumes monotonic mono-operational HRU

– HRU can have create requiring multiple “parents”

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 19

40

Extended Schematic Protection

Model

• Adds “joint create”: new node has multiple

parents

– Allows more natural representation of sharing

between mutually suspicious parties

• Create joint node for sharing

– In Take-Grant, SPM, must create two nodes,

they interact to share (equivalent power)

• Monotonic ESPM and Monotonic HRU

equivalent

41

Multiparent Create

• Solves mutual suspicion problem

– Create proxy jointly, each gives it needed
rights

• In HRU:
command multicreate(s0, s1, o)

if r in a[s0, s1] and r in a[s1, s0]

then

create object o;

enter r into a[s0, o];

enter r into a[s1, o];

end

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 20

42

SPM and Multiparent Create

• can•create extended in obvious way

– cc  TS  …  TS  T

• Symbols

– X1, …, Xn parents, Y created

– R1,i, R2,i, R3, R4,i  R

• Rules

– crP,i((X1), …, (Xn)) = Y/R1,1  Xi/R2,i

– crC((X1), …, (Xn)) = Y/R3  X1/R4,1  …  Xn/R4,n

43

Example

• Anna, Bill must do something cooperatively
– But they don’t trust each other

• Jointly create a proxy
– Each gives proxy only necessary rights

• In ESPM:
– Anna, Bill type a; proxy type p; right x  R

– cc(a, a) = p

– crAnna(a, a, p) = crBill(a, a, p) = 

– crproxy(a, a, p) = { Anna/x, Bill/x }

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 21

44

2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-
parent joint create

• Definition of 3-parent joint create (subjects
P1, P2, P3; child C):

– cc((P1), (P2), (P3)) = Z  T

– crP1((P1), (P2), (P3)) = C/R1,1  P1/R2,1

– crP2((P1), (P2), (P3)) = C/R2,1  P2/R2,2

– crP3((P1), (P2), (P3)) = C/R3,1  P3/R2,3

45

General Approach

• Define agents for parents and child

– Agents act as surrogates for parents

– If create fails, parents have no extra rights

– If create succeeds, parents, child have exactly

same rights as in 3-parent creates

• Only extra rights are to agents (which are never

used again, and so these rights are irrelevant)

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 22

46

Entities and Types

• Parents P1, P2, P3 have types p1, p2, p3

• Child C of type c

• Parent agents A1, A2, A3 of types a1, a2, a3

• Child agent S of type s

• Type t is parentage

– if X/t  dom(Y), X is Y’s parent

• Types t, a1, a2, a3, s are new types

47

Can•Create

• Following added to can•create:

– cc(p1) = a1

– cc(p2, a1) = a2

– cc(p3, a2) = a3

• Parents creating their agents; note agents have maximum of

2 parents

– cc(a3) = s

• Agent of all parents creates agent of child

– cc(s) = c

• Agent of child creates child

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 23

48

Creation Rules

• Following added to create rule:

– crP(p1, a1) = 

– crC(p1, a1) = p1/Rtc

• Agent’s parent set to creating parent; agent has all rights

over parent

– crPfirst(p2, a1, a2) = 

– crPsecond(p2, a1, a2) = 

– crC(p2, a1, a2) = p2/Rtc  a1/tc

• Agent’s parent set to creating parent and agent; agent has all

rights over parent (but not over agent)

49

Creation Rules

– crPfirst(p3, a2, a3) = 

– crPsecond(p3, a2, a3) = 

– crC(p3, a2, a3) = p3/Rtc  a2/tc
• Agent’s parent set to creating parent and agent; agent has all

rights over parent (but not over agent)

– crP(a3, s) = 

– crC(a3, s) = a3/tc
• Child’s agent has third agent as parent crP(a3, s) = 

– crP(s, c) = C/Rtc

– crC(s, c) = c/R3t
• Child’s agent gets full rights over child; child gets R3 rights

over agent

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 24

50

Link Predicates

• Idea: no tickets to parents until child created
– Done by requiring each agent to have its own parent

rights
– link1(A1, A2) = A1/t  dom(A2)  A2/t  dom(A2)

– link1(A2, A3) = A2/t  dom(A3)  A3/t  dom(A3)

– link2(S, A3) = A3/t  dom(S)  C/t  dom(C)

– link3(A1, C) = C/t  dom(A1)

– link3(A2, C) = C/t  dom(A2)

– link3(A3, C) = C/t  dom(A3)

– link4(A1, P1) = P1/t  dom(A1)  A1/t  dom(A1)

– link4(A2, P2) = P2/t  dom(A2)  A2/t  dom(A2)

– link4(A3, P3) = P3/t  dom(A3)  A3/t  dom(A3)

51

Filter Functions

• f1(a2, a1) = a1/t  c/Rtc

• f1(a3, a2) = a2/t  c/Rtc

• f2(s, a3) = a3/t  c/Rtc

• f3(a1, c) = p1/R4,1

• f3(a2, c) = p2/R4,2

• f3(a3, c) = p3/R4,3

• f4(a1, p1) = c/R1,1  p1/R2,1

• f4(a2, p2) = c/R1,2  p2/R2,2

• f4(a3, p3) = c/R1,3  p3/R2,3

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 25

52

Construction

Create A1, A2, A3, S, C; then

• P1 has no relevant tickets

• P2 has no relevant tickets

• P3 has no relevant tickets

• A1 has P1/Rtc

• A2 has P2/Rtc u A1/tc

• A3 has P3/Rtc u A2/tc

• S has A3/tc u C/Rtc

• C has C/R3

53

Construction

• Only link2(S, A3) true  apply f2
– A3 has P3/Rtc  A2/t  A3/t  C/Rtc

• Now link1(A3, A2) true  apply f1
– A2 has P2/Rtc  A1/tc  A2/t  C/Rtc

• Now link1(A2, A1) true  apply f1
– A1 has P2/Rtc  A1/tc  A1/t  C/Rtc

• Now all link3s true  apply f3
– C has C/R3  P1/R4,1  P2/R4,2  P3/R4,3

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 26

54

Finish Construction

• Now link4s true  apply f4
– P1 has C/R1,1  P1/R2,1

– P2 has C/R1,2  P2/R2,2

– P3 has C/R1,3  P3/R2,3

• 3-parent joint create gives same rights to
P1, P2, P3, C

• If create of C fails, link2 fails, so
construction fails

55

Theorem

• The two-parent joint creation operation

can implement an n-parent joint creation

operation with a fixed number of additional

types and rights, and augmentations to the

link predicates and filter functions.

• Proof: by construction, as above

– Difference is that the two systems need not

start at the same initial state

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 27

56

Example: 3-Parent Joint

Creation

• Simulate with 2-parent

– Nodes P1, P2, P3 parents

– Create node C with type c with edges of type

e

– Add node A1 of type a and edge from P1 to A1

of type e´

P1
P2 P3

A1

57

Next Step

• A1, P2 create A2; A2, P3 create A3

• Type of nodes, edges are a and e´

P1 P2 P3

A1 A2 A3

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 28

58

Next Step

• A3 creates S, of type a

• S creates C, of type c

59

Last Step

• Edge adding operations:

– P1A1A2A3SC: P1 to C edge type e

– P2A2A3SC: P2 to C edge type e

– P3A3SC: P3 to C edge type e

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 29

60

Definitions

• Scheme: graph representation as above

• Model: set of schemes

• Schemes A, B correspond if graph for both

is identical when all nodes with types not

in A and edges with types in A are deleted

61

Example

• Above 2-parent joint creation simulation in

scheme TWO

• Equivalent to 3-parent joint creation

scheme THREE in which P1, P2, P3, C are

of same type as in TWO, and edges from

P1, P2, P3 to C are of type e, and no types

a and e´ exist in TWO

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 30

63

Theorems

• Monotonic ESPM and the monotonic HRU

model are equivalent.

• Safety question in ESPM also decidable if

acyclic attenuating scheme

64

Expressiveness

• Graph-based representation to compare models

• Graph

– Vertex: represents entity, has static type

– Edge: represents right, has static type

• Graph rewriting rules:

– Initial state operations create graph in a particular

state

– Node creation operations add nodes, incoming edges

– Edge adding operations add new edges between

existing vertices

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 31

65

Simulation

Scheme A simulates scheme B iff

• every state B can reach has a corresponding

state in A that A can reach; and

• every state that A can reach either corresponds

to a state B can reach, or has a successor state

that corresponds to a state B can reach

– The last means that A can have intermediate states

not corresponding to states in B, like the intermediate

ones in TWO in the simulation of THREE

66

Expressive Power

• If scheme in MA no scheme in MB can

simulate, MB less expressive than MA

• If every scheme in MA can be simulated

by a scheme in MB, MB as expressive as

MA

• If MA as expressive as MB and vice versa,

MA and MB equivalent

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 32

67

Example

• Scheme A in model M
– Nodes X1, X2, X3

– 2-parent joint create

– 1 node type, 1 edge type

– No edge adding operations

– Initial state: X1, X2, X3, no edges

• Scheme B in model N
– All same as A except no 2-parent joint create

– 1-parent create

• Which is more expressive?

68

Can A Simulate B?

• Scheme A simulates 1-parent create: have

both parents be same node

– Model M as expressive as model N

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 33

69

Can B Simulate A?

• Suppose X1, X2 jointly create Y in A

– Edges from X1, X2 to Y, no edge from X3 to Y

• Can B simulate this?

– Without loss of generality, X1 creates Y

– Must have edge adding operation to add edge

from X2 to Y

– One type of node, one type of edge, so

operation can add edge between any 2 nodes

70

No

• All nodes in A have even number of incoming
edges
– 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from
X2 to C can add one from X3 to C
– A cannot enter this state

– B cannot transition to a state in which Y has even
number of incoming edges

• No remove rule

• So B cannot simulate A; N less expressive than
M

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 34

71

Theorem

• Monotonic single-parent models are less

expressive than monotonic multiparent

models

• ESPM more expressive than SPM

– ESPM multiparent and monotonic

– SPM monotonic but single parent

72

Typed Access Matrix Model

• Like ACM, but with set of types T

– All subjects, objects have types

– Set of types for subjects TS

• Protection state is (S, O, , A), where

:OT specifies type of each object

– If X subject, (X) in TS

– If X object, (X) in T – TS

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 35

73

Create Rules

• Subject creation
– create subject s of type ts

– s must not exist as subject or object when operation
executed

– ts in TS

• Object creation
– create object o of type to

– o must not exist as subject or object when operation
executed

– to in T – TS

74

Create Subject

• Precondition: s  S

• Primitive command: create subject s of
type t

• Postconditions:

– S´ = S { s }, O´ = O { s }

– (y  O)[´(y) =  (y)], ´(s) = t

– (y  O´)[a´[s, y] = ], (x  S´)[a´[x, s] = ]

– (x  S)(y  O)[a´[x, y] = a[x, y]]

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 36

75

Create Object

• Precondition: o  O

• Primitive command: create object o of
type t

• Postconditions:

– S´ = S, O´ = O  { o }

– (y  O)[´(y) =  (y)], ´(o) = t

– (x  S´)[a´[x, o] = ]

– (x  S)(y  O)[a´[x, y] = a[x, y]]

76

Definitions

• MTAM Model: TAM model without delete,

destroy

– MTAM is Monotonic TAM

• (x1:t1, ..., xn:tn) create command

– ti child type in  if any of create subject xi of

type ti or create object xi of type ti occur in 

– ti parent type otherwise

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 37

77

Cyclic Creates

command havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)

create subject s1 of type u;

create object o1 of type v;

create object o3 of type w;

enter r into a[s2, s1];

enter r into a[s2, o2];

enter r into a[s2, o4]

end

78

Creation Graph

• u, v, w child types

• u, v, w also parent

types

• Graph: lines from

parent types to child

types

• This one has cycles

u

v w

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 38

79

Theorems

• Safety decidable for systems with acyclic

MTAM schemes

• Safety for acyclic ternary MATM decidable

in time polynomial in the size of initial ACM

– “ternary” means commands have no more

than 3 parameters

– Equivalent in expressive power to MTAM

80

Key Points

• Safety problem undecidable

• Limiting scope of systems can make

problem decidable

• Types critical to safety problem’s analysis

