CS18000: Programming | 9/13/2010

PURDUE

CS52600: Information Security
Protection Models

September 1, 2010
Prof. Chris Clifton

Take-Grant Protection Model

A
=y

A specific (not generic) system
— Set of rules for state transitions

Safety decidable, and in time linear with
the size of the system

Goal: find conditions under which rights
can be transferred from one entity to
another in the system

Jones, Lipton, Snyder FOCS’76

© 2010 Chris Clifton 1


http://doi.ieeecomputersociety.org/10.1109/SFCS.1976.1

CS18000: Programming | 9/13/2010

-i'L"fil_f-; System

*
o {4

o objects (files, ...)
e subjects (users, processes, ...)
® don't care (either a subject or an object)

G |—X G' apply a rewriting rule x (witness) to
Gtoget G

G |— G' apply a sequence of rewriting rules
(witness) to G to get G

R={tg,rw, ..} setofrights

Take-Grant Protection Model

» Systemis di%cted graph
— Subject:
- Objéct: o  Both ®
— (labeled) edge: {rights}
» Takerule: if t ey, a < B, can add transitive edge
* Grantrule: ifg € {, ac vy, can add (grant) edge between recipients
+ Create, Remove rules

© 2010 Chris Clifton 2



CS18000: Programming |

Take-Grant Protection Model:
N A Sharing

Fa

Given G,, can vertex x obtain a rights over

y?

— Can_share(a,x,y,G,) iff G, |—* G, using the
above rules and a edge from xtoy in G,

tg-path: v,,...,v, where t or g edge

between any v,, v,

— Vertices tg-connected if tg-path between them

Theorem: Any two subjects with tg-path of

length 1 can cause rights to be shared

# =% Any two subjects with tg-path of

length 1 can share rights

A

A,

Can_share(a,x,y,G,) » Four possible length 1
X y tg-paths
a
ol g  Bo6 * Take rule
a
r2io) g  B2d * Grantrule
a  Sequence:
2 — Create
tg g < — Take
O a — Grant
2l o B2a _ Take

© 2010 Chris Clifton

9/13/2010



CS18000: Programming |

Other definitions

o {4

* Island: Maximal ftg-connected subject-onlyl
subgraph
— Can_share all rights in island
— Proof: Induction from previous theorem

« Bridge: tg-path between subjects v, and
v, with edges of the following form:
—All t

— 0+ tincreasing, g, 0+ t decreasing
o o o ' e

Vo Vnp 8

Example

t t

o—£& —e—E 0O
v

u w X y

+ islands

* bridges

* initial span

+ terminal span

{p,u} {w}{ys'}

u, v, w; w, X, y

p (associated word v)
s's (associated word t)

© 2010 Chris Clifton

9/13/2010



CS18000: Programming |

#»=%  Theorem: Can_share(a,x,y,Go)

(for subjects)

Fa

Can_share(a,x,y,G,) if x and y are subjects and

there is an a edge from x to y in G, or if:

— Jasubjects € G, with an s to y a edge, and

— Jislands I, ..., I, such thatx € /;, s € I, and there is
a bridge from /; to /.4

Proof: Islands above, bridge — take in both

directions to grant link, then one takes “grant”

and grants to other

If x and y are subjects, “only if” holds

— If no take/grant or two grants between objects, can’t
bridge gap. Otherwise it is either a bridge or an
island

® g O g °
What about objects?

X initially spans to y if x is a subject and

there is a tg-path between them with ¢
edges ending in a g edge

—Xx cangrantarighttoy

x terminally spans to y if x is a subject and
there is a tg-path between them with ¢
edges

— X can take a right from y

© 2010 Chris Clifton

9/13/2010



CS18000: Programming |

7

Theorem: Can_share(a,x,y,G,)

=

Can_share(a,x,y,G,) iff there is an a edge from x to y in
G, orif:
— Javertexs € Gy with an s to y a edge,
— Ja subject x’ such that x’=x or x’ initially spans to x,
— Jasubject s’ such that s’=s or s’ terminally spans to s, and
— Jislands /4, ..., I, such that x’ € I, s’ € I, and there is a bridge
from /;to /4
Proof: If: x’ grants to x, s’ takes from s, otherwise as
with subjects
— Only if: as before, plus object can’t give (receive) a right unless
someone can take (grant) it
Corollary: There is an O(|V|+|E|) algorithm to test
can_share

12

PURDUE

CS52600: Information Security
Protection Models

September 3, 2010
Prof. Chris Clifton

© 2010 Chris Clifton

9/13/2010



CS18000: Programming | 9/13/2010

=5} Creating models from scratch

g - .'-‘
£
!

- G,= @, Rasetofrights. G, |* G iff G is a finite
directed acyclic? graph, edges labeled from R,
and at least one subject with no incoming edge.
— If: construction (create)

— Only if: Can’t add an edge to initial subject

« A k-component, n-edge protection graph can be
constructed from t-rule applications, where
2(k-1)+tn<t<2(k-1)+3n

14

Use of the model

« Sharing rights with trusted entity

 Stealing (rights available with non-
cooperating subjects)

e Collusion

15

© 2010 Chris Clifton 7



CS18000: Programming |

#==%  Sharing Rights through Trusted

D Entity

» Subjects p and g communicate through
buffer object b
— Trusted entity s controls accessto b
— p and g have private information u and v
16
Theft

» Can_steal(a,x,y,G,) if there is no a edge
fromxtoyin Gyand 3 G4, ..., G, s. t.
—3Jaedge fromxtoyin G,,

—3Jrules py,..., p, that take G4 | G;, and
-V v,we G, 1<si<n, if 3 a edge from v toy in
G, then p; is not “v grants (a to y) to w”
 |deal: Steal possible if x getsaony
without anyone granting a on y to anyone

17

© 2010 Chris Clifton

9/13/2010



CS18000: Programming | 9/13/2010

Theorem:
When Theft Possible

+ Can_steal(a,x,y,G,) iff there is no a edge from x to y in
Gyand3 Gy, ..., G,s. t.:
— 3 subject x’ such that x’=x or x’ initially spans to x, and
— s with a edge to y in Gyand can_share(t,x’,s,G,)

* Proof:

— =: (easy — build path)

— <« Assume can_steal:
* No a edge from definition.
+ Can_share(a,x,y,G,) from definition: a from x toy in G,
* s exists from can_share and Monday’s theorem
. Can_share#t,x’,s,Go): s can’t grant a (definition), someone else

gﬂgtr%?et a from s, show that this can only be accomplished with

18

Conspiracy

e/ 13 .

How many subjects needed to enable
Can_share(a,x,y,G,)?

» Access set A(y) with focus y is set of vertices y
VU vertices to which y initially spans v vertices to
which y terminally spans

» Deletion set 8(y,y’): Allz € A(y) n A(y’) for
which

— y initially spans to z and y’ terminally spans to z U
— y terminally spans to z and y’ initially spans to z U
- Z=y U z:y’

» Conspiracy graph: if 8(y,y’) not empty, edge

fromytoy’

19

© 2010 Chris Clifton 9



CS18000: Programming | 9/13/2010

Conspiracy theorems:
L_/0*
« Can_share(a,x,y,G,) iff conspiracy path
from an item in an island containing x to
an item that can steal from y

» Conspirators required is shortest above
path in conspiracy graph

20

Protection Models:
Do we have a contradiction?

i

Harrison-Ruzzo-Ullman model (commands
to change access control matrix

— Safety undecidable

Take-Grant Protection Model

— Decidable in linear time

What is the difference?

— Restrictions on allowable operations

What might we get with other sets of
restrictions?

21

© 2010 Chris Clifton 10



CS18000: Programming | 9/13/2010

PURDUE

CS52600: Information Security
Protection Models

September 8, 2010
Prof. Chris Clifton

=5} Schematic Protection Model
Key idea: Protection Type 1

— Label that determines how control rights affect an
entity

— Take-Grant: subject and object are different
protection types

— Unix file system: File, Directory, ?7?7?
» Ticket: Describes a set of rights

— Entity has set dom(X) of tickets Y/z describing X’s
rights z over entities Y

Inert right vs. Control right
— Inert right doesn’t affect protection state

23

© 2010 Chris Clifton 11



CS18000: Programming | 9/13/2010

Transferring Rights

Link predicate: link(X,Y)
— conjunction or disjunction of
* X/z € dom(X), X/z € dom(Y)

* Y/z € dom(X), Y/z € dom(Y)
* true

— Determines if X and Y “connected” to transfer right
— Example: link(X,Y) = Y/g € dom(X) v X/t € dom(Y)
Filter function: conditions on transfer

Copy X/r:c from Y to Z allowed iff 3/ such that:
— X/rc € dom(Y)

— link(Y,2)

— 1(X)/r:c efilter(1(Y), 1(Z))

24

Link Predicate

L

* Idea: link(X, Y) if X can assert some
control right over Y
 Conjunction or disjunction of:
— X/z € dom(X)
—X/z € dom(Y)
—Y/z € dom(X)
—Y/z € dom(Y)
—true

25

© 2010 Chris Clifton 12



CS18000: Programming | 9/13/2010

Examples

Take-Grant:

link(X, Y) =Y/g € dom(X) v X/t edom(Y)
Broadcast:

link(X, Y) = X/b edom(X)

Pull:

link(X, Y) = Y/p edom(Y)

26

Filter Function

Range is set of copyable tickets

— Entity type, right

Domain is subject pairs

Copy a ticket X/r.c from dom(Y) to dom(Z)
— X/rc € dom(Y)

— link(Y, Z)

—(Y)rc e f(x(Y), 1(2))

One filter function per link function

27

© 2010 Chris Clifton 13



CS18000: Programming | 9/13/2010

Example

f(x(Y), ©(Z)) = Tx R
— Any ticket can be transferred (if other
conditions met)

f((Y), ©(Z)) = T x R

— Only tickets with inert rights can be
transferred (if other conditions met)

fx(Y), 1(Z)) = &

— No tickets can be transferred

28

Example

L |

» Take-Grant Protection Model
— TS ={subjects }, TO = { objects }
—RC={tc,gc}, RI={rc,wc}
— link(p, q) = p/t € dom(q) v g/g edom(p)

— f(subject, subject) = { subject, object } x { tc,
gc, rc, we '}

— f(subject, object) = { subject, object } x { tc, gc,
rc, we }

30

© 2010 Chris Clifton 14



CS18000: Programming |

Create Operation

Must handle type, tickets of new entity

Relation canscreate(a, b)
— Subject of type a can create entity of type b

Rule of acyclic creates:

@—%P @O—=®

<

31

=

Types

cr(a, b): tickets introduced when subject of

type a creates entity of type b

B object: cr(a, b) c { b/r.c € RI'}

B subject: cr(a, b) has two parts

— crp(a, b) added to A, crs(a, b) added to B
— A gets B/r.cif bir.cin crp(a, b)

— B gets A/r.cif alricin crg(a, b)

32

ra
i

© 2010 Chris Clifton

9/13/2010

15



CS18000: Programming | 9/13/2010

Non-Distinct Types

*
o {4

cr(a, a): who gets what?

« selflr.c are tickets for creator

* alr.c tickets for created

cr(a, a) ={alrc, selflrc| rc e R}

33

Attenuating Create Rule

e 2

cr(a, b) attenuating if:

1. crg(a, b) < crp(a, b) and
2. alrc e crp(a, b) = selflr.c € crp(a, b)

34

© 2010 Chris Clifton 16



CS18000: Programming | 9/13/2010

Z5: Example: File Permissions

Types: users, files

(Inert) Rights: { r:c, w:c, x:c }

— read, write, execute; copy on each
Vv U, V € users, link(U, V) = true

— Anyone can grant a right to anyone if they
posses the right to do so (copy)

f(user, user) = { filelr, file/w, file/x }
— Can copy read, write, execute
— But not copy right

35

Safety Analysis in SPM

e 2

ra
i

* |dea: derive maximal state where changes
don’t affect analysis
— Similar to determining max flow

* Theorems:

— A maximal state exists for every system

— If parent gives child only rights parent has
(conditions somewhat more complex), can
easily derive maximal state

36

© 2010 Chris Clifton 17



CS18000: Programming |

L
M .
L%

e

Pl

Typed Access Matrix Model

=

Finite set T of types (TS < T for subjects)

Protection State: (S, O, 1, A)

— 1:0 >Tis a type function

— Operations same as Harrison-Ruzzo-Ullman except create adds
type

T is child type iff command creates create subject/object

of type 1 (otherwise parent)

If parent/child graph from all commands acyclic, then:

— Safety is decidable

— Safety is NP-Hard

— Safety is polynomial if all commands limited to three parameters

37

Comparing Models

Expressive Power
— HRU/Access Control Matrix subsumes Take-Grant
— HRU subsumes Typed Access Control Matrix

— SPM subsumes Take-Grant
» Subject/Object protection types
* ticket is label on an edge
« take/grant are control rights

What about SPM and HRU?
— SPM has no revocation (delete/destroy)

HRU without delete/destroy (monotonic HRU)?
— MTAM subsumes monotonic mono-operational HRU
— HRU can have create requiring multiple “parents”

38

© 2010 Chris Clifton

9/13/2010

18



CS18000: Programming | 9/13/2010

#==%  Extended Schematic Protection
Model

-

« Adds “joint create”. new node has multiple

parents
— Allows more natural representation of sharing
between mutually suspicious parties
* Create joint node for sharing

— In Take-Grant, SPM, must create two nodes,
they interact to share (equivalent power)

 Monotonic ESPM and Monotonic HRU
equivalent

40

Multiparent Create

e 2

» Solves mutual suspicion problem

— Create proxy jointly, each gives it needed
rights

 In HRU:

command multicreate(s,, s;, O)
if r in a[s,, sl] and r in als;, sy]
then
create object o;
enter r into als,, ol;
enter r into als;, ol;
end

41

© 2010 Chris Clifton 19



CS18000: Programming |

9/13/2010

7

SPM and Multiparent Create

canecreate extended in obvious way
—cccTSx...xTSxT

Symbols

- X4, ..., X, parents, Y created

— Ry Ry Rs, Ry c R

Rules

= Crp (t(Xq), ..., uX,)) = YIRy 1 U X/Ry,

— cre(t(Xq), ooy ©X) = YIR UX4/Ry 4 U .. U X Ry,

=

42

e I o

Example

Anna, Bill must do something cooperatively
— But they don’t trust each other

Jointly create a proxy

— Each gives proxy only necessary rights

In ESPM:

— Anna, Bill type a; proxy type p; right x € R
—cc(a,a)=p

— Clanna(@, @, p) = Crgy(a, a, p) = &

— Clyoxy(@, @, p) = { Anna/x, Bill/x }

43

© 2010 Chris Clifton

20



CS18000: Programming |

2-Parent Joint Create Suffices

Fa

o {4

» Goal: emulate 3-parent joint create with 2- )
parent joint create

 Definition of 3-parent joint create (subjects
P,, P,, P5; child C):
—cc(t(Pq), ©Py), ©(P3)) =Z< T
— Crp4(t(P4), ©(Py), ©(P3)) = C/R, ; W P4/Ry
— Crpy(t(Py), ©(Py), ©(P3)) = C/R, W P,/R;,
— Crp3(t(P4), ©(Py), ©(P3)) = C/R; 4 U P3/R; 5

44

General Approach

L

 Define agents for parents and child
— Agents act as surrogates for parents
— If create fails, parents have no extra rights

— If create succeeds, parents, child have exactly
same rights as in 3-parent creates

* Only extra rights are to agents (which are never
used again, and so these rights are irrelevant)

45

© 2010 Chris Clifton

9/13/2010

21



CS18000: Programming | 9/13/2010

Entities and Types
Lo
Parents P,, P,, P; have types p4, p,, ps
Child C of type ¢
Parent agents A,, A,, A; of types a,, a,, a;
Child agent S of type s
Type tis parentage
—if X/t e dom(Y), Xis Y's parent
Types t, a4, a,, a;, S are new types

46

Can<Create

* Following added to canecreate:
— cc(pq) = ay
— cc(py, @) = a,
— CC(p3, @) = a3

» Parents creating their agents; note agents have maximum of
2 parents

—cc(as) =s

» Agent of all parents creates agent of child
—cc(s)=c

+ Agent of child creates child

47

© 2010 Chris Clifton 22



CS18000: Programming |

Creation Rules

* Following added to create rule:
— crp(py, @) =D
— cre(pq, @) = py/Rtc

* Agent’s parent set to creating parent; agent has all rights
over parent

— Clppirsd(P2, @4, @3) = D
- CrPsecond(p21 as, 32) =
— cre(p,y, a4, a,) = po/Rtc L a,ltc

» Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

48

Creation Rules

— Clpgirsd(P3, @2, @3) = &
- CrPsecond(p3’ ay, 83) =0
— cre(ps, @y, a3) = ps/Ritc L ayltc

» Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

— crp(as, S) =<
— crg(as, S) = ajlte
+ Child’s agent has third agent as parent cre(a;, ) = &
— crp(s, ¢) = C/Rtc
— crg(s, ¢) = ¢/Rst

+ Child’s agent gets full rights over child; child gets R; rights
over agent

49

© 2010 Chris Clifton

9/13/2010

23



CS18000: Programming | 9/13/2010

Link Predicates

*
o {4

* |dea: no tickets to parents until child created

— Done by requiring each agent to have its own parent
rights

— linky(A4, Ay) = A/t € dom(A,) @ A,lt € dom(A,)

— link,(Ay, Az) = At € dom(Az) @ Aslt € dom(As)

— linky(S, A3) = Aj/t € dom(S) @ C/t € dom(C)

— links(A4, C) = C/t € dom(A,)

— links(A,, C) = C/t € dom(A,)

— links(As, C) = C/t € dom(As)

— linky(A4, P,) = P4/t € dom(A,) @ A/t € dom(A,)

— linky(Ay, Py) = P,/t € dom(A,) @ A,lt € dom(A,)

— linky(As, P3) = P5/t € dom(A;) @ Aglt € dom(A;)

50

Filter Functions

+ fi(a,, a,) = a4/t u c/Rtc

+ fi(as, ay) = a,/t U c/Rtc

* fy(s, a;) = a5/t L c/Rfc

* f3(ay, ¢) = pi/Ry 4

* f3(ay, €) = Po/Ry

* f3(@3, €) = Ps/Ry 3

* f@y, p1) = ¢/Ry 1 U Pi/Ry 4
* f4(@2, P2) = CIR1 3 U PR, 5
* f4(@3, p3) = CIR 3L ps/Ry 5

51

© 2010 Chris Clifton 24



CS18000: Programming | 9/13/2010

Construction
Create A, A,, A;, S, C; then

* P, has no relevant tickets

* P, has no relevant tickets

* P; has no relevant tickets

+ A, has P,/Rtc

* A, has P,/Rtc u A,/tc

* A; has P;/Rtc u A,/tc

* S has Aj/tc u C/Rtc

* C has C/R,

52

Construction

* Only link,(S, A3) true = apply f,
— A; has P;/Rtc U A/t U As/t U C/Rtc
* Now link,(As, A,) true = apply f,
— A, has P,/Rtc U A /tc U A,/t U C/Rtc
* Now link,(A,, A,) true = apply f,
— A, has P,/Rtc u A /tc U A/t U C/Rtc

* Now all linkss true = apply f;

53

© 2010 Chris Clifton 25



CS18000: Programming |

Finish Construction

Now link,s true = apply f,

— P, has C/R; ; U P4/R;,

—P,has C/R,, U P2IR,,

— Pz has C/R; 3 U P3/R;

3-parent joint create gives same rights to
P,,P, P; C

If create of C fails, link, fails, so
construction fails

54

Theorem

The two-parent joint creation operation

can implement an n-parent joint creation
operation with a fixed number of additional
types and rights, and augmentations to the
link predicates and filter functions.

* Proof: by construction, as above

— Difference is that the two systems need not
start at the same initial state

55

© 2010 Chris Clifton

9/13/2010

26



CS18000: Programming | 9/13/2010

P Example: 3-Parent Joint
Creation
. .
« Simulate with 2-parent
— Nodes P,, P,, P; parents
— Create node C with type ¢ with edges of type
e
— Add node A, of type a and edge from P, to A,
of type e’
P, O O p O Pps
~0
Al
Next Step

« A,, P, create A,; A,, P; create A,
» Type of nodes, edges are a and e’

57

© 2010 Chris Clifton 27



CS18000: Programming | 9/13/2010

Next Step
« A; creates S, of type a
« S creates C, of type ¢
PIO.\__‘_ PzO____ P3O».‘ ‘
@ TR B0 - I-Q A
| HMU‘"T‘?-_N b
Last Step

« Edge adding operations:
-P,—»A,—->A,»>A;—>S—C: P, to C edge type e
- P,—»A,—->A;—>S—>C: P, to C edge type e
- P;—>A;—>S—C: P;to C edge type e

59

© 2010 Chris Clifton 28



CS18000: Programming |

» Scheme: graph representation as above

Definitions

 Model: set of schemes

« Schemes A, B correspond if graph for both
is identical when all nodes with types not
in A and edges with types in A are deleted

60

« Above 2-parent joint creation simulation in

Example

scheme TWO

« Equivalent to 3-parent joint creation

scheme THREE in which P4, P,, P5, C are
of same type as in TWO, and edges from
P,, P,, P;to C are of type e, and no types
a and e’ existin TWO

61

© 2010 Chris Clifton

9/13/2010

29



CS18000: Programming |

Theorems

Monotonic ESPM and the monotonic HRU

model are equivalent.

Safety question in ESPM also decidable if

acyclic attenuating scheme

=

63

ek -
i

Expressiveness

Graph-based representation to compare models

Graph

— Vertex: represents entity, has static type
— Edge: represents right, has static type
Graph rewriting rules:

— Initial state operations create graph in a particular
state

— Node creation operations add nodes, incoming edges

— Edge adding operations add new edges between
existing vertices

64

A
=y

© 2010 Chris Clifton

9/13/2010

30



CS18000: Programming | 9/13/2010

HES Simulation

o {4

Scheme A simulates scheme B iff

* every state B can reach has a corresponding
state in A that A can reach; and

 every state that A can reach either corresponds
to a state B can reach, or has a successor state
that corresponds to a state B can reach

— The last means that A can have intermediate states
not corresponding to states in B, like the intermediate
ones in TWO in the simulation of THREE

65

5 Expressive Power
i

* If scheme in MA no scheme in MB can
simulate, MB less expressive than MA

* If every scheme in MA can be simulated
by a scheme in MB, MB as expressive as
MA

* If MA as expressive as MB and vice versa,
MA and MB equivalent

66

© 2010 Chris Clifton 31



CS18000: Programming |

Example

Scheme A in model M

— Nodes X, X,, X;

— 2-parent joint create

— 1 node type, 1 edge type

— No edge adding operations

— Initial state: X, X,, X5, no edges

Scheme B in model N

— All same as A except no 2-parent joint create
— 1-parent create

Which is more expressive?

67

Can A Simulate B?

Scheme A simulates 1-parent create: have

both parents be same node
— Model M as expressive as model N

68

ra
i

© 2010 Chris Clifton

9/13/2010

32



CS18000: Programming | 9/13/2010

Can B Simulate A?

o {4

» Suppose X, X, jointly create Y in A “
— Edges from X;, X, to Y, no edge from X;to Y

« Can B simulate this?
— Without loss of generality, X, creates Y

— Must have edge adding operation to add edge
fromX,to Y

— One type of node, one type of edge, so
operation can add edge between any 2 nodes

69

No

All nodes in A have even number of incoming
edges
— 2-parent create adds 2 incoming edges

Edge adding operation in B that can edge from
X, to C can add one from X;to C
— A cannot enter this state
— B cannot transition to a state in which Y has even

number of incoming edges

* No remove rule

So B cannot simulate A; N less expressive than
M

70

© 2010 Chris Clifton 33



CS18000: Programming | 9/13/2010

Theorem

o {4

=

* Monotonic single-parent models are less
expressive than monotonic multiparent
models

« ESPM more expressive than SPM
— ESPM multiparent and monotonic
— SPM monotonic but single parent

71

Typed Access Matrix Model

ra
i

» Like ACM, but with set of types T
— All subjects, objects have types
— Set of types for subjects TS
 Protection state is (S, O, t, A), where
1:0— T specifies type of each object
— If X subject, t(X) in TS
—If X object, 1(X)in T— TS

72

© 2010 Chris Clifton 34



CS18000: Programming | 9/13/2010

GES) Create Rules

o {4

» Subject creation
— create subject s of type ts

— s must not exist as subject or object when operation
executed

—tsin TS
» Object creation
— create object o of type fo

— o0 must not exist as subject or object when operation
executed

—toinT-TS

73

Create Subject

Precondition: s ¢ S

Primitive command: create subject s of
type ¢

Postconditions:

~S =S s}, O =0Us}

—(vye Oz (y)= ()] 7(s) =t

—(Vy e O)a’[s, y] = <], (vVx € S')[a’[x, s] = ]
—(vx e S)(vy € O)la’[x, y] = alx, ylI

74

© 2010 Chris Clifton 35



CS18000: Programming | 9/13/2010

Create Object

Precondition: o ¢ O

Primitive command: create object o of
type ¢

Postconditions:

~8'=80=0u{o0}
—(VyeO)r(y)=z()l 7(0)=t

—(Vx e S)[a’[x, 0] = J]

—(vVx e S)(vy € O)a’[x, y] = alx, ylI

75

Definitions

L

« MTAM Model: TAM model without delete,
destroy
— MTAM is Monotonic TAM

* a(xq:ty, ..., X,:t,) create command

— ¢, child type in « if any of create subject x; of
type {; or create object x; of type t, occur in a

— 1, parent type otherwise

ra
i

76

© 2010 Chris Clifton 36



CS18000: Programming | 9/13/2010

L2 Cyclic Creates
- Tl

command havoc(s, : U, S, 1 U, 04V, 0,:V,03: W, 04:,)
create subject s, of type u;
create object o, of type v;
create object o, of type w;
enter rinto a[s,, s4];
enter rinto a[s,, o,];
enter rinto a[s,, 04]
end

77

Creation Graph

L/

* u, v, wchild types

* u, v, walso parent
types

» Graph: lines from

parent types to child
%' %5 types

» This one has cycles

78

© 2010 Chris Clifton 37



CS18000: Programming | 9/13/2010

Theorems

o {4

=

« Safety decidable for systems with acyclic
MTAM schemes

» Safety for acyclic ternary MATM decidable
in time polynomial in the size of initial ACM

— “ternary” means commands have no more
than 3 parameters

— Equivalent in expressive power to MTAM

79

Key Points

Safety problem undecidable

Limiting scope of systems can make
problem decidable

Types critical to safety problem’s analysis

80

© 2010 Chris Clifton 38



