CS18000: Programming |

PURDUE

CS52600:
Information Security

Midterm Review
18 October 2010
Prof. Chris Clifton

Course Outline

1. Introduction: Role of security,
Types of security, Definitions.

2. Access Control Matrix model

3. Protection Models

4. Policy: Risk Analysis, Policy
Formation, Role of audit and
control.

Formal policy models.
Information Flow
Authentication and Identity
Forensics

@ N ;g

Midterm. 10/20

10. System Design principles. TCB
and security kernel construction,
Verification, Certification issues.

11.Network Security. Distributed
cooperation and commit.
Distributed authentication issues.
Routing, flooding, spamming.
Firewalls.

12. Audit Mechanisms.

13.Malicious Code: Viruses, Worms,
etc.

14.Vulnerability Analysis.

15.Physical threats, operational
security, Legal and Societal
Issues

Final Exam

© 2010 Chris Clifton

10/18/2010

CS18000: Programming | 10/18/2010

LIS Basic Components

Confidentiality

— Keeping data and resources hidden
Integrity

— Data integrity (integrity)

— Origin integrity (authentication)
Availability

— Enabling access to data and resources

Policies and Mechanisms

ra
i

Policy says what is, and is not, allowed

— This defines “security” for the site/system/efc.
— Policy definition: Informal? Formal?
Mechanisms enforce policies
Composition of policies

— If policies conflict, discrepancies may create
security vulnerabilities

© 2010 Chris Clifton 2

CS18000: Programming | 10/18/2010

Access Control
L_. \‘4>
» State: Status of the system
— Protection state: subset that deals with protection
» Access Control Matrix
— Describes protection state
* Formally:
— Objects O
— Subjects S
— Matrix Ac Sx O
» Tuple (S, O, A) defines protection states of
system
5
s Access Control Matrix:
O’ Boolean Evaluation Example
Internal |Local | State Long International)
University | Distance
Public |CR R
T
Student |CR CR R R R
T T
Staff CR CR CR R R
Transfer | T T
Account |CR CR CR CR CR
T T T T T

© 2010 Chris Clifton 3

CS18000: Programming |

1=
=T

Protection State Transitions

-

'
State X, = (S,, O, A))

Transitions 1;

— Single transition X; |-, X,

— Series of transitions X }* Y

Access control matrix may change

— Change command c associated with transition

— X |_Ci+1(pi+1,---49i+1)X/+7

Change command c associated with
transition

Primitive Commands

Create Object o

— Adds o to objects with no access
— S'=§, O'=0U0}, (Vxe8S’)[a’[x,0] =],
(VxeS')(vyeO)ax.y] = alx.yl]

Create Subject s

— Adds s to objects, subjects, sets relevant access
control to &

Enter rinto a[s,0]
Delete r from a[s,0]
Destroy subject s, destroy object o

© 2010 Chris Clifton

10/18/2010

CS18000: Programming |

Formally:

Given

— initial state X, = (S,, O, Ap)

— Set of primitive commands ¢

Can we reach a state X, where 3s,0 such
that A, [s,0] includes a right r not in A,[s,0]?
— If so, the system is not safe

Decidability Result

(Harrison, Ruzzo, Ullman)

Given a system where each command consists
of a single primitive command, There exists an
algorithm that will determine if a protection
syitem with initial state X, is safe with respect to
right r.

Proof. determine minimum commands k to leak
— Delete/destroy: Can’t leak (or be detected)

— Create/enter: new subjects/objects “equal”, so treat
all new subjects as one

— If nrights, leak possible, must be able to leak in
n(|Syl+1)(]O,[+1)+1 commands

Enumerate all possible to decide

10

i,

© 2010 Chris Clifton

10/18/2010

CS18000: Programming |

Other Results

P g

(most from the same authors)

Set of unsafe systems recursively enumerable
Without create primitive, safety in P-SPACE
— Like halting problem reduction, but no unlimited tape

Without delete/destroy, still undecidable

— Decidable if at most one condition allowed per
command

— Still holds if delete allowed

e I o

Take-Grant Protection Model

+ System is directed graph

— Subject: @ _
_ Object () Bot @

— (labeled) edge: {rights}

» Takerule: if t ey, a < B, can add transitive edge
* Grantrule: ifg € {, ac vy, can add (grant) edge between recipients
+ Create, Remove rules

12

© 2010 Chris Clifton

10/18/2010

CS18000: Programming |

%=~ Take-Grant Protection Model:

Sharing

Fa

Given G,, can vertex x obtain a rights over

y?

— Can_share(a,x,y,G,) iff G, |—* G, using the
above rules and a edge from xtoy in G,

tg-path: v,,...,v, where t or g edge

between any v,, v,

— Vertices tg-connected if tg-path between them

Theorem: Any two subjects with tg-path of

length 1 can share rights

13

T

Theorem: Can_share(a,x,y,G,)

sz
o
Can_share(a,x,y,G,) iff there is an a edge from x to y in 4
G, or if:
Javertex s € Gy with an s to y a edge,
3 a subject x’ such that x’=x or X’ initially spans to x,
3 a subject s’ such that s’=s or s’ terminally spans to s, and
Jislands /y, ..., I, such that x’ € I, s’ € I, and there is a bridge
from [;to 44

Proof: If: x’ grants to x, s’ takes from s, otherwise as
with subjects

— Only if: as before, plus object can’t give (receive) a right unless

someone can take (grant) it

Corollary: There is an O(|V|+|E|) algorithm to test
can_share

15

© 2010 Chris Clifton

10/18/2010

CS18000: Programming | 10/18/2010

Theorem:
When Theft Possible

+ Can_steal(a,x,y,G,) iff there is no a edge from x to y in
Gyand3 Gy, ..., G,s. t.:
— Thereis no a edge fromxtoyin Gy,
— 3 subject x’ such that x’=x or x’ initially spans to x, and
— 3 s with a edge to y in Gyand can_share(t,x’,s,G,)

* Proof:

— = (easy — build path)

— <« Assume can_steal:
* No a edge from definition.
+ Can_share(a,x,y,G,) from definition: a from x toy in G,
* s exists from can_share and Monday’s theorem
. Can_share#t,x’,s,Go): s can’t grant a (definition), someone else

gﬂgtr%?et a from s, show that this can only be accomplished with

16

7

52 Schematic Protection Model
h_‘.i"‘-

Key idea: Protection Type 1

— Label that determines how control rights affect an
entity

— Take-Grant: subject and object are different
protection types

— Unix file system: File, Directory, ?7?7?

Ticket: Describes a set of rights

— Entity has set dom(X) of tickets Y/z describing X’s
rights z over entities Y

* Inert right vs. Control right

— Inert right doesn’t affect protection state

17

© 2010 Chris Clifton

CS18000: Programming | 10/18/2010

Transferring Rights
| *
« Link predicate: link(X,Y) |
— conjunction or disjunction of
* X/z € dom(X), X/z € dom(Y)
* Y/z e dom(X), Y/z € dom(Y)
* true
— Determines if X and Y “connected” to transfer right
— Example: link(X,Y) = Y/g € dom(X) v X/t € dom(Y)
* Filter function: conditions on transfer
* Copy X/r:c from Y to Z allowed iff 3/ such that:
— X/rc € dom(Y)
— link(Y,Z)
— 1(X)/r:c efilter(1(Y), 1(Z))
18
5 Safety Analysis in SPM

* |dea: derive maximal state where changes
don’t affect analysis
— Similar to determining max flow

* Theorems:
— A maximal state exists for every system

— If parent gives child only rights parent has
(conditions somewhat more complex), can
easily derive maximal state

19

© 2010 Chris Clifton 9

CS18000: Programming |

L
M .
L%

e

Pl

Typed Access Matrix Model

=

Finite set T of types (TS < T for subjects)

Protection State: (S, O, 1, A)

— 1:0 >Tis a type function

— Operations same as Harrison-Ruzzo-Ullman except create adds
type

T is child type iff command creates create subject/object

of type 1 (otherwise parent)

If parent/child graph from all commands acyclic, then:

— Safety is decidable

— Safety is NP-Hard

— Safety is polynomial if all commands limited to three parameters

20

Comparing Models

Expressive Power
— HRU/Access Control Matrix subsumes Take-Grant
— HRU subsumes Typed Access Control Matrix

— SPM subsumes Take-Grant
» Subject/Object protection types
* ticket is label on an edge
« take/grant are control rights

What about SPM and HRU?
— SPM has no revocation (delete/destroy)

HRU without delete/destroy (monotonic HRU)?
— MTAM subsumes monotonic mono-operational HRU
— HRU can have create requiring multiple “parents”

21

© 2010 Chris Clifton

10/18/2010

10

CS18000: Program

ming |

#==% Extended Schematic Protection
Model

-

=

« Adds “joint create”. new node has multiple
parents
— Allows more natural representation of sharing
between mutually suspicious parties
* Create joint node for sharing

— In Take-Grant, SPM, must create two nodes,
they interact to share (equivalent power)

 Monotonic ESPM and Monotonic HRU
equivalent

22

Security Mechanism

Policy describes what is allowed
Mechanism enforces (part of) policy
The two need not be the same!

Example Policy: Students should not copy
homework

— Mechanism: Disallow access to files owned
by other users

Does mechanism enforce policy?
— Is mechanism too strict?

24

© 2010 Chris Clifton

10/18/2010

11

CS18000: Programming |

Modeling Secure/Precise:

P g

Confidentiality (Jones and Lipton)

What are we modeling? A program
- p:lyx...x 1, > Ris aprogram
» Defined in terms of inputs and outputs
— Goal: Determine if p can violate confidentiality

Observability

— Output of function p(iy,...,i,) encodes all available
information on inputs iy,...,/,
— Output may include things not normally thought of as
part of function result
» Data accessed
* Timing
* Anything that can be observed

25

W
ek - C
B

Pl N

Bell-LaPadula: Basics

Mandatory access control (Security Level)

— Subject has clearance L(S) =
— Object has classification L(O) =/,
— Clearance/Classification ordered
* i < g
Discretionary access control
— Matrix: Subject has read (write) on Object

Need both to perform operation

26

© 2010 Chris Clifton

10/18/2010

12

CS18000: Programming |

Access Rules

.
L

| ra
« Simple Security Condition: S can read O if and
only if
— S dom O and
— S has discretionary read access to O
« *-Property: S can write O if and only if
— Odom S and
— S has discretionary write access to O
» Secure system: One with above properties
 Theorem: Let 2 be a system with secure initial
state 0, T be a set of state transformations
— If every element of T follows rules, every state o;
secure
27
=:; Formalizing Bell-LaPadula
L /o>

+ Objects in a hierarchy h: O > P(O)
= 0;#0;= h(0)) N h(o;) = & (no two nodes at same point)
— Thereisno{ oy, 0, ..., 0,} < Osuchthat Vi=1,... .k, 0,4 € h(o;) and
0441 = 04 (NO cycles)
+ State v € Vis a 4-tuple (b,m,f,h)

— b e P(S x O x P) indicates which subjects can access which objects
and what the rights are

* R denotes requests for access
* D set of outcomes
— yes, no, illegal, error
Actions Wc RxDx VxV
— Request leads to outcome, moving from one state to another
System X(R, D, W, z,) ¢ RN x DN x W
— Set of states that result from a given set of actions

— (r,d,v,v’) eW an action of Z iff 3 time ¢, (x,y,z) € Z such that
(rd,v,V') = (X4 Y2y 21.1)

28

© 2010 Chris Clifton

10/18/2010

13

CS18000: Programming | 10/18/2010

i205: A System is Secure if it Satisfies:

LA

« Simple security condition satisfied for -
(s, 0, p) € Sx O x P relative to fiff
—p=eorp=a
— p=rorp=wand f(s) dom f o)
« *-property satisfied for (b, m, f, h) iff Vs € S
— b(s:a)# D = [V o € b(s: a) [f,(0) dom f(s)]]
— b(s:w) = D = [V 0 € b(s: w) [f,(0) = (S)]]
— b(sir) =D = [V 0 € b(s:r) [f,(s) dom f,(0)]]
+ Discretionary security property satisfied for
(b, m, f, h)iff V¥ (s, o, p) € b, p € m[s,0]

29

.- Modeling with Bell-LaPadula:
I get-read

« r=(get,s,0,r) e R" request
« v=(b,m,f, h) system state
« if (re A(py)) then py(r,v) = (i, v) bad arguments
else if (f(s) dom f (o SSc preserving
and [s e Syorf(s)domf, (o)] “property
and r € m[s,0]) discretionary access control
then p,(r,v) = (y, (bw {(s, 0,1}, m, f h))
else p(r,v) = (n, v)
* Theorem: get-read is secure
— Assume v secure
— Either v’ =v, or v’ = v with { (s, 0, r) } added to accesses
* (s, o, r) must satisfy security properties to reach where it is added
« Similar rules for get-append, execute, write

30

© 2010 Chris Clifton 14

CS18000: Programming | 10/18/2010

Integrity Policy
Principles:

— Separation of Duty: Single person can’t mess up the
system
* No coding on live system

— Separation of function
* No development on production data
— Auditing
» Controlled/audited process for updating code on production
system

This enables validated code to maintain integrity
— But how do we ensure we’ve accomplished these?
— Is this overkill?

31

LIS Policies

Ring Policy

- Sro

— SW0o<i(0)<i(s)

— X S, & i(Sy) S i(sy)
Low-Water-Mark Policy

— sro=i(s) = min(i(s), i(0))

— SW0<i(0)<i(s)

— §1X S, & i(Sy) 2i(sy)

Biba’s Model: Strict Integrity Policy
— Sro<i(s)<io)

— SWo0<i(0)<i(s)

— §1X S, & i(Sy) 2i(sy)

Theorem for induction similar to Bell-LaPadula

32

© 2010 Chris Clifton 15

CS18000: Programming |

Domain-specific Policy Models

Military Confidentiality
— Bell-LaPadula

Database Integrity
— Clark/Wilson

Corporate Anti-Trust
— Chinese Wall

Clinical Information Systems
Others?

33

What is Consistent?

Principle of autonomy:

— Access allowed by security policy of a
component must be allowed by composition

Principle of security:

— Access denied by security policy of a
component must be denied by composition

Must prove new “composed” policy meets
these principles

34

© 2010 Chris Clifton

10/18/2010

16

CS18000: Programming |

Information Flow

Information Flow: Where information can move
in the system

How does this relate to confidentiality policy?

— Confidentiality: What subjects can see what objects
— Flow: Controls what subjects actually see
Variable x holds information classified S

— X, information flow class of x, is S

Confidentiality specifies what is allowed

Information flow describes how this is enforced

=

35

Formal Definition

Problem: capturing all information flow
— Files

— Memory

— Page faults

— CPU use

-?

Definition: Based on entropy

— Flow from x to y (times sto t) if H(x | y;) <
H(xs | ys)

ra
i

36

© 2010 Chris Clifton

10/18/2010

17

CS18000: Programming | 10/18/2010

#==% How do we Manage Information
N Flow?

Information flow policy

— Captures security levels

— Often based on confinement

— Principles: Reflexivity, transitivity
Compiler-based mechanisms
— Track potential flow

— Enforce legality of flows
Execution-based mechanisms
— Track flow at runtime

— Validate correct

=

37

LIS Confinement
i

Confinement Problem
— Prevent a server from leaking confidential information
Covert Channel

— Path of communication not designed as
communication path

Transitive Confinement

— If a confined process invokes a second process,
invokee must be as confined as invoker

38

© 2010 Chris Clifton 18

CS18000: Programming |

Isolation

Virtual machine

— Simulates hardware of an (abstract?) machine

— Process confined to virtual machine
» Simulator ensures confinement to VM

— Real example: IBM VM/SP
» Each user gets “their own” IBM 370

Sandbox

— Environment where actions restricted to those

allowed by policy

2

39

Covert Channels

Storage channel
— Uses attribute of shared resource

Timing channel

— Uses temporal/ordering relationship of access

to shared resource

Noise in covert channel

— Noiseless: Resource only available to
sender/receiver

— Noisy: Other subjects can affect resource

40

© 2010 Chris Clifton

10/18/2010

19

CS18000: Programming |

= M
\ .
7 \ %

Modeling Covert Channels

Noninterference
— Bell-LaPadula approach
— All shared resources modeled as subjects/objects

— Let oeZ be states. Noninterference secure if Vs at
level /(s) 3 =: £xZ such that
* 04 = 0, = view(o,) = view(o,)
* 04 = 0, = execution(i,a,) = execution(i,o,)
« if i only contains instructions from subjects dominating s,
view(execution(i,)) = view(o)
Information Flow analysis
— Again model all shared resources

41

=

Test Taking Hints

Open book/notes

— Pretty much any non-electronic aid allowed
See old copies of my exams (and
solutions) at my web site

— CS 526

— CS 541

- CS 603

Time will be tight
— Suggested “time on question” provided

42

© 2010 Chris Clifton

10/18/2010

20

