
CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 1

CS52600:

Information Security

Midterm Review

18 October 2010

Prof. Chris Clifton

2

Course Outline

1. Introduction: Role of security,
Types of security, Definitions.

2. Access Control Matrix model

3. Protection Models

4. Policy: Risk Analysis, Policy
Formation, Role of audit and
control.

5. Formal policy models.

6. Information Flow

7. Authentication and Identity

8. Forensics

Midterm. 10/20

10.System Design principles. TCB
and security kernel construction,
Verification, Certification issues.

11.Network Security. Distributed
cooperation and commit.
Distributed authentication issues.
Routing, flooding, spamming.
Firewalls.

12.Audit Mechanisms.

13.Malicious Code: Viruses, Worms,
etc.

14.Vulnerability Analysis.

15.Physical threats, operational
security, Legal and Societal
Issues

Final Exam

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 2

3

Basic Components

• Confidentiality

– Keeping data and resources hidden

• Integrity

– Data integrity (integrity)

– Origin integrity (authentication)

• Availability

– Enabling access to data and resources

4

Policies and Mechanisms

• Policy says what is, and is not, allowed

– This defines “security” for the site/system/etc.

– Policy definition: Informal? Formal?

• Mechanisms enforce policies

• Composition of policies

– If policies conflict, discrepancies may create

security vulnerabilities

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 3

5

Access Control

• State: Status of the system
– Protection state: subset that deals with protection

• Access Control Matrix
– Describes protection state

• Formally:
– Objects O

– Subjects S

– Matrix A S O

• Tuple (S, O, A) defines protection states of
system

6

Access Control Matrix:

Boolean Evaluation Example

Internal Local State

University

Long

Distance

International

Public CR R

Student CR CR R R R

Staff CR CR CR R R

Account CR CR CR CR CR

TT

T

T

Transfer

T

T

T

T

T

T

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 4

7

Protection State Transitions

• State Xi = (Si, Oi, Ai)

• Transitions τi

– Single transition Xi ├τi+1
Xi+1

– Series of transitions X ├* Y

• Access control matrix may change

– Change command c associated with transition

– Xi ├ci+1 (pi+1,…,pi+1)
Xi+1

• Change command c associated with
transition

8

Primitive Commands

• Create Object o
– Adds o to objects with no access

– S’=S, O’=O {o}, (x S’)[a’[x,o] =],
(x S’)(y O)[a’[x,y] = a[x,y]]

• Create Subject s
– Adds s to objects, subjects, sets relevant access

control to

• Enter r into a[s,o]

• Delete r from a[s,o]

• Destroy subject s, destroy object o

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 5

9

Formally:

• Given

– initial state X0 = (S0, O0, A0)

– Set of primitive commands c

• Can we reach a state Xn where s,o such

that An[s,o] includes a right r not in A0[s,o]?

– If so, the system is not safe

10

Decidability Result

(Harrison, Ruzzo, Ullman)

• Given a system where each command consists
of a single primitive command, There exists an
algorithm that will determine if a protection
system with initial state X0 is safe with respect to
right r.

• Proof: determine minimum commands k to leak
– Delete/destroy: Can’t leak (or be detected)

– Create/enter: new subjects/objects “equal”, so treat
all new subjects as one

– If n rights, leak possible, must be able to leak in
n(|S0|+1)(|O0|+1)+1 commands

• Enumerate all possible to decide

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 6

11

Other Results

(most from the same authors)

• Set of unsafe systems recursively enumerable

• Without create primitive, safety in P-SPACE

– Like halting problem reduction, but no unlimited tape

• Without delete/destroy, still undecidable

– Decidable if at most one condition allowed per

command

– Still holds if delete allowed

12

Take-Grant Protection Model

• System is directed graph
– Subject:

– Object:

– (labeled) edge: {rights}

• Take rule: if t γ, α β, can add transitive edge

• Grant rule: if g δ, α γ, can add (grant) edge between recipients

• Create, Remove rules

Both:

γ

β
α

α

β

- α

δ

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 7

13

Take-Grant Protection Model:

Sharing

• Given G0, can vertex x obtain α rights over
y?

– Can_share(α,x,y,G0) iff G0├* Gn using the
above rules and α edge from x to y in Gn

• tg-path: v0,…,vn where t or g edge
between any vi, vi+1

– Vertices tg-connected if tg-path between them

• Theorem: Any two subjects with tg-path of
length 1 can share rights

15

Theorem: Can_share(α,x,y,G0)

• Can_share(α,x,y,G0) iff there is an α edge from x to y in
G0 or if:
– a vertex s G0 with an s to y α edge,

– a subject x’ such that x’=x or x’ initially spans to x,

– a subject s’ such that s’=s or s’ terminally spans to s, and

– islands I1, …, In such that x’ I1, s’ In, and there is a bridge
from Ij to Ij+1

• Proof: If: x’ grants to x, s’ takes from s, otherwise as
with subjects
– Only if: as before, plus object can’t give (receive) a right unless

someone can take (grant) it

• Corollary: There is an O(|V|+|E|) algorithm to test
can_share

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 8

16

Theorem:

When Theft Possible

• Can_steal(α,x,y,G0) iff there is no α edge from x to y in
G0 and G1, …, Gn s. t.:
– There is no α edge from x to y in G0 ,

– subject x’ such that x’=x or x’ initially spans to x, and

– s with α edge to y in G0 and can_share(t,x’,s,G0)

• Proof:
– : (easy – build path)

– : Assume can_steal:
• No α edge from definition.

• Can_share(α,x,y,G0) from definition: α from x to y in Gn

• s exists from can_share and Monday’s theorem

• Can_share(t,x’,s,G0): s can’t grant α (definition), someone else
must get α from s, show that this can only be accomplished with
take rule

17

Schematic Protection Model

• Key idea: Protection Type τ
– Label that determines how control rights affect an

entity

– Take-Grant: subject and object are different
protection types

– Unix file system: File, Directory, ???

• Ticket: Describes a set of rights
– Entity has set dom(X) of tickets Y/z describing X’s

rights z over entities Y

• Inert right vs. Control right
– Inert right doesn’t affect protection state

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 9

18

Transferring Rights

• Link predicate: linki(X,Y)
– conjunction or disjunction of

• X/z dom(X), X/z dom(Y)

• Y/z dom(X), Y/z dom(Y)

• true

– Determines if X and Y “connected” to transfer right

– Example: link(X,Y) = Y/g dom(X) X/t dom(Y)

• Filter function: conditions on transfer

• Copy X/r:c from Y to Z allowed iff i such that:
– X/rc dom(Y)

– linki(Y,Z)

– τ(X)/r:c filteri(τ(Y), τ(Z))

19

Safety Analysis in SPM

• Idea: derive maximal state where changes

don’t affect analysis

– Similar to determining max flow

• Theorems:

– A maximal state exists for every system

– If parent gives child only rights parent has

(conditions somewhat more complex), can

easily derive maximal state

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 10

20

Typed Access Matrix Model

• Finite set T of types (TS T for subjects)

• Protection State: (S, O, τ, A)
– τ:O T is a type function

– Operations same as Harrison-Ruzzo-Ullman except create adds
type

• τ is child type iff command creates create subject/object
of type τ (otherwise parent)

• If parent/child graph from all commands acyclic, then:
– Safety is decidable

– Safety is NP-Hard

– Safety is polynomial if all commands limited to three parameters

21

Comparing Models

• Expressive Power
– HRU/Access Control Matrix subsumes Take-Grant

– HRU subsumes Typed Access Control Matrix

– SPM subsumes Take-Grant
• Subject/Object protection types

• ticket is label on an edge

• take/grant are control rights

• What about SPM and HRU?
– SPM has no revocation (delete/destroy)

• HRU without delete/destroy (monotonic HRU)?
– MTAM subsumes monotonic mono-operational HRU

– HRU can have create requiring multiple “parents”

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 11

22

Extended Schematic Protection

Model

• Adds “joint create”: new node has multiple

parents

– Allows more natural representation of sharing

between mutually suspicious parties

• Create joint node for sharing

– In Take-Grant, SPM, must create two nodes,

they interact to share (equivalent power)

• Monotonic ESPM and Monotonic HRU

equivalent

24

Security Mechanism

• Policy describes what is allowed

• Mechanism enforces (part of) policy

The two need not be the same!

• Example Policy: Students should not copy
homework

– Mechanism: Disallow access to files owned
by other users

• Does mechanism enforce policy?

– Is mechanism too strict?

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 12

25

Modeling Secure/Precise:

Confidentiality (Jones and Lipton)

• What are we modeling? A program
– p: I1 … In R is a program

• Defined in terms of inputs and outputs

– Goal: Determine if p can violate confidentiality

• Observability
– Output of function p(i1,…,in) encodes all available

information on inputs i1,…,in
– Output may include things not normally thought of as

part of function result
• Data accessed

• Timing

• Anything that can be observed

26

Bell-LaPadula: Basics

• Mandatory access control (Security Level)

– Subject has clearance L(S) = ls

– Object has classification L(O) = lo

– Clearance/Classification ordered

• li < li+1

• Discretionary access control

– Matrix: Subject has read (write) on Object

• Need both to perform operation

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 13

27

Access Rules

• Simple Security Condition: S can read O if and
only if
– S dom O and

– S has discretionary read access to O

• *-Property: S can write O if and only if
– O dom S and

– S has discretionary write access to O

• Secure system: One with above properties

• Theorem: Let Σ be a system with secure initial
state σ0, T be a set of state transformations
– If every element of T follows rules, every state σi

secure

28

Formalizing Bell-LaPadula

• Objects in a hierarchy h: O P(O)
– oi oj h(oi) h(oj) = (no two nodes at same point)

– There is no { o1, o2, …, ok } O such that i = 1,…,k, oi+1 h(oi) and
ok+1 = o1 (no cycles)

• State v V is a 4-tuple (b,m,f,h)
– b P(S O P) indicates which subjects can access which objects

and what the rights are

• R denotes requests for access

• D set of outcomes
– yes, no, illegal, error

• Actions W R D V V
– Request leads to outcome, moving from one state to another

• System Σ(R, D, W, z0) RN DN VN

– Set of states that result from a given set of actions

– (r,d,v,v’) W an action of Σ iff time t, (x,y,z) Σ such that
(r,d,v,v’) = (xt,yt,zt,zt-1)

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 14

29

A System is Secure if it Satisfies:

• Simple security condition satisfied for
(s, o, p) S O P relative to f iff
– p = e or p = a

– p = r or p = w and fs(s) dom fo(o)

• *-property satisfied for (b, m, f, h) iff s S
– b(s:a) [o b(s: a) [fo(o) dom fc(s)]]

– b(s:w) [o b(s: w) [fo(o) = fc(s)]]

– b(s:r) [o b(s: r) [fc(s) dom fo(o)]]

• Discretionary security property satisfied for
(b, m, f, h) iff (s, o, p) b, p m[s,o]

30

Modeling with Bell-LaPadula:

get-read

• r = (get, s, o, r) R(1) request

• v = (b, m, f, h) system state

• if (r Δ(ρ1)) then ρ1(r,v) = (i, v) bad arguments
else if (fs(s) dom fo(o) ssc preserving

and [s ST or fc(s) dom fo(o)] *-property
and r m[s,o]) discretionary access control

then ρ1(r,v) = (y, (b { (s, o, r) }, m, f, h))
else ρ1(r,v) = (n, v)

• Theorem: get-read is secure
– Assume v secure

– Either v’ = v, or v’ = v with { (s, o, r) } added to accesses
• (s, o, r) must satisfy security properties to reach where it is added

• Similar rules for get-append, execute, write

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 15

31

Integrity Policy

• Principles:
– Separation of Duty: Single person can’t mess up the

system
• No coding on live system

– Separation of function
• No development on production data

– Auditing
• Controlled/audited process for updating code on production

system

• This enables validated code to maintain integrity
– But how do we ensure we’ve accomplished these?

– Is this overkill?

32

Policies

• Ring Policy
– s r o

– s w o i(o) ≤ i(s)

– s1 x s2 i(s2) ≤ i(s1)

• Low-Water-Mark Policy
– s r o i’(s) = min(i(s), i(o))

– s w o i(o) ≤ i(s)

– s1 x s2 i(s2) ≤ i(s1)

• Biba’s Model: Strict Integrity Policy
– s r o i(s) ≤ i(o)

– s w o i(o) ≤ i(s)

– s1 x s2 i(s2) ≤ i(s1)

• Theorem for induction similar to Bell-LaPadula

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 16

33

Domain-specific Policy Models

• Military Confidentiality

– Bell-LaPadula

• Database Integrity

– Clark/Wilson

• Corporate Anti-Trust

– Chinese Wall

• Clinical Information Systems

• Others?

34

What is Consistent?

• Principle of autonomy:

– Access allowed by security policy of a

component must be allowed by composition

• Principle of security:

– Access denied by security policy of a

component must be denied by composition

• Must prove new “composed” policy meets

these principles

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 17

35

Information Flow

• Information Flow: Where information can move

in the system

• How does this relate to confidentiality policy?

– Confidentiality: What subjects can see what objects

– Flow: Controls what subjects actually see

• Variable x holds information classified S

– x, information flow class of x, is S

• Confidentiality specifies what is allowed

• Information flow describes how this is enforced

36

Formal Definition

• Problem: capturing all information flow

– Files

– Memory

– Page faults

– CPU use

– ?

• Definition: Based on entropy

– Flow from x to y (times s to t) if H(xs | yt) <
H(xs | ys)

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 18

37

How do we Manage Information

Flow?

• Information flow policy
– Captures security levels

– Often based on confinement

– Principles: Reflexivity, transitivity

• Compiler-based mechanisms
– Track potential flow

– Enforce legality of flows

• Execution-based mechanisms
– Track flow at runtime

– Validate correct

38

Confinement

• Confinement Problem

– Prevent a server from leaking confidential information

• Covert Channel

– Path of communication not designed as

communication path

• Transitive Confinement

– If a confined process invokes a second process,

invokee must be as confined as invoker

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 19

39

Isolation

• Virtual machine

– Simulates hardware of an (abstract?) machine

– Process confined to virtual machine

• Simulator ensures confinement to VM

– Real example: IBM VM/SP

• Each user gets “their own” IBM 370

• Sandbox

– Environment where actions restricted to those

allowed by policy

40

Covert Channels

• Storage channel

– Uses attribute of shared resource

• Timing channel

– Uses temporal/ordering relationship of access
to shared resource

• Noise in covert channel

– Noiseless: Resource only available to
sender/receiver

– Noisy: Other subjects can affect resource

CS18000: Programming I 10/18/2010

© 2010 Chris Clifton 20

41

Modeling Covert Channels

• Noninterference
– Bell-LaPadula approach

– All shared resources modeled as subjects/objects

– Let σ Σ be states. Noninterference secure if s at
level l(s) ≡: Σ Σ such that

• σ1 ≡ σ2 view(σ1) = view(σ2)

• σ1 ≡ σ2 execution(i,σ1) ≡ execution(i,σ2)

• if i only contains instructions from subjects dominating s,
view(execution(i, σ)) = view(σ)

• Information Flow analysis
– Again model all shared resources

42

Test Taking Hints

• Open book/notes

– Pretty much any non-electronic aid allowed

• See old copies of my exams (and
solutions) at my web site

– CS 526

– CS 541

– CS 603

• Time will be tight

– Suggested “time on question” provided

