
CS 526 Information Security: Assignment 7

John Ross Wallrabenstein (jwallrab)

November 19, 2010

1 Problem 1

Outline

We begin by addressing methods for evaluat-
ing Xinu with respect to the User Data Protec-
tion requirements of the Common Criteria docu-
ments. Secondly, we address the constraints nec-
essary to secure an EAL6 certification. We are
given that the Xinu operating system has already
satisfied the requirements for an EAL5 approval,
we only address the additional constraints that
must be satisfied to obtain a rating of EAL6.
In the interest of brevity, we only list the ma-
jor section heading, rather than the specific re-
quirements we address (e.g. ADV IMP.2 rather
than ADV IMP.2.Xi). It is trivial to take the set
difference between the EAL5 and EAL6 require-
ments. We focus on discussing the specific tools,
methods and approaches an evaluator would take
to certify Xinu at the EAL6 level. For clarity, our
crucial points are emphasized, uld or printed in
bold face.

User Data Protection

Access Control Policy

The model most suited for evaluating Xinu with
respect to the Access Control Policy require-
ment is the Take-Grant Model. That is, the
Take-Grant model provides the necessary discre-
tionary access control modeling language to eval-
uate the Xinu operating system. Clearly, the
Take-Grant model requires the discretionary ac-
cess control policy be applied to the actions over

all subjects and objects. Thus, if an action is
permitted by the Xinu OS and not by its corre-
sponding Take-Grant model representation, the
requirement has not been fulfilled.

Access Control Functions

The discretionary access control policy (in this
case, Take-Grant) governs the set of permis-
sible operations with respect to the subject
and object’s identity, based on individual or
group membership. Group memberships can be
modeled through Take-Grant as special objects.
Subjects are given take rights over group objects
when they are members, and the group object
has rights over all entities in the corresponding
group. In this way, the Take-Grant discre-
tionary access control policy models the ideal
functionality of the Xinu operating system.
Should an action be permissible in the Xinu
operating system that is not permissible under
the corresponding ideal Take-Grant model, the
requirement has not been satisfied.

The requirement that the discretionary access
control policy enforce access based on identity
and group membership follows naturally from
our previous discussion of the application of the
Take-Grant model in the ideal case. Specifically,
if the Xinu operating system is modeled under
the Take-Grant model, the discretionary access
control policies specified by this requirement are
enforced. Clearly, if no rule (i.e. right) exists
in the Take-Grant model, the default response
is to deny access. This requirement can be
evaluated, under the assumption that the Xinu



operating system implements the Take-Grant
model, by evaluating the can · steal predi-
cate. If the predicate returns true for any entity
pair, then the requirement has not been satisfied.

Finally, the Take-Grant model naturally sup-
ports the final access control function require-
ments. If the Xinu operating system provides a
series of specific actions that allow administra-
tors to override the discretionary access control
policy, then the first requirement has been satis-
fied. We will not elaborate on this point, as the
specific actions are to be assigned by the devel-
oper. Clearly, the Take-Grant model allows users
to specify and control sharing of named objects
based on identity and group membership. Using
the previously mentioned method, a user may
give the grant right to a group or singular iden-
tity over entities which they are authorized to do
so.

Residual Information Protection

With respect to ensuring that information con-
tent of a resource is made unavailable upon dele-
tion to all objects, the approach for evaluation
is not clear. The NSA and Department of De-
fense state that the only acceptable method of
information removal is degaussing the physical
drive with a powerful magnet. Further, the pre-
ferred approach is physical disintegration or mu-
tilation beyond recovery. Clearly, such actions
are beyond the capabilities of Xinu. However,
we discuss two approaches for addressing this is-
sue. The first is the most basic, and is provided
by most modern operating systems. When a file
is deleted, the link to the data blocks is removed
from memory, preventing (the overwhelming ma-
jority) of users or applications from reading the
deleted information. However, it is possible that
a user or process may search free memory in an
attempt to recover the deleted information con-
tent. This leads to our second approach: secure
information deletion. This procedure provides
several levels of security based on the number
of rounds and entropy provided when overwrit-

ing the deleted information. The Department of
Defense requires a minimum of 40 rounds, us-
ing a randomized algorithm to obscure previ-
ously written bits on the disk. That is, a se-
ries of (pseudo) random elements, s ∈ {0, 1}∗,
are generated and written over the deleted infor-
mation content r times, where r is the number
of rounds specified in the requirements. How-
ever, this is clearly a gradient of security, with
fewer rounds providing reduced security, but in-
creased performance. The Xinu operating sys-
tem should be evaluated based on the level of
security required in the specifications, and the
capabilities of an operating system given widely
available hardware.

ADV IMP.2

The evaluator must verify that the developer has
provided a mapping between the TOE design de-
scription and the entire implementation repre-
sentation, demonstrating their correspondence.
This can be achieved using the software tool Ra-
tional Rhapsody, by IBM. This tool takes a
top-down approach, and allows an evaluator to
check the design. The tool guarantees consis-
tency and completeness without interaction from
the evaluator, and the subsystem-module map-
ping design is visually displayed. An alternate
tool, Enterprise Architect, provides similar
functionality.

ADV INT.3

The evaluator must verify that the entire TSF
is well-structured and is not overly complex.
The unix operating system has a natural owner-
ship based policy, which makes the Take-Grant
Model a natural application. Given that we
are dealing with a system similar to unix, any
justification significantly more complex than the
Take-Grant Model should be rejected. Similarly,
any less structured TSF should also be rejected.
While Take-Grant appears to be the most nat-
ural TSF for Xinu, any widely accepted, formal
discretionary access policy will suffice.



ADV SPM.1

To satisfy the formal security policy requirement,
we require that the developer use a widely ac-
cepted, formal security policy. Given our ar-
gument for the Take-Grant Model, we sug-
gest that this security policy be used to sat-
isfy this requirement. Any extensions must be
well documented, formalized, and shown to be
both consistent and complete with respect to
the chosen model. Other formal models, such
as Bell-LaPadula, may be used. However, we
feel that the most appropriate security policy is
Take-Grant. The Bell-LaPadula model does pro-
vide some discretionary access controls, however
it is primarily mandatory access control based.
Other models may be rejected outright (i.e. Chi-
nese Wall Model) if they are clearly not applica-
ble.

ADV TDS.5

To satisfy the design requirement of a semifor-
mal description of each module, we recommend
the use of UML: Unified Modeling Lan-
guage. That is, UML provides a natural method
for describing each module in terms of its pur-
pose, interaction, interfaces, return values, and
called interfaces to other modules. UML also
provides fields for an informal, explanatory text
string when necessary. Other methods, such as
JavaDocs, do not provide a graphical represen-
tation of the interactions between different com-
ponents by itself. The adoption of UML to sat-
isfy this requirement reduces the work necessary
for the evaluator, and presents the design in a
graphical, sufficiently minimal descriptive repre-
sentation.

ALC CMC.5

To satisfy this requirement, we propose follow-
ing Lipner’s Integrity Model. In addition
to combining Bell-LaPadula and Biba, Lipner’s
model was specifically designed for software de-
velopment and deployment. To the best of the

author’s knowledge, a more fitting and widely ac-
cepted formal model does not exist. This model
requires approval by a separate entity before
commitment. That is, the principle of separa-
tion of duty must be followed. The UML model
previously proposed will show how changes to a
component will (potentially) affect other compo-
nents in the system. To ensure that configura-
tion items are maintained under the CM system,
a bug-reporting system should be included. Fur-
ther, a repository such as CVS or SVN would
aid in both the reporting of bugs, as well as main-
taining a version identity for each implementa-
tion representation. The evaluator should verify
that the CM documentation for the specified ver-
sion includes a CM plan, and that the CM plan
describes the procedures used to accept modified
or newly created configuration items as part of
the TOE. If the above tools are demonstrated to
be in use, then the evaluator can conclude that
the CM system is being operated in accordance
with the CM plans.

ALC DVS.2

This requirement is satisfied by our recommen-
dation for widely accepted, formal security poli-
cies; specifically those suggested in ADV INT.3
and ALC CMC.5. That is, the Take-Grant
Model provides the security policy, and Lip-
ner’s Integrity Model satisfies the integrity
requirement. As these models are only sugges-
tions, if different models are selected the evalua-
tor must verify that the models meet the security
and integrity requirements.

ALC TAT.3

The evaluator must verify that an implementa-
tion standards document is provided, and pro-
vides an unambiguous description and meaning
for all conventions. Additionally, such docu-
mentation must be provided for all third party
providers that collaborated on the project. The
developer’s (resp. third party’s) implementation
standards may be proprietary, but as long as



the implementation standards define a consistent
structure, the document is acceptable. An eval-
uator is likely to cross reference the standards
documents against the code. For example, the
UML documentation will help to demonstrate
that naming conventions are followed. Similarly,
having sections of code that illustrate each im-
plementation standard prepared will help with
the evaluation process.

ATE COV.3

To satisfy this requirement, extensive testing us-
ing a large number of inputs chosen from the full
domain of possible inputs is necessary. That is,
a stress test should be run to verify that the
result of operations are consistent with the spec-
ification. Exhaustive testing is not possible; con-
sider the impossibility of such a test on a func-
tion accepting inputs from the domain R. How-
ever, bounds checking and negative testing
should be used to verify a representative sam-
ple of inputs (valid and invalid) result in a sys-
tem state consistent with the specification. The
UML documentation can easily be extended to
describe the domain of inputs a function or vari-
able expects to accept, and examples of behavior
on these and invalid inputs should be prepared.

ATE FUN.2

The evaluator must verify that the developer has
included an analysis of the test procedure order-
ing dependencies. That is, the order in which
commands are executed is potentially relevant to
their result. Technically, as long as the document
is present, the requirement has been satisfied.
However, particularly because an operating sys-
tem is under evaluation, critical commands (e.g.
chmod) should be extensively represented in the
test procedure ordering dependency document to
demonstrate compliance.

AVA VAN.5

To satisfy the requirement that the TOE is re-
sistant to attacks performed by an attacker pos-

sessing high attack potential, third party pen-
etration testing can be performed. For exam-
ple, Coverity offers penetration testing services
(in addition to other system analysis). Addition-
ally, a standard Red Team / Blue Team ap-
proach could be taken. Note that both black
box and clear box approaches should be per-
formed. That is, knowledge of the internal struc-
ture of the system may influence the actions of an
adversary. To prepare for any eventuality (given
the high attack potential), this bias can be re-
moved through third party penetration testing
both with and without knowledge of the internal
structure. Finally, the developer should ensure
that the computing and communication power of
the third party is substantial. A high attack po-
tential is assumed to have considerable resources
at their disposal; any third-party that does not
fully utilize the resources available to them has
not successfully satisfied the penetration testing
requirement.

2 Problem 2

We begin by presenting an overview of the ba-
sic security requirements a web server should at-
tempt to enforce. Using these security require-
ments, we consider the logging and auditing nec-
essary by each component to record and interpret
security breaches in a meaningful manner.

Security Requirements

1. Connections from separate users should not
be allowed to share information.

2. A failure in one connection should affect
other connections to the least degree pos-
sible.

3. Authentication failures and successes should
be logged.

4. After n authentication failures, access to
the account requires additional authoriza-
tion via phone or branch office.



5. Connections to the same account should not
occur from multiple IP addresses simultane-
ously.

6. Connections from a new computer to an ac-
count should require additional authentica-
tion and a log message.

7. Connections from bank employees should
only have access to accounts held by the em-
ployee’s branch office.

8. All transactions that change the state of
an account, initiated by employees or cus-
tomers, are logged.

9. The front end should communicate only
with the application engine, and the appli-
cation engine should communicate only with
the database.

2.a

Front End

The front end of the web server should spawn
a new application engine thread, passing the re-
quest to the new thread. In this way, a failure in
a connection is isolated from other simultaneous
connections. As the front end of the web server
is state-less, minimal logging information should
be recorded. This increases the number of re-
quests the server can accept, without sacrificing
the ability to log potential violations. That is,
as the socket is passed to the application engine,
the connection thread has access to all informa-
tion the front end is exposed to. Thus, the over-
whelming majority of the logging is performed
by the application engine. However, the front-
end should log the time and date that the web
server was started. Finally, in the event of a
”soft” crash, the web server should log the time
and date the system went down.

Application Engine

The application engine is responsible for main-
taining state throughout the duration of the con-
nection. Thus, the majority of logging occurs

within this component. Specifically, the appli-
cation engine logs authentication attempts, the
〈user id, ip addr, time, success〉 tuples, and the
attempted, failed, and completed transactions
that occur during the connection. If the con-
nection originates from a new computer with re-
spect to the account (e.g. different ip addr or
cookie), a log entry is generated. A log entry
is generated whenever the threshold n failed au-
thorizations for an account is met. Attempts by
employees to access any account (in their branch
office or not) are logged. Should a failure occur,
a log should be generated recording the state of
the connection and any information relevant to
the failure. Finally, any action that changes the
state of an account, initiated by an employee or
customer, is logged to allow the transaction to
be reversed. Optionally, if employees are allowed
to assume a higher privilege level, these changes
must be logged as well.

Database

As this is a financial web server, the ability to
reverse erroneous or fraudulent transactions is
paramount to the security of the system. Thus,
we require that all database transactions be
logged in such a manner that reversal is possi-
ble. That is, if an employee or customer is able
to execute a transaction in error or with mali-
cious intent, the system log should provide suffi-
cient information to fully reverse the transaction.
Although the reversal may not be possible (e.g.
due to insufficient funds after withdrawal), the
log allows the bank to recover from the failure in
a meaningful manner.

2.b

The auditing system should support automated
processing of the log files to detect suspicious
activity, and common fraudulent activity. Ulti-
mately, the goal is to detect violations of policy.
While our stated policy is far from complete, it
is sufficient with respect to the question domain.
Thus, we reiterate the security requirements, and
address how the auditing system analyzes the log



files to detect a violation of the stated security re-
quirement. The auditing system adopted by the
bank should attempt to follow the requirements
of the A1 classification of the TCSEC. That is,
the auditing system should have a minimal im-
pact on system performance and be highly reli-
able. Minimal impact on system performance is
palatable with respect to the client server archi-
tecture, and high reliability is desirable as sensi-
tive financial information is being processed. We
present audit mechanisms to support only those
security requirements stated below.

1. Connections from separate users should
not be allowed to share informa-
tion. As the log files will contain
〈user id, ip addr, time, success〉 tuples,
access to a separate account from the same
connection (not from an employee) will
be recorded. If the audit system detects
that a connection from a customer accessed
information from a separate connection or
account (that is not a sub-account of the
authorized account), a violation of security
has occurred.

2. A failure in one connection should affect
other connections to the least degree possi-
ble. The audit system should compare the
failure logs from the application engine and
the front end to determine if a failure in
a connection (handled by the application
engine) caused a failure of the entire web
server. If such a failure occurred, a single
connection affected other independent con-
nections and a violation has occurred.

3. Authentication failures and successes should
be logged. The audit system uses this infor-
mation to verify that the account was not
accessed (or attempted to be accessed) from
suspicious IP domains. For example, con-
nections to a U.S. citizen account from Nige-
ria would be flagged as a potential fraud vi-
olation.

4. After n authentication failures, access to
the account requires additional authoriza-

tion via phone or branch office. The audit
system should analyze accounts with signif-
icant failed authentication attempts. This
is designed to detect brute force password
attacks against accounts. Audit rules could
aggregate lists of IP addresses that attempt
to access multiple accounts without success.

5. Connections to the same account should not
occur from multiple IP addresses simultane-
ously. The audit system should detect sus-
picious activity; particularly a user attempt-
ing to access their account (sub-accounts
excluded) from multiple IP addresses si-
multaneously. This is analogous to the
fraud detection in use by major credit card
providers.

6. Connections from a new computer to an ac-
count should require additional authentica-
tion and a log message. The audit system
should detect failed attempts to access an
account from an unknown computer, and
flag them as potential fraud.

7. Connections from bank employees should
only have access to accounts held by the em-
ployee’s branch office. The audit system
should detect attempts by bank employees
to access accounts not under their branch
office control. Such events could indicate an
abuse of power, money laundering, privacy
violations, or other actions in direct conflict
with the security requirements.

8. All transactions that change the state of
an account, initiated by employees or cus-
tomers, are logged. The audit system should
verify that transactions are valid. That is,
a transfer of k units of wealth from one
account to another should move exactly k
units. The audit system should cross refer-
ence transaction logs from the application
engine with those from the database to en-
sure that a vulnerability in one system does
not go undetected by others.

9. The front end should communicate only with
the application engine, and the application



engine should communicate only with the
database. The audit system should detect
the transfer of information between unau-
thorized pairs of the system. Database ac-
cesses originating from the front end, for ex-
ample, should be detected and flagged as a
potential presence of malicious code.

3 Problem 3

3.a

Hashing

The problem states that the malware ”places the
malicious code in an audio file”, so we assume
that the audio files existed on the host computer
before the presence of the malware. Given this,
before the files were infected, they were valid
audio files. The malware must alter the audio
files to include the proper frequencies for the in-
terpreter. Thus, if a hash of the audio file was
made prior to infection, the change could be de-
tected by the host computer. This is similar to
the TripWire package, commonly used to moni-
tor system critical files for changes. If the mal-
ware is assumed to have read and write access
to the host drive, nothing prevents it from up-
dating the hash of the original audio file with
that of the infected file. Assume each audio file
is hashed prior to infection with a keyed cryp-
tographic hash function Hk, where the key to
the hash is k. Store a hash of each audio file on
the host drive as Hk(ai), where ai is the audio
file. The key k for the hash function must be
stored on some external media, to prevent the
malware from recovering it. Now, even if the
malware could overwrite the original hashes, or
generate new hashes, the key k is not present on
the drive. Thus, when the user computes Hk(ai),
the hashed values will not match allowing the al-
teration to be detected.

Logging and Audits

Assumption: The malware is only capable of al-
tering the audio files, and installing the inter-

preter. In order for the malware to successfully
”execute” an infected audio file I(ai), the file
must be read by the interpreter. Thus, if all
read accesses are logged, an audit of the log files
will reveal that the audio file I(ai) was accessed.
If the logs also contain invocations of media ap-
plications that would usually read audio files, a
discrepancy will occur. That is, a read access to
I(ai) will occur without a corresponding execu-
tion of a media application on the host. If the
audit system knows to check for such discrepan-
cies, then the presence of the malware can be
detected.

3.b

Restricting Read Access

The malware requires read access to infected
audio files I(ai) in order to execute instruc-
tions. Without read access, the interpreter can-
not transform the audio frequencies into instruc-
tions. Thus, a host could prevent an infected
audio file from being ”executed” by limiting the
read permissions for all audio files. A naive so-
lution would be to restrict read access to media
applications only, as they are the most common
reason for accessing audio files. However, this
prevents the user from copying or transferring
the audio files, as the OS needs access to the
files to do so. Rather, read access to all audio
files could be restricted unless the user autho-
rizes the action. That is, whenever a request to
read an audio file is made, the user must approve
that they wish to do so. To adhere to the princi-
ple of psychological acceptability, an authorized
media application could issue a single request to
read all audio files on the host drive upon load-
ing. Thus, the user does not have to individually
approve each audio file they wish to listen to.

Restricting Write Access

Assumption: All audio files were originally un-
infected on the host system. The malware does
not generate new audio files, but rather modifies
existing files. Similar to restricting read access



to the files, the malware could be prevented by
restricting write access to all audio files. If the
malware is unable to alter the audio files to in-
clude frequencies corresponding to instructions,
the interpreter is rendered useless. Require that
all writes to audio files on the host system be ap-
proved by the user. When the malware attempts
to write to an audio file, the user will (hopefully)
realize that they did not initiate the write and
deny the request. Again, to adhere to the princi-
ple of psychological acceptability, an authorized
media application could issue a single request to
write to all audio files on the host drive upon
loading. This may be necessary to update the
metadata stored in the audio files.


