
CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 1

CS52600: Information Security

Access Control Matrices

Prof. Chris Clifton

August 25, 2010

See Harrison, Ruzzo, Ullman CACM’76

2

Models: Access Control

• What is access control?

– Limiting who is allowed to do what

• What is an access control model?

– Specifying who is allowed to do what

• What makes this hard?

– Interactions between types of access

http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 2

3

Basics

• State: Status of the system
– Protection state: subset that deals with protection

• Access Control Matrix
– Describes protection state

• Formally:
– Objects O

– Subjects S

– Matrix A S O

• Tuple (S, O, A) defines protection states of
system

4

Access Restriction Facility

• Subject: attributes (name, role, groups)

• Verbs: possible actions

– Default rule for each verb

• Objects associated with set of verbs

– Rule for each (object, verb) pair

– Rule may be function of subject attributes

• Can be converted to Access Control

Matrix

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 3

5

Access Control Matrix:

Boolean Evaluation Example

Internal Local State

University

Long

Distance

International

Public CR R

Student CR CR R R R

Staff CR CR CR R R

Account CR CR CR CR CR

TT

T

T

Transfer

T

T

T

T

T

T

6

Description

objects (entities)

su
b
je

ct
s

s1
s2

…

sn

o1 … om s1 … sn
• Subjects S = { s1,…,sn }

• Objects O = { o1,…,om }

• Rights R = { r1,…,rk }

• Entries A[si, oj] R

• A[si, oj] = { rx, …, ry }
means subject si has
rights rx, …, ry over
object oj

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 4

7

Example 2

• Procedures inc_ctr, dec_ctr, manage

• Variable counter

• Rights +, –, call

counter inc_ctr dec_ctr manage

inc_ctr +

dec_ctr –

manage call call call

8

Boolean Expression Evaluation

• ACM controls access to database fields

– Subjects have attributes

– Verbs define type of access

– Rules associated with objects, verb pair

• Subject attempts to access object

– Rule for object, verb evaluated, grants or

denies access

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 5

9

Example

• Subject annie
– Attributes role (artist), groups (creative)

• Verb paint
– Default 0 (deny unless explicitly granted)

• Object picture
– Rule:

paint: „artist‟ in subject.role and

„creative‟ in subject.groups and

time.hour >= 0 and time.hour < 5

11

Protection State Transitions

• State Xi = (Si, Oi, Ai)

• Transitions τi

– Single transition Xi ├τi+1
Xi+1

– Series of transitions X ├* Y

• Access control matrix may change

– Change command c associated with transition

– Xi ├ci+1 (pi+1,…,pi+1)
Xi+1

• Commands often called transformation
procedures

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 6

12

Special Privileges:

Copy, Ownership

• Copy (or grant)

– Possessor can extend privileges to another

• Own right

– Possessor can change their own privileges

• Principle of Attenuation of Privilege

– A subject may not give rights it does not

possess

13

Primitive Commands
(Harrison, Ruzzo, Ullman CACM’76)

• Create Object o
– Adds o to objects with no access

– S‟=S, O‟=O {o}, (x S‟)[a‟[x,o] =],
(x S‟)(y O)[a‟[x,y] = a[x,y]]

• Create Subject s
– Adds s to objects, subjects, sets relevant access

control to

• Enter r into a[s,o]

• Delete r from a[s,o]

• Destroy subject s, destroy object o

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 7

15

Create Subject

• Precondition: s S

• Primitive command: create subject s

• Postconditions:

– S´ = S { s }, O´ = O { s }

– (y O´)[a´[s, y] =], (x S´)[a´[x, s] =]

– (x S)(y O)[a´[x, y] = a[x, y]]

16

Create Object

• Precondition: o O

• Primitive command: create object o

• Postconditions:

– S´ = S, O´ = O { o }

– (x S´)[a´[x, o] =]

– (x S)(y O)[a´[x, y] = a[x, y]]

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 8

17

Add Right

• Precondition: s S, o O

• Primitive command: enter r into a[s, o]

• Postconditions:

– S´ = S, O´ = O

– a´[s, o] = a[s, o] { r }

– (x,y SxO – { s,o }) [a´[x, y] = a[x, y]]

18

Delete Right

• Precondition: s S, o O

• Primitive command: delete r from a[s, o]

• Postconditions:

– S´ = S, O´ = O

– a´[s, o] = a[s, o] – { r }

– (x,y SxO – { s,o }) [a´[x, y] = a[x, y]]

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 9

19

Destroy Subject

• Precondition: s S

• Primitive command: destroy subject s

• Postconditions:

– S´ = S – { s }, O´ = O – { s }

– (y O´)[a´[s, y] =], (x S´)[a´[x, s] =]

– (x S´)(y O´) [a´[x, y] = a[x, y]]

20

Destroy Object

• Precondition: o o

• Primitive command: destroy object o

• Postconditions:

– S´ = S, O´ = O – { o }

– (x S´)[a´[x, o] =]

– (x S´)(y O´) [a´[x, y] = a[x, y]]

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 10

21

Creating File

• Process p creates file f with r and w

permission
command create•file(p, f)

create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];

end

22

Mono-Operational Commands

• Make process p the owner of file g
command make•owner(p, g)

enter own into A[p, g];
end

• Mono-operational command

– Single primitive operation in this command

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 11

23

Conditional Commands

• Let p give q r rights over f, if p owns f
command grant•read•file•1(p, f, q)

if own in A[p, f]
then

enter r into A[q, f];
end

• Mono-conditional command

– Single condition in this command

24

Multiple Conditions

• Let p give q r and w rights over f, if p owns
f and p has c rights over q
command grant•readwrite•file•2(p, f, q)

if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 12

CS52600: Information Security

Access Control Matrices

Decidability

Prof. Chris Clifton

August 25, 2010

See Harrison, Ruzzo, Ullman CACM’76

26

Copy Right

• Allows possessor to give rights to another

• Often attached to a right, so only applies

to that right

– r is read right that cannot be copied

– rc is read right that can be copied

• Is copy flag copied when giving r rights?

– Depends on model, instantiation of model

http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 13

27

Own Right

• Usually allows possessor to change

entries in ACM column

– So owner of object can add, delete rights for

others

– May depend on what system allows

• Can‟t give rights to specific (set of) users

• Can‟t pass copy flag to specific (set of) users

28

Attenuation of Privilege

• Principle says you can‟t give rights you do

not possess

– Restricts addition of rights within a system

– Usually ignored for owner

• Why? Owner gives herself rights, gives them to

others, deletes her rights.

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 14

29

Key Points

• Access control matrix simplest abstraction

mechanism for representing protection

state

• Transitions alter protection state

• 6 primitive operations alter matrix

– Transitions can be expressed as commands

composed of these operations and, possibly,

conditions

30

What is Secure?

• A secure system doesn‟t allow violations of

policy

– Is this a good definition?

– Can we use it?

• Alternative view: based on rights

– Start with access control matrix A

– Leak: commands can add right r to an element of A

not containing r

– Safe: System is safe with respect to r if r cannot be

leaked

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 15

31

Formally:

• Given

– initial state X0 = (S0, O0, A0)

– Set of primitive commands c

• Can we reach a state Xn where s,o such

that An[s,o] includes a right r not in A0[s,o]?

– If so, the system is not safe

– But is “safe” secure?

Are commands correctly implemented?

32

Example: Unix File System

• Access Control Matrix

– Root has access to all files

– Owner has access to their own files

• Safe with respect to file access right?

– No chmod/chown command

– Only “root” can get root privileges

– Only user can authenticate as themselves

Is “Safe” definition useful?

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 16

33

Solution: Trust

• Safety doesn‟t distinguish leak from

authorized transfer of rights

• Subjects authorized to receive transfer of

rights deemed “trusted”

– Eliminate trusted subjects from matrix

34

Decidability Result
(Harrison, Ruzzo, Ullman CACM’76)

• Given a system where each command consists
of a single primitive command, There exists an
algorithm that will determine if a protection
system with initial state X0 is safe with respect to
right r.

• Proof: determine minimum commands k to leak
– Delete/destroy: Can‟t leak (or be detected)

– Create/enter: new subjects/objects “equal”, so treat
all new subjects as one

– If n rights, leak possible, must be able to leak in
n(|S0|+1)(|O0|+1)+1 commands

• Enumerate all possible to decide

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 17

35

Decidability: Non-Primitive

Commands

• It is undecidable if a given state of a given

protection system is safe for a given generic

right

• Proof: Reduction from halting problem

– Symbols, states rights

– Tape cell subject (can create new subjects)

– Right own: si owns si+1 for 1 ≤ i < k

– Cell si A si has A rights on itself

– Cell sk sk has end rights on itself

– State p, head at si si has p rights on itself

CS52600: Information Security

Access Control Matrices

Decidability

Prof. Chris Clifton

August 25, 2010

See Harrison, Ruzzo, Ullman CACM’76

http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 18

CERIAS Student

Orientation and Welcome
• Wednesday, 1 September, 5:45-7:15 p.m., LWSN 1142

• Faculty and projects will be introduced

• Learn about the
– Official CERIAS Student Association

– New funding opportunities

• CERIAS students are expected to attend.
– Visitors, faculty and staff are welcome

• Photos will be taken
– If you have a photo url available, e.g., Departmental photo,

please send to walls@cerias.purdue.edu

• Pizza will be served
– RSVP walls@cerias.purdue.edu with number of pizza slices you

would like by 9 a.m. Wednesday, Sept 1

9/13/2010 CS52600 37

38

Example:

A B C D … s1 s2 s3 s4

s1 A own

s2 B own

s3 C, p own

s4 D, end

MatrixTuring Machine

mailto:walls@cerias.purdue.edu
mailto:walls@cerias.purdue.edu

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 19

39

Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After (k, C) = (k1, X, R)

where k is the current

state and k1 the next state

40

Command Mapping

(k, C) = (k1, X, R) at intermediate becomes

command ck,C(s3,s4)

if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]

then

delete k from A[s3,s3];

delete C from A[s3,s3];

enter X into A[s3,s3];

enter k1 into A[s4,s4];

end

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 20

41

Commands:

• Halting problem Turing Machine: Symbols A, B;
states p, q

• Cp,A(si,si-1) (move left)
– if own a[si-1,si] and p a[si,si] and A a[si,si]

• Delete p from a[si,si], A from a[si,si]

• Enter B into a[si,si], q into a[si-1,si-1]

• Similar commands for move right, move right at
end of tape

• Simulates Turing machine
– Leaks halting state halting state in the matrix

Halting state reached

This is undecidable!

42

Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After (k1, D) = (k2, Y, R)

where k1 is the current

state and k2 the next state

s5

s5

own

b k2 end

5

b

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 21

43

Command Mapping

(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(s4,s5)

if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]

then

delete end from A[s4,s4];

create subject s5;

enter own into A[s4,s5];

enter end into A[s5,s5];

delete k1 from A[s4,s4];

delete D from A[s4,s4];

enter Y into A[s4,s4];

enter k2 into A[s5,s5];

end

44

Rest of Proof

• Protection system exactly simulates a TM
– Exactly 1 end right in ACM

– 1 right in entries corresponds to state

– Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked

• If safety question decidable, then represent TM
as above and determine if qf leaks
– Implies halting problem decidable

• Conclusion: safety question undecidable

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 22

45

Other Results

(most from the same authors)

• Set of unsafe systems recursively enumerable

• Without create primitive, safety in P-SPACE

– Like halting problem reduction, but no unlimited tape

• Without delete/destroy, still undecidable

– Decidable if at most one condition allowed per

command

– Still holds if delete allowed

46

Mono-Operational Commands

• Answer: yes

• Sketch of proof:

Consider minimal sequence of commands c1,
…, ck to leak the right.

–Can omit delete, destroy

–Can merge all creates into one

Worst case: insert every right into every entry;
with s subjects and o objects initially, and n
rights, upper bound is k ≤ n(s+1)(o+1)

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 23

47

What Else Might We Add?

• Default Rule

– General default: Receive

– Object default: Call Internal

– Requires ability to override with negative and
positive access

• Time-based access

– Allow students to call on State University
system after hours?

• History-based access

48

Access Control by History

• Example: Statistical Database

– Allows queries for general statistics

– But not individual values

• Valid queries: Statistics on 20+ individuals

– Total salary of all Deans

– Salary of Computer Science Professors

• See a problem coming?

– Salary of CS Professors who aren‟t Deans

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 24

49

Solution: Query Set Overlap Control

(Dobkin, Jones & Lipton ‟79)

• Query valid if intersection of query
coverage and each previous query < r

• Given K minimum query size, r overlap:

– Need 1 + (K-1)/r queries to compromise

• Can represent as access control matrix

– Subjects: entities issuing queries

– Objects: Powerset of records

– Os(i) : objects referenced by s in queries 1..i

– A[s,o] = read iff
(1)
s

q i
q o r

O

50

Next

• Optional reading: Dobkin, Jones, and

Lipton (TODS 4(1), see course web site)

• Basic theorems on protection states

– Decidability of safety of a state with respect to

a right

• More Protection Models

CS18000: Programming I 9/13/2010

© 2010 Chris Clifton 25

51

Protection Study:

Your Homework

• What does it take to make sure your

homework is secure?

– Let‟s assume a Unix system (mentor.ics)

– Issues?

• Participation Expected!

52

Where does this leave us?

• Safety decidable for some models

– Are they practical?

• Safety only works if maximum rights
known in advance

– Policy must specify all rights someone could
get, not just what they have

– Where might this make sense?

• Next: Example of a decidable model

– Take-Grant Protection Model

