
CS18000: Programming I 11/5/2010

© 2010 Chris Clifton 1

CS52600:

Information Security

Audit

5 November 2010

Prof. Chris Clifton

CS52600

What is Auditing?

• Webster: a methodical examination and

review

• Information Security: An a-posteriori

technique to identify security violations

– How does this help maintain security?

CS18000: Programming I 11/5/2010

© 2010 Chris Clifton 2

CS52600

Issues

• What information do we need?

– After the fact – current state of system isn’t

enough

– logging

• How do we perform an Audit?

– Audit methodology

• What do we do with the results?

CS52600

Logging

• Goal: Record all information that might be
needed for an audit

– Authentication attempts
• Failed only?

– Access to trusted resources
• All? Just failed attempts?

• Log must enable detection of security
violations

– Is this enough?

CS18000: Programming I 11/5/2010

© 2010 Chris Clifton 3

CS52600

Example: Bell-LaPadula

• What must be logged?
– Action (read/write)

– Level of subject

– Level of object

• Can now check
– Read: S ≥ O

– Write: O ≥ S

• Is this necessary?
– What if system validated as not allowing illegal

read/write?

• What about change of security level?

CS52600

Logging Trusted Operations

• Secure system prevents security violations

• Trusted components: those that can

violate security

– Assumptions made to justify system secure

• Log actions by trusted components

– Change in security level

– Writes performed when not at maximum level

– All reads (why?)

CS18000: Programming I 11/5/2010

© 2010 Chris Clifton 4

CS52600

Logging: Implementation

• Log Format

– Standard

– Machine readable

– Transform to human readable

• Wrong:

– Connection blocked from 128.10.3.4 to

cs.purdue.edu

– Right: Structured format, standards

CS52600

Logging: Implementation

• Log must be protected

– Doesn’t do any good if security violations

erased from log

• Sanitization

– Remove sensitive information from log

• Why?

– Before or after logging?

CS18000: Programming I 11/5/2010

© 2010 Chris Clifton 5

CS52600

Audit

• Detect security violation

– State-based auditing: identify if state at prior

time is valid

– Transition-based auditing: Identify if prior

transition would lead to unauthorized state

• Detect attempts to breach security

– Not necessarily violations

CS52600

Using Audit Results

• Repair

– Recover critical information

– Risk mitigation

– Restore integrity

• Punish

– Identify violator

Both may demand additional logged

information

CS18000: Programming I 11/5/2010

© 2010 Chris Clifton 6

CS52600

Why Not Design a Secure System

Up Front?

• Audit catches security violations

– Why allow them in the first place?

• Possible reasons:

– (un)trusted components

– Changes in security policy

CS52600

Other types of Audit

• Logging done for many reasons

– System tuning

– Backup / failure recovery

– ?

• Can this be used for security audit?

– Example: Basic Security Module add-on to
SunOS

– Defines audit events

– Captures identity, action

CS18000: Programming I 11/5/2010

© 2010 Chris Clifton 7

CS52600

Example / Reading

• Network File System logging

– What is the policy?

– What requests logged?

– What information logged?

• Read Bishop 24.6

