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Mining Time-Series and 
Sequence Data

• Time-series database
– Consists of sequences of values or events changing with time

– Data is recorded at regular intervals

– Characteristic time-series components

• Trend, cycle, seasonal, irregular

• Applications
– Financial: stock price, inflation

– Biomedical: blood pressure

– Meteorological: precipitation
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Mining Time-Series and 
Sequence Data

Time-series plot
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Mining Time-Series and Sequence 
Data: Trend analysis

• A time series can be illustrated as a time-series graph 
which describes a point moving with the passage of time

• Categories of Time-Series Movements
– Long-term or trend movements (trend curve)

– Cyclic movements or cycle variations, e.g., business cycles

– Seasonal movements or seasonal variations

• i.e, almost identical patterns that a time series appears to 
follow during corresponding months of successive years.

– Irregular or random movements



3

CS490D Spring 2004 5

Estimation of Trend Curve

• The freehand method
– Fit the curve by looking at the graph
– Costly and barely reliable for large-scaled data mining

• The least-square method
– Find the curve minimizing the sum of the squares of 

the deviation of points on the curve from the 
corresponding data points

• The moving-average method
– Eliminate cyclic, seasonal and irregular patterns
– Loss of end data
– Sensitive to outliers
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Discovery of Trend in Time-
Series (1)  

• Estimation of seasonal variations
– Seasonal index

• Set of numbers showing the relative values of a variable during the 
months of the year

• E.g., if the sales during October, November, and December are 
80%, 120%, and 140% of the average monthly sales for the whole 
year, respectively, then 80, 120, and 140 are seasonal index 
numbers for these months

– Deseasonalized data
• Data adjusted for seasonal variations

• E.g., divide the original monthly data by the seasonal index 
numbers for the corresponding months
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Discovery of Trend in Time-
Series (2)

• Estimation of cyclic variations
– If (approximate) periodicity of cycles occurs, cyclic index can be 

constructed in much the same manner as seasonal indexes

• Estimation of irregular variations
– By adjusting the data for trend, seasonal and cyclic variations

• With the systematic analysis of the trend, cyclic, 
seasonal, and irregular components, it is possible to 
make long- or short-term predictions with reasonable 
quality
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Similarity Search in Time-
Series Analysis

• Normal database query finds exact match 
• Similarity search finds data sequences that differ only 

slightly from the given query sequence
• Two categories of similarity queries

– Whole matching: find a sequence that is similar to the query 
sequence

– Subsequence matching: find all pairs of similar sequences

• Typical Applications
– Financial market
– Market basket data analysis
– Scientific databases
– Medical diagnosis
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Data transformation

• Many techniques for signal analysis require the data to 
be in the frequency domain

• Usually data-independent transformations are used
– The transformation matrix is determined a priori

• E.g., discrete Fourier transform (DFT), discrete wavelet 
transform (DWT)

– The distance between two signals in the time domain is the 
same as their Euclidean distance in the frequency domain

– DFT does a good job of concentrating energy in the first few 
coefficients 

– If we keep only first a few coefficients in DFT, we can compute 
the lower bounds of the actual distance
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Multidimensional Indexing

• Multidimensional index
– Constructed for efficient accessing using the first few 

Fourier coefficients

• Use the index can to retrieve the sequences that 
are at most a certain small distance away from 
the query sequence

• Perform post-processing by computing the 
actual distance between sequences in the time 
domain and discard any false matches
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Subsequence Matching

• Break each sequence into a 
set of pieces of window with 
length w

• Extract the features of the 
subsequence inside the 
window

• Map each sequence to a “trail”
in the feature space

• Divide the trail of each 
sequence into “subtrails” and 
represent each of them with 
minimum bounding rectangle

• Use a multipiece assembly 
algorithm to search for longer 
sequence matches
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Enhanced similarity search 
methods

• Allow for gaps within a sequence or differences in offsets 
or amplitudes

• Normalize sequences with amplitude scaling and offset 
translation

• Two subsequences are considered similar if one lies 
within an envelope of  ε width around the other, ignoring 
outliers

• Two sequences are said to be similar if they have 
enough non-overlapping time-ordered pairs of similar 
subsequences 

• Parameters specified by a user or expert: sliding window 
size, width of an envelope for similarity, maximum gap, 
and matching fraction
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Similar time series analysis
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Steps for Performing a 
Similarity Search

• Atomic matching
– Find all pairs of gap-free windows of a small length that are 

similar

• Window stitching
– Stitch similar windows to form pairs of large similar 

subsequences allowing gaps between atomic matches

• Subsequence Ordering
– Linearly order the subsequence matches to determine whether 

enough similar pieces exist
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Similar time series analysis

VanEck International Fund Fidelity Selective Precious Metal and Mineral Fund

Two similar mutual funds in the different fund group
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Query Languages for Time 
Sequences

• Time-sequence query language
– Should be able to specify sophisticated queries like

Find all of the sequences that are similar to some sequence in class 
A, but not similar to any sequence in class B
– Should be able to support various kinds of queries: range queries, all-

pair queries, and nearest neighbor queries

• Shape definition language
– Allows users to define and query the overall shape of time sequences 
– Uses human readable series of sequence transitions or macros
– Ignores the specific details

• E.g., the pattern up, Up, UP can be used to describe increasing 
degrees of rising slopes

• Macros: spike, valley, etc.
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Sequential Pattern Mining

• Mining of frequently occurring patterns related to 
time or other sequences

• Sequential pattern mining usually concentrate 
on symbolic patterns

• Examples
– Renting “Star Wars”, then “Empire Strikes Back”, 

then “Return of the Jedi” in that order
– Collection of ordered events within an interval

• Applications
– Targeted marketing
– Customer retention
– Weather prediction
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Mining Sequences (cont.)

CustId Video sequence
1 {(C), (H)}
2 {(AB), (C), (DFG)}
3 {(CEG)}
4 {(C), (DG), (H)}
5 {(H)}

Customer-sequence

Sequential patterns with support > 0.25
{(C), (H)}

{(C), (DG)}

Map Large Itemsets
Large Itemsets MappedID
(C) 1
(D) 2
(G) 3
(DG) 4
(H) 5
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Sequential pattern mining: 
Cases and Parameters 

• Duration of a time sequence T
– Sequential pattern mining can then be confined to the data within 

a specified duration
– Ex. Subsequence corresponding to the year of 1999
– Ex. Partitioned sequences, such as every year, or every week 

after stock crashes, or every two weeks before and after a 
volcano eruption

• Event folding window w
– If w = T, time-insensitive frequent patterns are found
– If w = 0 (no event sequence folding), sequential patterns are 

found where each event occurs at a distinct time instant
– If 0 < w < T, sequences occurring within the same period w are 

folded in the analysis
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Sequential pattern mining: 
Cases and Parameters (2)

• Time interval, int, between events in the 
discovered pattern
– int = 0: no interval gap is allowed, i.e., only strictly 

consecutive sequences are found
• Ex. “Find frequent patterns occurring in consecutive weeks”

– min_int ≤ int ≤ max_int: find patterns that are 
separated by at least min_int but at most max_int

• Ex. “If a person rents movie A, it is likely she will rent movie B 
within 30 days” (int ≤ 30)

– int = c ≠ 0: find patterns carrying an exact interval
• Ex. “Every time when Dow Jones drops more than 5%, what 

will happen exactly two days later?” (int = 2)
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Episodes and Sequential 
Pattern Mining Methods

• Other methods for specifying the kinds of patterns
– Serial episodes: A → B

– Parallel episodes: A & B

– Regular expressions: (A | B)C*(D → E)

• Methods for sequential pattern mining
– Variations of Apriori-like algorithms, e.g., GSP

– Database projection-based pattern growth

• Similar to the frequent pattern growth without candidate 
generation
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Periodicity Analysis

• Periodicity is everywhere: tides, seasons, daily power 
consumption, etc.

• Full periodicity
– Every point in time contributes (precisely or approximately) to the 

periodicity
• Partial periodicit: A more general notion

– Only some segments contribute to the periodicity
• Jim reads NY Times 7:00-7:30 am every week day

• Cyclic association rules
– Associations which form cycles

• Methods
– Full periodicity: FFT, other statistical analysis methods
– Partial and cyclic periodicity: Variations of Apriori-like mining 

methods


