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Data Warehousing and OLAP 
Technology for Data Mining

• What is a data warehouse? 
• A multi-dimensional data model
• Data warehouse architecture
• Data warehouse implementation
• Further development of data cube 

technology
• From data warehousing to data mining
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What is Data Warehouse?

• Defined in many different ways, but not rigorously.

– A decision support database that is maintained separately from the 

organization’s operational database

– Support information processing by providing a solid platform of 

consolidated, historical data for analysis.

• “A data warehouse is a subject-oriented, integrated, time-variant, and 

nonvolatile collection of data in support of management’s decision-

making process.”—W. H. Inmon

• Data warehousing:

– The process of constructing and using data warehouses

CS490D 4

Data Warehouse—Subject-
Oriented

• Organized around major subjects, such as customer, 

product, sales.

• Focusing on the modeling and analysis of data for decision 

makers, not on daily operations or transaction processing.

• Provide a simple and concise view around particular 

subject issues by excluding data that are not useful in the 

decision support process.
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Data Warehouse—Integrated
• Constructed by integrating multiple, 

heterogeneous data sources
– relational databases, flat files, on-line transaction 

records
• Data cleaning and data integration techniques 

are applied.
– Ensure consistency in naming conventions, 

encoding structures, attribute measures, etc. among 
different data sources

• E.g., Hotel price: currency, tax, breakfast covered, etc.
– When data is moved to the warehouse, it is 

converted.  
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Data Warehouse—Time 
Variant

• The time horizon for the data warehouse is significantly 
longer than that of operational systems.

– Operational database: current value data.

– Data warehouse data: provide information from a historical 

perspective (e.g., past 5-10 years)

• Every key structure in the data warehouse

– Contains an element of time, explicitly or implicitly

– But the key of operational data may or may not contain “time 

element”.
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Data Warehouse—Non-
Volatile

• A physically separate store of data transformed 

from the operational environment.

• Operational update of data does not occur in the 

data warehouse environment.

– Does not require transaction processing, recovery, 

and concurrency control mechanisms

– Requires only two operations in data accessing: 

• initial loading of data and access of data.
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Data Warehouse vs. 
Heterogeneous DBMS

• Traditional heterogeneous DB integration: 
– Build wrappers/mediators on top of heterogeneous 

databases 
– Query driven approach

• When a query is posed to a client site, a meta-dictionary is 
used to translate the query into queries appropriate for 
individual heterogeneous sites involved, and the results are 
integrated into a global answer set

• Complex information filtering, compete for resources

• Data warehouse: update-driven, high 
performance
– Information from heterogeneous sources is integrated 

in advance and stored in warehouses for direct query 
and analysis



5

CS490D 9

Data Warehouse vs. 
Operational DBMS

• OLTP (on-line transaction processing)
– Major task of traditional relational DBMS
– Day-to-day operations: purchasing, inventory, banking, 

manufacturing, payroll, registration, accounting, etc.
• OLAP (on-line analytical processing)

– Major task of data warehouse system
– Data analysis and decision making

• Distinct features (OLTP vs. OLAP):
– User and system orientation: customer vs. market
– Data contents: current, detailed vs. historical, consolidated
– Database design: ER + application vs. star + subject
– View: current, local vs. evolutionary, integrated
– Access patterns: update vs. read-only but complex queries
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OLTP vs. OLAP
 OLTP OLAP 

users clerk, IT professional knowledge worker 

function day to day operations decision support 

DB design application-oriented subject-oriented 

data current, up-to-date 
detailed, flat relational 
isolated 

historical,  
summarized, multidimensional 
integrated, consolidated 

usage repetitive ad-hoc 

access read/write 
index/hash on prim. key 

lots of scans 

unit of work short, simple transaction complex query 

# records accessed tens millions 

#users thousands hundreds 

DB size 100MB-GB 100GB-TB 

metric transaction throughput query throughput, response 
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Why Separate Data 
Warehouse?

• High performance for both systems
– DBMS— tuned for OLTP: access methods, indexing, 

concurrency control, recovery
– Warehouse—tuned for OLAP: complex OLAP queries, 

multidimensional view, consolidation.
• Different functions and different data:

– missing data:  Decision support requires historical data which 
operational DBs do not typically maintain

– data consolidation:  DS requires consolidation (aggregation, 
summarization) of data from heterogeneous sources

– data quality: different sources typically use inconsistent data 
representations, codes and formats which have to be reconciled
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Data Warehousing and OLAP 
Technology for Data Mining

• What is a data warehouse? 
• A multi-dimensional data model
• Data warehouse architecture
• Data warehouse implementation
• Further development of data cube 

technology
• From data warehousing to data mining
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From Tables and Spreadsheets 
to Data Cubes

• A data warehouse is based on a multidimensional data model which 

views data in the form of a data cube

• A data cube, such as sales, allows data to be modeled and viewed in 

multiple dimensions

– Dimension tables, such as item (item_name, brand, type), or time(day, 
week, month, quarter, year) 

– Fact table contains measures (such as dollars_sold) and keys to each of 
the related dimension tables

• In data warehousing literature, an n-D base cube is called a base 

cuboid. The top most 0-D cuboid, which holds the highest-level of 

summarization, is called the apex cuboid.  The lattice of cuboids 

forms a data cube.
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Cube: A Lattice of Cuboids

all

time item location supplier

time,item

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,location
time,item,supplier

time,location,supplier

item,location,supplier

time, item, location, supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid
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Conceptual Modeling of Data 
Warehouses

• Modeling data warehouses: dimensions & measures

– Star schema: A fact table in the middle connected to a set of 

dimension tables 

– Snowflake schema:  A refinement of star schema where some 

dimensional hierarchy is normalized into a set of smaller 

dimension tables, forming a shape similar to snowflake

– Fact constellations:  Multiple fact tables share dimension tables, 

viewed as a collection of stars, therefore called galaxy schema or 

fact constellation
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Example of Star Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
state_or_province
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch
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Example of Snowflake 
Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city_key

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key
item_name
brand
type
supplier_key

item

branch_key
branch_name
branch_type

branch

supplier_key
supplier_type

supplier

city_key
city
state_or_province
country

city
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Example of Fact 
Constellation

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
province_or_state
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch

Shipping Fact Table

time_key

item_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper_key
shipper_name
location_key
shipper_type

shipper
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A Data Mining Query 
Language: DMQL

• Cube Definition (Fact Table)
define cube <cube_name> [<dimension_list>]:         

<measure_list>

• Dimension Definition ( Dimension Table )
define dimension <dimension_name> as

(<attribute_or_subdimension_list>)

• Special Case (Shared Dimension Tables)
– First time as “cube definition”
– define dimension <dimension_name> as

<dimension_name_first_time> in cube
<cube_name_first_time>



11

CS490D 21

Defining a Star Schema in 
DMQL

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, 
month, quarter, year)

define dimension item as (item_key, item_name, brand, 
type, supplier_type)

define dimension branch as (branch_key, branch_name, 
branch_type)

define dimension location as (location_key, street, city, 
province_or_state, country)
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Defining a Snowflake Schema 
in DMQL

define cube sales_snowflake [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, 
quarter, year)

define dimension item as (item_key, item_name, brand, type, 
supplier(supplier_key, supplier_type))

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location_key, street, city(city_key, 
province_or_state, country))
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Defining a Fact 
Constellation in DMQL

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), 

units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state, 

country)
define cube shipping [time, item, shipper, from_location, to_location]:

dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name, location as location 

in cube sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales
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Measures: Three Categories

• distributive: if the result derived by applying the function to n aggregate 
values is the same as that derived by applying the function on all the 
data without partitioning.

• E.g., count(), sum(), min(), max().

• algebraic: if it can be computed by an algebraic function with M
arguments (where M is a bounded integer), each of which is obtained 
by applying a distributive aggregate function.

• E.g., avg(), min_N(), standard_deviation().

• holistic: if there is no constant bound on the storage size needed to 
describe a subaggregate.

• E.g., median(), mode(), rank().
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A Concept Hierarchy: 
Dimension (location)

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity
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View of Warehouses and 
Hierarchies

Specification of 
hierarchies

• Schema hierarchy
day < {month < quarter; 

week} < year

• Set_grouping hierarchy
{1..10} < inexpensive
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Multidimensional Data

• Sales volume as a function of product, 
month, and region

P
ro

du
ct

Reg
io

n

Month

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

Office         Day

CS490D 28

A Sample Data Cube
Total annual sales
of  TVs in U.S.A.Date

Pro
du

ct

C
ou

nt
rysum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum
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Cuboids Corresponding to 
the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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Browsing a Data Cube

• Visualization
• OLAP 

capabilities
• Interactive 

manipulation
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Typical OLAP Operations

• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction

• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed data, or 
introducing new dimensions

• Slice and dice:

– project and select

• Pivot (rotate):

– reorient the cube, visualization, 3D to series of 2D planes.

• Other operations

– drill across: involving (across) more than one fact table

– drill through: through the bottom level of the cube to its back-end 
relational tables (using SQL)
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Data Warehousing and OLAP 
Technology for Data Mining

• What is a data warehouse? 
• A multi-dimensional data model
• Data warehouse architecture
• Data warehouse implementation
• Further development of data cube 

technology
• From data warehousing to data mining
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Efficient Data Cube 
Computation

• Data cube can be viewed as a lattice of cuboids  
– The bottom-most cuboid is the base cuboid

– The top-most cuboid (apex) contains only one cell

– How many cuboids in an n-dimensional cube with L levels?

• Materialization of data cube
– Materialize every (cuboid) (full materialization), none (no 

materialization), or some (partial materialization)

– Selection of which cuboids to materialize
• Based on size, sharing, access frequency, etc.

)1
1

( +∏
=

=
n

i iLT
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Cube Operation

• Cube definition and computation in DMQL
define cube sales[item, city, year]: sum(sales_in_dollars)

compute cube sales

• Transform it into a SQL-like language (with a new 
operator cube by, introduced by Gray et al.’96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year
• Need compute the following Group-Bys

(date, product, customer),
(date,product),(date, customer), (product, customer),
(date), (product), (customer)
() 

(item)(city)

()

(year)

(city, item) (city, year) (item, year)

(city, item, year)
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Cube Computation: ROLAP-
Based Method

• Efficient cube computation methods
– ROLAP-based cubing algorithms (Agarwal et al’96)
– Array-based cubing algorithm (Zhao et al’97)
– Bottom-up computation method (Beyer & Ramarkrishnan’99)
– H-cubing technique (Han, Pei, Dong & Wang:SIGMOD’01)

• ROLAP-based cubing algorithms 
– Sorting, hashing, and grouping operations are applied to the 

dimension attributes in order to reorder and cluster related tuples

– Grouping is performed on some sub-aggregates as a “partial 
grouping step”

– Aggregates may be computed from previously computed 
aggregates, rather than from the base fact table
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Multi-way Array Aggregation 
for Cube Computation

• Partition arrays into chunks (a small subcube which fits in memory). 

• Compressed sparse array addressing: (chunk_id, offset)

• Compute aggregates in “multiway” by visiting cube cells in the order 
which minimizes the # of times to visit each cell, and reduces memory 
access and storage cost.

What is the best 
traversing order 
to do multi-way 
aggregation?

A

B
29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60
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Multi-way Array Aggregation 
for Cube Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

44
28 56

40
24 52

36
20

60

B

CS490D 47

Multi-way Array Aggregation 
for Cube Computation
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Multi-Way Array Aggregation 
for Cube Computation (Cont.)

• Method: the planes should be sorted and 
computed according to their size in ascending 
order.
– See the details of Example 2.12 (pp. 75-78)
– Idea: keep the smallest plane in the main memory, 

fetch and compute only one chunk at a time for the 
largest plane

• Limitation of the method: computing well only for 
a small number of dimensions
– If there are a large number of dimensions, “bottom-up 

computation” and iceberg cube computation methods 
can be explored
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Data Warehousing and OLAP 
Technology for Data Mining

• What is a data warehouse? 
• A multi-dimensional data model
• Data warehouse architecture
• Data warehouse implementation
• Further development of data cube 

technology
• From data warehousing to data mining
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Data Warehouse Usage
• Three kinds of data warehouse applications

– Information processing

• supports querying, basic statistical analysis, and reporting using crosstabs, 
tables, charts and graphs

– Analytical processing

• multidimensional analysis of data warehouse data

• supports basic OLAP operations, slice-dice, drilling, pivoting

– Data mining

• knowledge discovery from hidden patterns 

• supports associations, constructing analytical models, performing 
classification and prediction, and presenting the mining results using 
visualization tools.

• Differences among the three tasks
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From On-Line Analytical Processing to 
On Line Analytical Mining (OLAM)

• Why online analytical mining?
– High quality of data in data warehouses

• DW contains integrated, consistent, cleaned data

– Available information processing structure 
surrounding data warehouses

• ODBC, OLEDB, Web accessing, service facilities, reporting 
and OLAP tools

– OLAP-based exploratory data analysis
• mining with drilling, dicing, pivoting, etc.

– On-line selection of data mining functions
• integration and swapping of multiple mining functions, 

algorithms, and tasks.
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Discovery-Driven 
Exploration of Data Cubes

• Hypothesis-driven
– exploration by user, huge search space

• Discovery-driven (Sarawagi, et al.’98)
– Effective navigation of large OLAP data cubes
– pre-compute measures indicating exceptions, guide 

user in the data analysis, at all levels of aggregation
– Exception: significantly different from the value 

anticipated, based on a statistical model
– Visual cues such as background color are used to 

reflect the degree of exception of each cell
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Examples: Discovery-Driven 
Data Cubes
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Summary
• Data warehouse
• A multi-dimensional model of a data warehouse

– Star schema, snowflake schema, fact constellations
– A data cube consists of dimensions & measures

• OLAP operations: drilling, rolling, slicing, dicing 
and pivoting

• OLAP servers: ROLAP, MOLAP, HOLAP
• Efficient computation of data cubes

– Partial vs. full vs. no materialization
– Multiway array aggregation
– Bitmap index and join index implementations

• Further development of data cube technology
– Discovery-drive and multi-feature cubes
– From OLAP to OLAM (on-line analytical mining)
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