
Tools for Privacy Preserving Distributed Data Mining

Chris Clifton, Murat Kantarcioglu,
Jaideep Vaidya
Purdue University

Department of Computer Sciences
250 N University St

West Lafayette, IN 47907-2066 USA

(clifton, kanmurat,
jsvaidya)@cs.purdue.edu

Xiaodong Lin, Michael Y. Zhu
Purdue University

Department of Statistics
150 N University St

West Lafayette, IN 47907-2067 USA

(linxd, yuzhu)@stat.purdue.edu

ABSTRACT
Privacy preserving mining of distributed data has numerous
applications. Each application poses different constraints:
What is meant by privacy, what are the desired results, how
is the data distributed, what are the constraints on collab-
oration and cooperative computing, etc. We suggest that
the solution to this is a toolkit of components that can be
combined for specific privacy-preserving data mining appli-
cations. This paper presents some components of such a
toolkit, and shows how they can be used to solve several
privacy-preserving data mining problems.

Keywords
Privacy, Security

1. INTRODUCTION
Data mining has operated on a data warehousing model of
gathering all data into a central site, then running an algo-
rithm against that data. Privacy considerations may prevent
this approach. For example, the Centers for Disease Control
may want to use data mining to identify trends and patterns
in disease outbreaks, such as understanding and predicting
the progression of a flu epidemic. Insurance companies have
considerable data that would be useful – but are unwilling
to disclose this due to patient privacy concerns. An alter-
native is to have each of the insurance companies provide
some sort of statistics on their data that cannot be traced
to individual patients, but can be used to identify the trends
and patterns of interest to the CDC.
Privacy-preserving data mining has emerged to address this
issue, with several papers in the past few years as well as
articles in the popular press[7; 10]. One approach is to al-
ter the data before delivering it to the data miner, this is
discussed elsewhere in this issue[8]. The second approach as-
sumes the data is distributed between two or more sites, and
these sites cooperate to learn the global data mining results
without revealing the data at their individual sites. This ap-
proach was first introduced to the data mining community
by Lindell and Pinkas[13], with a method that enabled two
parties to build a decision tree without either party learning
anything about the other party’s data, except what might

be revealed through the final decision tree. We have since
developed techniques for association rules[12; 17], cluster-
ing, k-nearest neighbor classification, and are working on
others.

In our research on this subject, we have come to two obser-
vations that we feel should guide further work:

1. For each data mining approach, there are many in-
teresting privacy-preserving distributed data mining
problems. For example, Näıve Bayes is a classic ap-
proach to classification. However, the way the data is
partitioned between parties, varied privacy constraints,
and communication/computation considerations lead
to several privacy-preserving solutions to Näıve Bayes.

2. While there may be many different data mining tech-
niques, they often perform similar computations at
various stages (e.g., counting the number of items in
a subset of the data shows up in both association rule
mining and learning decision trees.)

From observation 1, we feel the current approach of develop-
ing and publishing solutions to individual privacy-preserving
data mining problems will generate more papers than real-
world solutions. While such research is necessary to under-
stand the problem, a myriad of solutions is difficult to trans-
fer to industry. Observation 2 suggests an answer: build a
toolkit of privacy-preserving distributed computation tech-
niques, that can be assembled to solve specific real-world
problems. If such component assembly can be simplified to
the point where it qualifies as development rather than re-
search, practical use of privacy-preserving distributed data
mining will become widely feasible.
This paper presents some early steps toward building such a
toolkit. In Section 2 we describe several privacy-preserving
computations. Section 3 shows several instances of how
these can be used to solve privacy-preserving distributed
data mining problems. We will also present promising fu-
ture directions: tools that are needed, problems to be solved,
and how to take this from research into development. First,
though, we will discuss a formalism that enables us to cap-
ture and analyze what is meant by privacy-preserving dis-
tributed data mining.

1.1 Secure Multiparty Computation
The concept of Secure Multiparty Computation was intro-
duced in [18]. The basic idea of Secure Multiparty Com-

SIGKDD Explorations. Volume 4, Issue 2 - page 1

putation is that a computation is secure if at the end of
the computation, no party knows anything except its own
input and the results. One way to view this is to imag-
ine a trusted third party – everyone gives their input to
the trusted party, who performs the computation and sends
the results to the participants. Now imagine that we can
achieve the same result without having a trusted party. Ob-
viously, some communication between the parties is required
for any interesting computation – how do we ensure that this
communication doesn’t disclose anything? The answer is to
allow non-determinism in the exact values sent in the in-
termediate communication (e.g., encrypt with a randomly
chosen key), and demonstrate that a party with just its own
input and the result can generate a “predicted” intermedi-
ate computation that is as likely as the actual values. This
has been shown possible[18; 9], however the general method
given does not scale well to data mining sized problems.

A detailed discussion of Secure Multiparty Computation is
given elsewhere in this issue[14], and we encourage readers
who want a deep understanding of the following material to
start with that article. We now give some examples of pri-
vacy preserving computations, show some of the subtleties
involved in ensuring that such a computation is truly secure.

2. TECHNIQUES
We present here four efficient methods for privacy-preserving
computations that can be used to support data mining. Not
all are truly secure multiparty computations – in some, in-
formation other than the results is revealed – but all do have
provable bounds on the information released. In addition,
they are efficient : the communication and computation cost
is not significantly increased through addition of the privacy
preserving component.

This is by no means an exhaustive list of efficient secure mul-
tiparty computations. Some other examples can be found
in [3; 6]. They are sufficient, however, to allow us to present
several privacy-preserving solutions to data mining problems
in Section 3.

2.1 Secure Sum
Secure sum is often given as a simple example of secure mul-
tiparty computation[16]. We include it here because of its
applicability to data mining (see Sections 3.1 and 3.3), and
because it demonstrates the difficulty and subtlety involved
in making and proving a protocol secure.

Distributed data mining algorithms frequently calculate the
sum of values from individual sites. Assuming three or more
parties and no collusion, the following method securely com-
putes such a sum.

Assume that the value v =
∑s

l=1 vl to be computed is known
to lie in the range [0..n].

One site is designated the master site, numbered 1. The
remaining sites are numbered 2..s. Site 1 generates a random
number R, uniformly chosen from [0..n]. Site 1 adds this to
its local value v1, and sends the sum R + v1 mod n to site
2. Since the value R is chosen uniformly from [1..n], the
number R + v1 mod n is also distributed uniformly across
this region, so site 2 learns nothing about the actual value
of v1.

For the remaining sites l = 2..s − 1, the algorithm is as

Site 2

-5

Site 3

7

Site 1

0

R+0

R=17

17-5

12+7

19

19-R=2!

Figure 1: Secure computation of a sum.

follows. Site l receives

V = R +
l−1∑

j=1

vj mod n.

Since this value is uniformly distributed across [1..n], i learns
nothing. Site i then computes

R +
l∑

j=1

vj mod n = (vj + V) mod n

and passes it to site l + 1.

Site s performs the above step, and sends the result to site 1.
Site 1, knowing R, can subtract R to get the actual result.
Note that site 1 can also determine

∑s
l=2 vl by subtracting

v1. This is possible from the global result regardless of how
it is computed, so site 1 has not learned anything from the
computation. Figure 1 depicts how this method operates.
This method faces an obvious problem if sites collude. Sites
l − 1 and l + 1 can compare the values they send/receive
to determine the exact value for vl. The method can be
extended to work for an honest majority. Each site divides
vl into shares. The sum for each share is computed individ-
ually. However, the path used is permuted for each share,
such that no site has the same neighbor twice. To compute
vl, the neighbors of l from each iteration would have to col-
lude. Varying the number of shares varies the number of
dishonest (colluding) parties required to violate security.

2.2 Secure Set Union
Secure union methods are useful in data mining where each
party needs to give rules, frequent itemsets, etc., without
revealing the owner. The union of items can be evaluated
using SMC methods if the domain of the items is small.
Each party creates a binary vector where 1 in the ith entry
represents that the party has the ith item. After this point,
a simple circuit that or’s the corresponding vectors can be
built and it can be securely evaluated using general secure
multi-party circuit evaluation protocols. However, in data
mining the domain of the items is usually large. To over-
come this problem a simple approach based on commutative
encryption is used. An encryption algorithm is commutative
if given encryption keys K1, . . . , Kn ∈ K, for any m in do-

SIGKDD Explorations. Volume 4, Issue 2 - page 2

E1(C)

E3(E1(C))E2(E3(E1(C))) 2
D

1
C

3
C

E2(E3(C))
E2(E3(D))

E3(C)
E3(D)

C
D

Figure 2: Determining the Union of a set of items.

main M , and for any permutation i, j, the following two
equations hold:

EKi1
(. . . EKin

(M) . . .) = EKj1
(. . . EKjn

(M) . . .) (1)

∀M1, M2 ∈ M such that M1 6= M2 and for given k, ε < 1
2k

Pr(EKi1
(. . . EKin

(M1) . . .) = EKj1
(. . . EKjn

(M2) . . .)) < ε

(2)
With shared p the Pohlig-Hellman encryption scheme[15]
satisfies the above equations, but any other commutative
encryption scheme can be used.

The main idea is that each site encrypts its items. Each site
then encrypts the items from other sites. Since equation
1 holds, duplicates in the original items will be duplicates
in the encrypted items, and can be deleted. (Due to equa-
tion 2, only the duplicates will be deleted.) In addition,
the decryption can occur in any order, so by permuting the
encrypted items we prevent sites from tracking the source
of an item. The algorithm for evaluating the union of the
items is given in Algorithm 1, and an example is shown in
Figure 2.

Clearly algorithm 1 finds the union without revealing which
item belongs to which site. It is not, however, secure under
the definitions of secure multi-party computation. It reveals
the number of items that exist commonly in two sites, e.g. if
k sites have an item in common, there will be an (encrypted)
item duplicated k times. This does not reveal which items
these are, but a truly secure computation (as good as each
site giving its input to a “trusted party”) could not reveal
even this count. Allowing innocuous information leakage
(the number of items that is owned by two sites) allows an
algorithm that is sufficiently secure with much lower cost
than a fully secure approach.

We can prove that other than the size of intersections and
the final result, nothing is revealed. By assuming that the
count of duplicated items is part of the final result, a Secure
Multiparty Computation proof is possible.

2.3 Secure Size of Set Intersection
Consider several parties having their own sets of items from
a common domain. The problem is to securely compute the
cardinality/size of the intersection of these local sets.

Formally, given k parties P1 . . . Pk having local sets S1 . . . Sk,
we wish to securely compute |S1 ∩ · · · ∩ Sk|. We can do this
is using a parametric commutative one way hash function.
One way of getting such a hash function is to use commu-
tative public key encryption, such as Pohlig Hellman, and

Algorithm 1 Finding secure union of items

Require: N is number of sites and Union set = ∅ initially
{Encryption of all the rules by all sites}
for each site i do

for each X ∈ Si do

M = newarray[N] ;
Xp = encrypt(X, ei) ;
M [i] = 1 ;
Union set

⋃
(Xp,M);

end for

end for{Site i encrypts its items and adds them to the
global set. Each site then encrypts the items it has not
encrypted before}

for each site i do

for each tuple (r,M) ∈ Union set do

if M[i] == 0 then

rp=encrypt(r,ei);
M[i]=1;
Mp= M ;
Union set=(Union set-{(r,M)})

⋃
{(rp,Mp)};

end if

end for

end for

for (r,M) ∈ Union set and (rp,Mp) ∈ Union set do

{check for duplicates}
if r==rp then

Union set= Union set-{(r,M)} {Eliminate duplicate
items before decrypting};

end if

end for

for each site i do {Each site decrypts every item to get
the union of items}

for all (r,M) ∈ Union set do

rd = decrypt(r,di) ;
Union set=(Union set-{(r,M)})

⋃
{(rd)};

end for

permute elements in the Union set
end for

return Union set

SIGKDD Explorations. Volume 4, Issue 2 - page 3

throw away the decryption keys. Commutative encryption
has already been described in detail in Section 2.2.
All k parties locally generate their public key-pair (Ei, Di)
for a commutative encryption scheme. (They can throw
away their decryption keys since these will never be used.)
Each party encrypts its items with its key and passes it along
to the other parties. On receiving a set of (encrypted) items,
a party encrypts each item and permutes the order before
sending it to the next party. This is repeated until every
item has been encrypted by every party. Since encryption
is commutative, the resulting values from two different sets
will be equal if and only if the original values were the same
(i.e., the item was present in both sets). Thus, we need only
count the number of values that are present in all of the
encrypted itemsets. This can be done by any party. None of
the parties is able to know which of the items are present in
the intersection set because of the encryption. The complete
protocol is shown in algorithm 2.

Algorithm 2 Securely computing size of intersection set

Require: k sites
Require: each site has a local set Si

Generate the commutative encryption key-pair (Ei, Di)
{Throw away the decryption keys, since they will not be
needed.}
M = Si

for k − 1 steps do

M ′ = newarray[|M |]
j=0;
for each X ∈ M do

M ′[j + +] = encrypt(X,Ei)
end for

permute the array M ′ in some random order
send the array M ′ to site i + 1 mod k
receive array M from site i − 1 mod k

end for

M ′ = newarray[|M |]
j=0;
for each X ∈ M do

M ′[j + +] = encrypt(X,Ei)
end for

permute the array M ′ in some random order
send M ′ to site i mod 2 {This prevents a site from seeing
it’s own encrypted items}
sites 0 and 1 produce array I0 and I1 containing only
(encrypted) items present in all arrays received.
site 1 sends I1 to site 0
site 0 broadcasts the result |I0 ∪ I1|

2.4 Scalar Product
Scalar product is a powerful component technique. Many
data mining problems can essentially be reduced to com-
puting the scalar product. One example of this, reducing
association rule mining to scalar product computation, will
be discussed in Section 3.2. The problem can be formally
defined as follows: Assume 2 parties P1 and P2 each have
a vector of cardinality n; i.e. P1 has ~X = (x1 . . . xn) and

P2 has ~Y = (y1 . . . yn). The problem is to securely com-
pute the scalar product of the two vectors, i.e.,

∑n
i=1 xi ∗yi.

Recently, there has been a lot of research into this prob-
lem, which has given rise to many different solutions with

varying degrees of accuracy, communication cost and secu-
rity[3; 11; 17]. Note that all of these techniques are limited
to the 2-party version of the problem and cannot easily be
extended to the general case. In [3] the problem is mod-
eled as Secure Multiparty Computation and the present a
solution using cryptographic techniques (oblivious transfer).
This, however, is not very efficient. The key insight in [17]
is to use linear combinations of random numbers to disguise
vector elements and then do some computations to remove
the effect of these randoms from the result. The solution is
briefly explained in algorithm 3. Though this method does
reveal more information than just the input and the result,
it is efficient and suited for large data sizes, thus being useful
for data mining.

Algorithm 3 Computing the scalar product

Require: N=2 is number of sites, site A and site B
Require: Each site has a vector of cardinality n. Thus,
Require: A has ~X = (x1, . . . , xn) and

Require: B has ~Y = (y1, . . . , yn)
Both A and B together decide on a random n×n/2 matrix
C
for Site A do

A generates a random vector R of cardinality n/2 (~R =
R1, . . . , Rn/2)
A generates the n×1 addition matrix X ′ by multiplying
C with R (i.e. X ′ = C × R)
A generates X ′′ = X + X ′

A sends X ′′ to B
end for{First message from A to B}
for Site B do

B generates the scalar product S′ of X ′′ and Y (i.e.
S′ =

∑n
i=1 x′′

i ∗ yi)

B also generates the n × 1 matrix Y ′ = CT × Y
B sends both S′ and Y ′ to A

end for{First message from B to A}
for Site A do

A generates the subtraction factor S′′ =
∑n

i=1 Y ′

i ∗ Ri

A generates the required scalar product S = S′ − S′′

A reports the scalar product S to B
end for{Second message from A to B}

While the general m-party case of the scalar product is an
easily stated problem, none of the solutions suggested so far
can be easily extended to solve the general problem.

3. APPLICATIONS
We now demonstrate how the above protocols can be used to
make several standard data mining algorithms into privacy-
preserving distributed data mining algorithms.

3.1 Association rules in horizontally partitioned
data

We address association rule mining as defined in [1]: Let
I = {i1, i2, . . . , in} be a set of items and DB be a set of
transactions, where each transaction T ∈ DB is an itemset
such that T ⊆ I. Given an itemset X ⊆ I, a transaction T
contains X if and only if X ⊆ T . An association rule is an
implication of the form X ⇒ Y where X ⊆ I, Y ⊆ I and
X∩Y = ∅. The rule X ⇒ Y has support s in the transaction
database DB if s% of the transactions in DB contain X∪Y .
The rule has confidence c if c% of the transactions in DB

SIGKDD Explorations. Volume 4, Issue 2 - page 4

that contain X also contains Y. An itemset X with k items is
called a k-itemset. The problem of mining association rules
is to find all rules whose support and confidence are higher
than a specified minimum support and confidence.
In a horizontally partitioned database, the transactions are
distributed among n sites. The global support count of an
item set is the sum of all the local support counts. An
itemset X is globally supported if the global support count
of X is bigger than s% of the total transaction database
size. The global confidence of a rule X ⇒ Y can be given as
{X ∪ Y } .sup/X.sup. A k-itemset is called a globally large
k-itemset if it is globally supported.
The aim of distributed association rule mining is to find all
rules whose global support and global confidence are higher
than the user specified minimum support and confidence.
The FDM algorithm [4] is a fast method for distributed min-
ing of association rules. We summarize this below:

1. Candidate Set Generation: Intersect the globally
large itemsets of size k − 1 with locally large k − 1
itemsets to get candidates. From these, use the clas-
sic apriori candidate generation algorithm to get the
candidate k itemsets.

2. Local Pruning: For each X in the local candidate
set, scan the local database to compute the local sup-
port of X. If X is locally large, it is included in the
locally large itemset list.

3. Itemset Exchange: Broadcast locally large itemsets
to all sites – the union of locally large itemsets, a su-
perset of the possible global frequent itemsets. (It is
clear that if X is supported globally, it will be sup-
ported at least at one site.) Each site computes (using
apriori) the support of items in union of the locally
large itemsets.

4. Support Count Exchange: Broadcast the computed
supports. From these, each site computes globally
large k-itemsets.

The above algorithm avoids disclosing individual transac-
tions, but does expose significant information about the
rules supported at each site. Our goal is to approximate
the efficiency of the above algorithm, without requiring that
any site disclose its locally large itemsets, support counts or
transaction sizes.

Our algorithm basically modifies the above outlined method.
In the Itemset Exchange step, the secure union algorithm
of Section 2.2 will be used to get the secure union. After this
step, the globally supported itemsets can be easily found by
a secure sum. Since the goal is to determine if the support
exceeds a threshold, rather than learn exact support, we al-
ter the algorithm slightly. Instead of sending R +

∑
vi to

site 1, site k performs a secure comparison with site 1 to
see if R +

∑
vi ≥ R. If so, the support threshold is met.

The confidence of large itemsets can also be found using this
method. We would like to emphasize that if the goal is to
have a totally secure method, the union step would have
to be eliminated. However, using the secure union method
gives higher efficiency with provably controlled disclosure of
some minor information (i.e., the number of duplicate items
and the candidate sets.) The validity of even this disclosed
information can be reduced by noise addition. Basically,

each site can add some fake large itemsets to its actual lo-
cally large itemsets. In the pruning phase, the fake items
will be eliminated.
This gives a brief, oversimplified idea of how the method
works. Full discussion can be found in [12].

3.2 Association rules in vertically partitioned
data

Mining private association rules from vertically partitioned
data, where the items are partitioned and each itemset is
split between sites, can be done by extending the existing
apriori algorithm. Most steps of the apriori algorithm can
be done locally at each of the sites. The crucial step in-
volves finding the support count of an itemset. If we can
securely compute the support count of an itemset, we can
check if the support is greater than threshold, and decide
whether the itemset is frequent. Using this, we can easily
mine association rules securely.

Consider the entire transaction database to be a boolean ma-
trix where 1 represents the presence of that item (column) in
that transaction (row), while 0 correspondingly represents
an absence. The key insight is as follows: The support count
of an itemset is exactly the scalar product of the vectors
representing the sub-itemsets with both parties. Thus, if we
can compute the scalar product securely, we can compute
the support count. Full details are given in [17].

Another way of finding the support count is as follows: Let
party i represent its sub-itemset as a set Si which con-
tains only those transactions which support the sub-itemset.
Then the size of the intersection set of all these local sets
(|S|, S = ∩n

i=1Si), gives the support count of the itemset.
This can be done using the protocol in Section 2.3.
These protocols assume a semi-honest model, where the par-
ties involved will honestly follow the protocol but can later
try to infer additional information from whatever data they
receive through the protocol. One result of this is that par-
ties are not allowed to give spurious input to the protocol. If
a party is allowed to give spurious input, they can probe to
determine the value of a specific item at other parties. For
example, if a party gives the input (0, . . . , 0, 1, 0, . . . , 0), the
result of the scalar product (1 or 0) tells the malicious party
if the other party the transaction corresponding to the 1.
Attacks of this type can be termed probing attacks. All of
the protocols currently suggested in the literature are sus-
ceptible to probing attacks. Better techniques which work
even in the malicious model are needed to guard against
this.

3.3 EM Clustering
We present a privacy preserving EM algorithm for secure
clustering. Only the one dimensional case is shown; exten-
sion to multiple dimensions is straight forward. The conven-
tion for notations of the paper is given in Table 1 while i, j, l
are the indexes for the mixture component, data points and
distributed sites respectively. t denotes the iteration step.

From conventional EM mixture models for clustering, we
assume that data yj are partitioned across s sites (1 ≤ l ≤
s). Each site has nl data items, where summation over all

the sites gives n. To obtain a global estimation for µ
(t+1)
i ,

σ2
i
(t+1)

, and π
(t+1)
i (the E step) requires only the global

SIGKDD Explorations. Volume 4, Issue 2 - page 5

Table 1: Convention for symbols.
k Total number of mixture components (clusters).
s Total number of distributed sites.
n Total number of data points.
nl Total number of data points for site l.
yj Observed data points for the one dimensional case.
µi Mean for cluster i in the one-dimensional case.
σ2

i Variance for cluster i in the one dimensional case.
πi Estimate of proportion of items in cluster i.
zij Cluster membership. If yj ∈ cluster i, zij ≈ 1,

else zij ≈ 0.

values n and

n∑

j=1

z
(t)
ij yj =

s∑

l=1

nl∑

j=1

z
(t)
ijlyj (3)

n∑

j=1

z
(t)
ij =

s∑

l=1

nl∑

j=1

z
(t)
ijl (4)

n∑

j=1

z
(t)
ij (yj − µ

(t+1)
i)2 =

s∑

l=1

nl∑

j=1

z
(t)
ijl (yj − µ

(t+1)
i)2 (5)

Observe that the second summation in each of the above
equations is local:

Ail =

nl∑

j=1

z
(t)
ijlyj (6)

Bil =

nl∑

j=1

z
(t)
ijl (7)

Cil =

nl∑

j=1

z
(t)
ijl (yj − µ

(t+1)
i)2 (8)

It is easy to see that sharing these values across sites does not
reveal yj . Furthermore, it is not necessary to share nl, Ail,
Bil, and Cil, but only to compute the global sums. Section
2.1 shows how to compute these summations securely.
The estimation step giving z can be partitioned and com-
puted locally given global µi, σ2

i , and πi:

z
(t+1)
ijl =

π
(t)
i fi(yj ; µ

(t)
i , σ2

i
(t)

)
∑

i π
(t)
i fi(yj ; µ

(t)
i , σ2

i
(t)

)
(9)

where yj is a data point at site l. The E-step and M-step
iterate until

|L(t+1) − L(t)| ≤ ε. (10)

where

L(t)(θ(t), z(t)|y) =
n∑

j=1

k∑

i=1

{z(t)
ij [log πifi(y

(t)
j |θ(t))]}. (11)

Algorithm 4 summarizes the method.

4. CONCLUDING REMARKS
We believe it is feasible to construct a toolkit of privacy pre-
serving computations that can be used to build data mining
techniques. As we have seen, there are still many subtleties
involved – simply performing one secure computation, then
using those results to perform another, reveals intermediate

Algorithm 4 Secure EM Algorithm.

At each site l, ∀i=1..nl,j=1..k randomly initialize zijl to 0
or 1.
Use secure sum of Section 2.1 to compute n =

∑s
l=1 nl

t = 0
while Threshold criterion of log likelihood not met do

for all i = 1..k do

At each site l, calculate A
(t+1)
il and B

(t+1)
il using equa-

tions (6) and (7).

Use secure sum to calculate A
(t+1)
i and B

(t+1)
i .

Site 1 uses these to compute µ
(t+1)
i and broadcasts it

to all sites.
Each site l calculates C

(t+1)
il using equation (8).

Use secure sum to calculate C
(t+1)
i .

Site 1 calculates σ2
i
(t+1)

and π
(t+1)
i and broadcasts

them to all sites.
At each site l, ∀j=1..nl

update z
(t+1)
ijl using equation

(9).
end for

t = t + 1
Calculate the log likelihood difference using equation
(10) and (11).

end while

information that is not part of the final results. The result-
ing data mining technique no longer meets the definition of
a secure multiparty computation – how can we state that it
is privacy-preserving? One solution is to define the interme-
diate information as part of the “results”, enabling a secure
multiparty computation proof that nothing else is revealed.
Then we can evaluate if the real results and the extra inter-
mediate information violate privacy constraints – if not, the
resulting technique is sufficient. This gives us the ability to
guarantee controlled disclosure.

This becomes more difficult with iterative techniques. The
intermediate results from several iterations may reveal a lot
of information; showing that this does not violate privacy
may be difficult or impossible. The general approach of [18]
may provide a solution: split the intermediate results into
randomly-determined “shares”, combining the shares only
at the end of the computation. Still open is to determine if
data mining techniques can be partitioned so that indepen-
dently computed shares of a result will converge to results
that when combined give the desired global result.
We are also working on a framework generalized from [2],
which uses distortion to protect data privacy and still esti-
mate the original distribution. Assume we are calculating
function f from site 1 containing data X and site 2 contain-
ing data Y . X and Y are contaminated by ε1 and ε2 respec-
tively. It is now a classical optimization problem where we
would like to find ε1 and ε2 such that:

E‖f(X + ε1, Y + ε2) − f(X, Y)‖

is minimized while V ar(ε1) and V ar(ε2) are maximized.
Generalizing into this framework will allow us to better as-
sess the level of privacy and security of a protocol and build
analytical results for each f of interest.

We are continuing work in this area, both to develop new
tools for building privacy preserving data mining techniques,
and to demonstrate new applications for this technology.
There are still many challenges in this area, such as defining

SIGKDD Explorations. Volume 4, Issue 2 - page 6

privacy constraints[5]. As an example of the potential dif-
ficulties, imagine a scenario where the data mining results
violate privacy. Secure multiparty computation definitions
do not solve the problem. We look forward to seeing ex-
panded research in this field.

5. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, Santiago,
Chile, Sept. 12-15 1994. VLDB.

[2] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proceedings of the 2000 ACM SIGMOD
Conference on Management of Data, pages 439–450,
Dallas, TX, May 14-19 2000. ACM.

[3] M. J. Atallah and W. Du. Secure multi-party computa-
tional geometry. In Seventh International Workshop on
Algorithms and Data Structures (WADS 2001), Provi-
dence, Rhode Island, USA, Aug. 8-10 2001.

[4] D. W.-L. Cheung, J. Han, V. Ng, A. W.-C. Fu, and
Y. Fu. A fast distributed algorithm for mining as-
sociation rules. In Proceedings of the 1996 Interna-
tional Conference on Parallel and Distributed Informa-
tion Systems (PDIS’96), Miami Beach, Florida, USA,
Dec. 1996.

[5] C. Clifton, M. Kantarcioglu, and J. Vaidya. Defining
privacy for data mining. In H. Kargupta, A. Joshi,
and K. Sivakumar, editors, National Science Founda-
tion Workshop on Next Generation Data Mining, pages
126–133, Baltimore, MD, Nov. 1-3 2002.

[6] W. Du and M. J. Atallah. Privacy-preserving cooper-
ative scientific computations. In 14th IEEE Computer
Security Foundations Workshop, pages 273–282, Nova
Scotia, Canada, June 11-13 2001.

[7] A. Eisenberg. With false numbers, data crunchers try
to mine the truth. New York Times, July 18 2002.

[8] S. Evfimievski. Randomization techniques for privacy-
preserving association rule mining. SIGKDD Explo-
rations, 4(2), Dec. 2002.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game - a completeness theorem for protocols
with honest majority. In 19th ACM Symposium on the
Theory of Computing, pages 218–229, 1987.

[10] M. Hamblen. Privacy algorithms: Technology-based
protections could make personal data impersonal. Com-
puterworld, Oct. 14 2002.

[11] I. Ioannidis, A. Grama, and M. Atallah. A secure
protocol for computing dot-products in clustered and
distributed environments. In The 2002 International
Conference on Parallel Processing, Vancouver, British
Columbia, Aug. 18-21 2002.

[12] M. Kantarcioglu and C. Clifton. Privacy-preserving dis-
tributed mining of association rules on horizontally par-
titioned data. In The ACM SIGMOD Workshop on Re-
search Issues on Data Mining and Knowledge Discovery
(DMKD’02), pages 24–31, June 2 2002.

[13] Y. Lindell and B. Pinkas. Privacy preserving data min-
ing. In Advances in Cryptology – CRYPTO 2000, pages
36–54. Springer-Verlag, Aug. 20-24 2000.

[14] B. Pinkas. Cryptographic techniques for privacy-
preserving data mining. SIGKDD Explorations, 4(2),
Dec. 2002.

[15] S. C. Pohlig and M. E. Hellman. An improved algorithm
for computing logarithms over GF(p) and its crypto-
graphic significance. IEEE Transactions on Informa-
tion Theory, IT-24:106–110, 1978.

[16] B. Schneier. Applied Cryptography. John Wiley & Sons,
2nd edition, 1995.

[17] J. S. Vaidya and C. Clifton. Privacy preserving asso-
ciation rule mining in vertically partitioned data. In
The Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 639–
644, July 23-26 2002.

[18] A. C. Yao. How to generate and exchange secrets. In
Proceedings of the 27th IEEE Symposium on Founda-
tions of Computer Science, pages 162–167. IEEE, 1986.

SIGKDD Explorations. Volume 4, Issue 2 - page 7

