
To appear in the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery

(DMKD’2002).

Privacy-preserving Distributed Mining of Association Rules on

Horizontally Partitioned Data

Murat Kantarcioglu

kanmurat@cs.purdue.edu Purdue University

Chris Clifton

clifton@cs.purdue.edu

Abstract

Data mining can extract important knowledge from
large data collections – but sometimes these collec-
tions are split among various parties. Privacy con-
cerns may prevent the parties from directly shar-
ing the data, and some types of information about
the data. This paper addresses secure mining of
association rules over horizontally partitioned data.
The methods incorporate cryptographic techniques
to minimize the information shared, while adding lit-
tle overhead to the mining task.

1 Introduction

Data mining technology has emerged as a means of
identifying patterns and trends from large quantities
of data. Data mining and data warehousing go hand-
in-hand: most tools operate by gathering all data into
a central site, then running an algorithm against that
data. However, privacy concerns can prevent building
a centralized warehouse – data may be distributed
among several custodians, none of which are allowed
to transfer their data to another site.

This paper addresses the problem of computing
association rules within such a scenario. We as-
sume homogeneous databases: All sites have the same
schema, but each site has information on different en-
tities. The goal is to produce association rules that
hold globally, while limiting the information shared
about each site.

Computing association rules without disclosing in-
dividual data items is straightforward. We can com-
pute the global support and confidence of an associ-
ation rule AB ⇒ C knowing only the local supports
of AB and ABC, and the size of each database:

supportAB⇒C =

∑sites

i=1 support countABC(i)
∑sites

i=1 database size(i)

supportAB =

∑sites

i=1 support countAB(i)
∑sites

i=1 database size(i)

confidenceAB⇒C =
supportAB⇒C

supportAB

Note that this doesn’t require sharing any individual
items. We can easily extend an algorithm such as a-
priori [2] to the distributed case using the following
lemma: If a rule has support > k% globally, it must
have support > k% on at least one of the individual
sites.A distributed algorithm for this would work as
follows: Request that each site send all rules with
support at least k. For each rule returned, request
that all sites send the count of items they have that
support the rule, and the total count of all items at
the site. From this, we can compute the global sup-
port of each rule, and (from the lemma) be certain
that all rules with support at least k have been found.
More thorough studies of distributed association rule
mining can be found in [5, 6].

The above approach protects individual data pri-
vacy, but it does require that each site disclose what
rules it supports, and how much it supports each po-
tential global rule. What if this information is sen-
sitive? For example, suppose the Centers for Dis-
ease Control (CDC), a public agency, would like
to mine health records to try to find ways to re-
duce the proliferation of antibiotic resistant bacteria.
Insurance companies have data on patient diseases
and prescriptions. Mining this data would allow the
discovery of rules such as Augmentin&Summer ⇒
Infection&Fall, i.e. people taking Augmentin in the
summer seem to have recurring infections.

The problem is that insurance companies will be
concerned about sharing this data. Not only must the
privacy of patient records be maintained, but insur-
ers will be unwilling to release rules pertaining only
to them. Imagine a rule indicating a high rate of com-
plications with a particular medical procedure. If this
rule doesn’t hold globally, the insurer would like to

1

know this – they can then try to pinpoint the prob-
lem with their policies and improve patient care. But
if the fact that the insurer’s data supports this rule
is revealed (say, under a Freedom of Information Act
request to the CDC), the insurerer could be exposed
to significant public relations or liability problems.
This potential risk could exceed their own perception
of the benefit of participating in the CDC study.

This paper presents a solution that preserves such
secrets – the parties learn (almost) nothing beyond
the global results. The solution is efficient: The addi-
tional cost relative to previous non-secure techniques
is O(candidate itemsets ∗ sites) encryptions, and a
constant increase in the number of messages.

We assume three or more parties. In the two party
case, knowing a rule is supported globally and not
supported at one’s own site reveals that the other
site supports the rule. Thus much of the knowledge
we try to protect is revealed even with a completely
secure method for computing the global results. We
discuss the two party case further in Section 4. By the
same argument, we assume no collusion, as colluding
parties can reduce this to the two party case.

1.1 Related Work

Previous work in privacy-preserving data mining has
addressed two issues. In one, the aim is preserving
customer privacy by distorting the data values [3].
The idea is that the distorted data does not reveal pri-
vate information, and thus is “safe” to use for mining.
The key result is that the distorted data, and infor-
mation on the distribution of the random data used
to distort the data, can be used to generate an ap-
proximation to the original data distribution, without
revealing the original data values. The distribution is
used to improve mining results over mining the dis-
torted data directly, primarily through selection of
split points to “bin” continuous data. Later refine-
ment of this approach tightened the bounds on what
private information is disclosed, by showing that the
ability to reconstruct the distribution can be used to
tighten estimates of original values based on the dis-
torted data [1].

More recently, the data distortion approach has
been applied to boolean association rules [10]. Again,
the idea is to modify data values such that reconstruc-
tion of the values for any individual transaction is
difficult, but the rules learned on the distorted data
are still valid. One interesting feature of this work
is a flexible definition of privacy; e.g., the ability to
correctly guess a value of ‘1’ from the distorted data
can be considered a greater threat to privacy than
correctly learning a ‘0’.

The data distortion approach addresses a different
problem from our work. The assumption with dis-
tortion is that the values must be kept private from
whoever is doing the mining. We instead assume that
some parties are allowed to see some of the data, just
that nobody is allowed to see all the data. In return,
we are able to get exact, rather than approximate,
results.

The other approach uses cryptographic tools to
build decision trees.[8] In this work, the goal is to
securely build an ID3 decision tree where the train-
ing set is distributed between two parties. The
basic idea is, finding the attribute that maximizes
informationgain is equivalent to finding the attribute
that minimizes the conditional entropy. Since the
conditional entropy for an attribute for two-party can
be written as a sum of the expression of the form
(v1 + v2)× log(v1 + v2). Authors suggest a way to se-
curely calculate the expression (v1+v2)× log(v1+v2)
and show how to use this function for building the
ID3 securely. Clearly this approach treats privacy-
preserving data mining as a special case of secure
multi-party computation[7] and not only aims for pre-
serving individual privacy but also tries to preserve
leakage of any information other than the final result.
We follow this approach, but address a different prob-
lem (association rules), and emphasize the efficiency
of the resulting algorithms. A particular difference
is that we recognize that some types of information
can be exchanged without violating security policies -
secure multi-party computation treats leakage of any
information other than the final result as a violation.
The ability to share non-sensitive data enables highly
efficient solutions.

The problem of privately computing association
rules in vertically partitioned distributed data has
also been addressed[11]. Here the problem is how
to count support when transactions are split across
sites, without revealing the contents of individual
transactions. The change in the way the data is dis-
tributed makes this a much different problem from
the one we address here.

1.2 Private Association Rule Mining

Overview

Our method follows the basic approach outlined on
Page 1 except that values are passed between the
local data mining sites rather than to a centralized
combiner. The two phases are discovering candi-
date itemsets (those that are frequent on one or more
sites), and determining which of the candidate item-
sets meet the global support/confidence thresholds.

The first phase (Figure 1) uses commutative en-

2

E1(ABC)

E3(E1(ABC))E2(E3(E1(ABC))) 2
ABD

1
ABC

3
ABC

E2(E3(ABC))
E2(E3(ABD))

E3(ABC)
E3(ABD)

ABC
ABD

Figure 1: Determining global candidate itemsets

cryption. Each party encrypts its own itemsets, then
the (already encrypted) itemsets of every other party.
These are passed around, with each site decrypting,
to obtain the complete set.

In the second phase (Figure 2), an initiating party
passes its support count, plus a random value, to its
neighbor. The neighbor adds its support count and
passes it on. The final party then engages in a secure
comparison with the initiating party to determine if
the final result is greater than the threshold plus the
random value.

This gives a brief, oversimplified idea of how the
method works. Section 3 gives full details. Before
going into the details, we give background and defi-
nitions on techniques from association rule mining,
cryptography, and secure multi-party computation
used in our method.

2 Background

There are several bodies of work that serve as a basis
for our work Here we briefly summarize the related
data mining and secure-multi party computation con-
cepts.

2.1 Distributed Mining of Association

Rules

We address association rule mining as defined in [2]:
Let I = {i1, i2, . . . , in} be a set of items and DB be a
set of transactions, where each transaction T ∈ DB is
an itemset such that T ⊆ I. Given an itemset X ⊆ I,
a transaction T contains X if and only if X ⊆ T . An
association rule is an implication of the form X ⇒ Y
where X ⊆ I, Y ⊆ I and X ∩ Y = ∅. The rule
X ⇒ Y has support s in the transaction database
DB if s% of transactions in DB contain X ∪ Y . The
rule has confidence c if c% of the transactions in DB
that contain X also contains Y. An itemset X with

2
ABC=9

DBSize=200

1
ABC=18

DBSize=300

3
ABC=5

DBSize=100

ABC: R+count-freq.*DBSize

R=17

ABC: 17+9-.05*200

ABC: 12+18-.05*300

ABC: 19 � R?

ABC: YES!

Figure 2: Determining if itemset support exceeds
threshold

k items is called a k-itemset. The problem of mining
association rules is to find all rules whose support
and confidence are higher than a specified minimum
support and confidence.

In a horizontally partitioned database, The trans-
actions are distributed among n sites S1, S2, . . . , Sn

such that each site Si contains a disjoint subset DBi

of the transactions. DB = DB1 ∪DB2 ∪ . . . ∪DBn.
The itemset X has a local support count of X.supi

at site Si if X.supi of the transactions at Si con-
tains X. The global support count of X is given as
X.sup =

∑n

i=1 X.supi. An itemset X is globally sup-
ported if X.sup ≥ s ∗ |DB| = s ∗

∑n

i=1 DBi. The
global confidence of a rule X ⇒ Y can be given as
{X ∪ Y } .sup/X.sup. A k-itemset is called globally
large k-itemset if it is globally supported and referred
as L(k). The k-itemset is called locally large if it
is supported locally at some site Si and referred as
LLi(k). If a k-itemset is locally large at some site Si

and is globally large it is referred to as GLi(k). The
aim of distributed association rule mining is to find
all rules whose global support and global confidence
are higher than the user specified minimum support
and confidence.

The FDM algorithm [5] is a fast method for dis-
tributed mining of association rules. We summarize
this below:

1. Candidate Set Generation: Intersect the
globally large itemsets of size k−1, G(k−1), with
locally large k−1 itemsets to get GLi(k−1). From
these, use the classic apriori candidate genera-
tion algorithm to get the candidate k itemsets
CGi(k).

2. Local Pruning: For each X ∈ CGi(k), scan
the database DBi to compute X.supi. If

3

X.supi/DBi ≥ s%, X is locally large and is in-
cluded in LLi(k) set.

3. Itemset Exchange: Broadcast LLi(k) to all
sites – the union is LL(k), a superset of the possi-
ble global frequent itemsets. Each site computes
(using apriori) the support of items in LL(k).

4. Support Count Exchange: Broadcast the
computed supports. From these, each site com-
putes G(k).

The above algorithm avoids disclosing individual
transactions, but does expose significant information
about the rules supported at each site. Our goal
is to approximate the efficiency of the above algo-
rithm, without requiring that any site disclose LLi(k),
X.supi, or |DBi|.

2.2 Cryptographic Tools and Secure

Multi-party Computation

Secure multi-party computation involves computing
a function where multiple parties hold the inputs, and
at the end of the computation each party should know
the result of the function, their own input, and noth-
ing else[12]. It has been shown that given certain
cryptographic assumptions, any function that can be
represented by a polynomial size circuit can be com-
puted securely. The basic idea behind the proof is
to show how to securely compute a logic gate – then
represent the desired function as a circuit and eval-
uate it. A full discussion can be found in [7]. While
effective, this is not an efficient method for problems
with large inputs.

A key component of the general secure multi-party
computation solution is commutative encryption. As
we also use commutative encryption, we give a brief
description here. We start with a definition of one
way accumulators. The basic idea is to come up
with quasi-commutative hash functions. A function
h is said to be quasi-commutative if for given x and
y1, y2, . . . , ym, the value

z = h (h (. . . h (h (x, y1) , y2) . . . , ym−1) , ym) (1)

is the same for every permutation of yi. A family of
one-way hash functions that are quasi-commutative
are said to be one-way accumulators. Since a one-way
accumulator is a hash function, if x 6= x́ they will have
different hash values z for fixed yi. In addition to the
one to one mapping and quasi-commutative proper-
ties of one-way accumulators, we need to be able to
retrieve the x value given (z, y1, . . . , ym), giving us
commutative encryption.

The construction of one-way accumulators of Be-
naloh and de Mare [4] can be easily modified to let
us to retrieve the x value. Their construction uses
the RSA [9] assumption with a slight modification.
Instead of using arbitrary primes p, q for generation
of n = pq, they require that p and q be safe primes to
prevent collisions. In this context, a prime p is said
to be safe if p = 2ṕ+1 where ṕ is an odd prime. They
define the one-way accumulator function as below.

h(x, yi) = xyimodn (2)

Assuming the difficulty of the discrete logarithm,
this function may be seen as one-way. We use the
above construction with one more addition. Instead
of generating random yi values, we generate yi, ti
pairs such that yi ∗ ti = 1mod(ϕ(n)). This construc-
tion is equal to the RSA algorithm except that p and
q have the above safe property.

3 Secure Association Rule

Mining

We will now use the tools described above to con-
struct a distributed association rule mining algorithm
that preserves the privacy of individual site results.
The algorithm given is for three or more parties – the
two party case is discussed further in Section 4.

3.1 Problem Definition

Let i ≥ 3 be the number of sites. Each site has a
private database DBi with di transactions. We are
given support threshold s and confidence c as per-
centages. The goal is the discovery of all association
rules satisfying the thresholds, as defined in Section
2.1. We further desire that disclosure be limited: No
site should be able to learn contents of a transaction
at any other site, what rules are supported by any
other site, or the specific value of support/confidence
for any rule at any other site, unless that information
is revealed by knowledge of one’s own data and the
final result. (e.g., if a rule has 100% support glob-
ally, we know it is supported 100% by all sites.) Here
we assume no collusion (this is discussed further in
Section 4.)

3.2 Method

Our method follows the general approach of the FDM
algorithm [5], with special protocols replacing the
broadcasts of LLi(k) and the support count of items in
LL(k). First we give a method for finding the union
of locally supported itemsets without revealing the

4

originator of the particular itemset. We then give a
method for securely testing if the support count ex-
ceeds the threshold.

3.2.1 Secure union of locally large itemsets

In the FDM algorithm (Section 2.1), step 3 reveals
the large itemsets supported by each site. We instead
exchange locally large itemsets in a way that obscures
the source of each itemset. We assume a commu-
tative encryption algorithm with negligible collision
probability (Section 2.2). The algorithm is given in
Protocol 1.

Protocol 1 Finding secure union of large itemsets

Require: N is number of sites and Rule set = ∅ ini-
tially {Encryption of all the rules by all sites}
for each site i do

generate LLi(k) ;
for each X ∈ LLi(k) do

M = newarray[N] ;
Xp = encrypt(X, ei) ;
M [i] = 1 ;
Rule set

⋃

(Xp,M);
end for

end for{Site i encrypts its locally large k-itemsets
and adds them to the global set. Each site then
encrypts the itemsets it has not encrypted before}
for each site i do

for each tuple (r,M) ∈ Rule set do

if M[i] == 0 then

rp=encrypt(r,ei);
M[i]=1;
Mp= M ;
Rule set=(Rule set-{(r,M)})

⋃

{(rp,Mp)};
end if

end for

end for

for (r,M) ∈ Rule set and (rp,Mp) ∈ Rule set do

{check for duplicates}
if r==rp then

Rule set= Rule set-{(r,M)} {Eliminate dupli-
cate itemsets before decrypting};

end if

end for

for each site i do { Each site decrypts every item
to get the rule set}

for all (r,M) ∈ Rule set do

rd = decrypt(r,di) ;
Rule set=(Rule set-{(r,M)})

⋃

{(rd)};
end for

permute elements in the Rule set
end for

return Rule set

The main idea is that each site encrypts the locally
supported itemsets. Each site then encrypts the item-
sets from other sites. Since equation 1 holds, dupli-
cates in the locally supported itemsets will be dupli-
cates in the encrypted itemsets, and can be deleted.
In addition, the decryption can occur in any order,
so by permuting the encrypted itemsets we prevent
sites from tracking the source of each itemset.

An example of Protocol 1 in action is given below.

Example 1 Assume we have three parties for data
mining. After local support pruning, site S1 sup-
ports {3, 4, 5}, S2 supports {2, 5, 7}, and S3 sup-
ports {5, 7, 9}. Let n = 7 × 11 where 7 = 2 ∗
3 + 1, 11 = 2 ∗ 5 + 1 are safe primes. Each site
has key pairs, both secret: S1 has (13, 37), S2 has
(17, 53) and S3 has (19, 19). First, each party en-
crypts its candidate itemsets with its own key. It
then sends these to the other parties. Each party
then encrypts the items it had not encrypted be-
fore, and sends them on for the third encryption.
So after the encryption step, we have the encrypted
items (26, 58, 31, 63, 31, 63, 60). The duplicate items
are removed, giving (26, 31, 58, 60, 63). Let us as-
sume decryption starts with S2. S2 permutes and de-
crypts: (D2(31), D2(58), D2(26), D2(63), D2(60)) →
(47, 60, 31, 28, 37). Clearly by looking at the decrypted
set, S2 cannot predict the items. S2 sends the re-
sult to S1. Under the assumption that RSA is a
trapdoor function, S1 cannot find any correlation be-
tween the initial set before decryption phase and the
set it received. S1 decrypts and permutes the set
and send it to S3. The set sent by S1 will look like
(59, 25, 75, 63, 16). Finally S3 will output the result,
(3, 4, 5, 7, 9).

Clearly Protocol 1 finds the union without reveal-
ing which itemset belongs to which site. It is not,
however, secure under the definitions of secure multi-
party computation. It reveals the number of itemsets
having common support, e.g. two itemsets are sup-
ported by two sites, and the rest by only one site. It
does not reveal which itemsets these are, but a truly
secure computation (as good as each site giving its
input to a “trusted party”) could not reveal even this
count. Allowing innocuous information leakage (the
number of itemsets having common support) allows
an algorithm that is sufficiently secure with much
lower cost than a fully secure approach.

3.2.2 Testing support threshold without re-

vealing support count

Protocol 1 gives the full set of locally large itemsets
LL(k). We still need to determine which of these

5

itemsets are supported globally. Step 4 of the FDM
algorithm forces each site to reveal its own support
count for every itemset in LL(k). All we really need
to know is for each itemset X ∈ LL(k), is X.sup ≥
s% × |DB|? The following allows us to reduce this
to a comparison against a sum of local values (the
excess support at each site):

X.sup ≥ s ∗ |DB| = s ∗ (
n

∑

i=1

di)

n
∑

i=1

X.supi ≥ s ∗ (
n

∑

i=1

di)

n
∑

i=1

(X.supi − s ∗ di) ≥ 0

Therefore checking for support is equivalent to
checking if

∑n
i=1(X.supi − s ∗ di) ≥ 0. The chal-

lenge is to do this without revealing X.supi or di.
An algorithm for this is given in Protocol 2.

Protocol 2 Finding the global support counts se-
curely

Require: rule set is ∅ initially
if site i is the starting site then

for each r ∈ candidate set do

generate random number xr;
t = r.supi − s ∗ di + xr;
rule set = rule set ∪ { (r,t) };

end for

send the rule set to the next site ;
end if

if site i is neither starting nor ending site then

for each (r,t) ∈ rule set do

t̄ = r.supi − s ∗ di + t;
rule set = rule set - { (r,t) } ∪ (r, t̄) ;

end for

send the rule set to the next site ;
end if

if site i is the last site then

for each (r,t) ∈ rule set do

t̄ = r.supi − s ∗ di + t;
securely compute whether t̄− xr ≥ 0 with the
first site { First site knows the xr }
if t̄− xr ≥ 0 then

multi-cast r as a globally large itemset.
end if

end for

end if

The idea is that the first site generates a random
number xr for each itemset X, adds that number to
its (X.supi−s∗di), and sends it to the next site. The
random number masks the actual excess support, so

the second site learns nothing about the first site’s ac-
tual database size or support. The second site adds
its excess support and sends the value on. The ran-
dom value now hides both support counts. The last
site in the change now has

∑n
i=1(X.supi−s∗di)+xr,

and needs to test if this is ≥ xr. This can be done
securely using Yao’s generic method[12]. Clearly this
algorithm is secure as long as there is no collusion, as
no site can distinguish what it receives from a random
number. Alternatively the first site can simply send
xr to the last site. Now the last site learns the actual
excess support, but still does not learn the support
values for any single site. In addition, if we consider
the excess support to be a valid part of the global
result, this method is still secure.

We now sketch a proof of the security of Proto-
col 2. This proof is based on the definitions of secure
given in [7]; due to space considerations we do not re-
peat those definitions and thus are able to give only
a sketch of the proof. In particular, the semi-honest
model assumes each site follows the protocol, but re-
members everything it sees during the protocol – in-
formally, a protocol is secure if an indistinguishable
view to this history can be generated solely from the
output and one’s own data.

Theorem 1 Protocol 2 privately computes globally
supported itemsets in the semi-honest model.

Proof Sketch: To show that Protocol 2 is secure
under the semi-honest model, we have to show that
a polynomial time simulator can simulate the view
of the parties during the execution of the protocol,
based on their local inputs and the global result. We
also use the general composition theorem for semi-
honest computation. The theorem says that if g pri-
vately reduces to the f and if there is way to compute
f securely than there is a way to compute g securely.
In our context, f is the secure comparison of two in-
tegers, and g is Protocol 2. First we show that the
view of any site during the addition phase can ef-
ficiently simulated given the input of that site and
the global output. Site i uniformly chooses a ran-
dom number sr. Now we show that view and the
output of the simulator are computationally indistin-
guishable by showing that the probability of seeing
a given x in both of them is equal. In the following
equations, xr is the random number added at the be-
ginning of Protocol 2, selected uniformly among the
m bit two’s complement numbers. This m is chosen
such that 2m−1 > |DB|. The arithmetic is assumed
to be two’s compliment, ignoring overflows. The ran-
dom number in the simulator, sr, is chosen uniformly
from the same domain. Also note that X.supi is fixed
for each site.

6

Pr
[

V IEW Protocol2

i
= x

]

= Pr

[

xr = x−

k=i−1
∑

k=1

X.supi

]

=
1

2m

= Pr [sr = x]

= Pr [Simulatori = x]

We showed that what each site sees during the
addition phase is indistinguishable from that simu-
lated with a random number generator. Since during
the comparison phase we can use the generic secure
method, from the composition theorem we can con-
clude that Protocol 2 is secure in the semi-honest
model.

3.3 Securely Finding Confidence of a

Rule

To find if the confidence of a rule X ⇒ Y is higher
than the given confidence threshold c, we have to

check if {X∪Y }.sup

Y.sup
≥ c. We will denote the support of

{X ∪ Y } .supi as XY.supi in the following equations.

{X ∪ Y } .sup

Y.sup
≥ c ⇒

∑

i=n

i=1
XY.supi

∑

i=n

i=1
X.supi

≥ c

⇒

i=n
∑

i=1

XY.supi ≥ c ∗ (

i=n
∑

i=1

X.supi)

⇒

i=n
∑

i=1

(XY.supi − c ∗X.supi) ≥ 0

Since each site knows XY.supi and X.supi, we can
easily use Protocol 2 to securely calculate the confi-
dence of a rule.

3.4 Communication and Computation

costs of Mining with Protocols 1

and 2

Let the total number of locally large candidate item-
sets be |CG(k)|, and the number of candidates that
can be directly generated by the globally large (k-1)
itemsets be |GLCk| (apriori gen(L(k−1)) = GLCk).
The number of sites is n and we assume m bits can
represent the X.supi − di for every large itemset X.

Here we give the cost associated with Protocols 1
and 2, ignoring the cost of computing locally frequent
itemsets. We compare this with the cost of the (non-
secure) FDM algorithm.

The communication cost of protocol 1 totals
O(|CGk| ∗ n), divided into n rounds. The FDM
algorithm is also O(|CGk| ∗ n), but in a single

round. The computation cost is O(|CGk| ∗ n) en-
cryptions/decryptions plus the underlying computa-
tion required in FDM.

Protocol 2 requires communication cost
O(|GLCk| ∗ n) in n rounds for the basic addi-
tion, as opposed to the same O(|GLCk| ∗ n) in a
single broadcast round for FDM. If secure compari-
son is desired at the end of Protocol 2, this requires
O((|GLCk| ∗ m) 1 out of 2 oblivious transfers (the
main cost in the comparison phase). Each oblivious
transfer takes O(t3) where t is length of the RSA
key.

4 Conclusions and Further

Work

Cryptographic tools can be used to do data mining
that would otherwise be prevented due to security
concerns. We have given procedures to mine dis-
tributed association rules on horizontally partitioned
data. We showed that distributed association rule
mining can be done efficiently under reasonable secu-
rity assumptions.

The two party case poses difficulties. If we have
only two parties, knowing that a rule is supported
globally and not supported at one’s own site reveals
that the other site supports the rule. This is true
no matter how secure computation, it is an artifact
of the result. Thus extending to secure computation
in the two party case is unlikely to be of use. In
addition, Yao’s Millionaire’s problem can be reduced
to securely testing if an itemset is supported globally
with two parties. No better solution to this problem
than the generic method is known.

Another problem is with collusion. In Protocol 1,
n − 1 sites can collude to learn the value of a sin-
gle site, as the problem reduces to two parties. This
is simply a problem with releasing the result, as the
colluding parties can simply generate no input val-
ues, and the result is exactly the compromised parties
values, regardless of the protocol used. However, if we
have an honest majority we can avoid compromise.
Since each site encrypts it’s values before exchanging
them, the only way of of using the protocol to reveal
values is to maintain a correspondence between the
encrypted values and the final results. When each
site decrypts the results, it can scramble the order.
Thus the only option for the dishonest collaborators
is to have seen the partially encrypted values before,
so they can be separated from the target’s values.
The target’s values were never seen without encryp-
tion by the target before, so the only separation is to
be able to recognize all encrypted values other than

7

those of the target. Properly ordering encryption and
decryption among the honest majority can prevent
this, however the details are beyond the scope of this
paper.

The collusion problem with Protocol 2 is that the
parties i and i + 2 in the chain can collude to find
the exact excess support of party i + 1. If we in-
stead run Protocol 2 multiple times, with randomly
chosen shares of the excess support from each site in
each run, we can avoid this. By varying the path fol-
lowed with each share, the number of colluding sites
required to compromise a particular site grows. The
end result is achieved by summation of the partial
results. Again this can be done with an honest ma-
jority, however at increased communication cost. De-
tails are beyond the scope of this paper.

We also plan to implement and test this protocol
to validate the efficiency in practical terms.

We believe that need for data mining in presence
of privacy concerns will increase. Examples include
knowledge discovery among intelligence services of
different countries and collaboration among corpora-
tions without revealing trade secrets. Even within a
single multi-national company, privacy laws in differ-
ent jurisdictions may prevent sharing individual data.
Many more examples can be imagined. We would like
to see secure algorithms for classification, clustering,
etc. Another possibility is secure approximate data
mining algorithms. Allowing error in the results may
enable more efficient algorithms that maintain the
desired level of security.

The secure multi-party computation definitions
from the cryptography domain may be too restrictive
for our purposes. More suitable security definitions
that allows parties to choose their desired level of
security are needed, allowing efficient solutions that
maintain the desired security. One line of research is
to predict the value of information for a particular or-
ganization, allowing tradeoff between disclosure cost,
computation cost, and benefit from the result. We
believe some ideas from game theory and economics
may be relevant.

References

[1] D. Agrawal and C. C. Aggarwal. On the de-
sign and quantification of privacy preserving
data mining algorithms. In Proceedings of the
Twenteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
Santa Barbara, California, USA, May 21-23
2001. ACM.

[2] R. Agrawal and R. Srikant. Fast algorithms
for mining association rules. In Proceedings of
the 20th International Conference on Very Large
Data Bases, Santiago, Chile, Sept. 12-15 1994.
VLDB.

[3] R. Agrawal and R. Srikant. Privacy-preserving
data mining. In Proceedings of the 2000 ACM
SIGMOD Conference on Management of Data,
Dallas, TX, May 14-19 2000. ACM.

[4] J. C. Benaloh and M. de Mare. One-way accu-
mulators: A decentralized alternative to digital
signatures (extended abstract). In T. Heleseth,
editor, Advances in Cryptology (Proceedings of
EuroCrypt ’93), pages 274–285, Lofthus, Nor-
way, May 1993.

[5] D. W.-L. Cheung, J. Han, V. Ng, A. W.-C. Fu,
and Y. Fu. A fast distributed algorithm for min-
ing association rules. In Proceedings of the 1996
International Conference on Parallel and Dis-
tributed Information Systems (PDIS’96), Miami
Beach, Florida, USA, Dec. 1996.

[6] D. W.-L. Cheung, V. Ng, A. W.-C. Fu, and
Y. Fu. Efficient mining of association rules in
distributed databases. Transactions on Knowl-
edge and Data Engineering, 8(6):911–922, Dec.
1996.

[7] O. Goldreich. Secure multi-party computation,
1998.

[8] Y. Lindell and B. Pinkas. Privacy preserv-
ing data mining. In Advances in Cryptology –
CRYPTO 2000, pages 36–54. Springer-Verlag,
Aug. 20-24 2000.

[9] R. L. Rivest, A. Shamir, and L. Adleman.
A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM,
21(2), 1978.

[10] S. J. Rizvi and J. R. Haritsa. Privacy-preserving
association rule mining. In Proceedings of 28th
International Conference on Very Large Data
Bases. VLDB, Aug. 20-23 2002.

[11] J. S. Vaidya and C. Clifton. Privacy preserving
association rule mining in vertically partitioned
data. In The Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, July 23-26 2002.

[12] A. C. Yao. How to generate and exchange se-
crets. In Proceedings of the 27th IEEE Sym-
posium on Foundations of Computer Science,
pages 162–167. IEEE, 1986.

8

