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Data mining technology has emerged as a means for identifying patterns and trends from large

quantities of data. Data mining and data warehousing go hand-in-hand: most tools operate on

a principal of gathering all data into a central site, then running an algorithm against that data

(Figure 1). There are a number of applications that are infeasible under such a methodology,

leading to a need for distributed data mining. The obvious solution of a “virtual” data warehouse

– heterogeneous access to all the data – is not always possible. The problem is not simply that the

data is distributed, but that it must be distributed. There are several situations where this arises:

1. Connectivity. Transmitting large quantities of data to a central site may be infeasible.

2. Heterogeneity of sources. Is it easier to combine results than combine sources?

3. Privacy of sources. Organizations may be willing to share data mining results, but not data.

This research will concentrate on issue 3: obtaining data mining results that are valid across a

distributed data set, with limited willingness to share data between sites. We propose to perform

local operations on each site that produce intermediate data that can be used to obtain the results,

without revealing the private information at each site.

There are many variants of this problem, depending on how the data is distributed, what type

of data mining we wish to do, and what restrictions are placed on sharing of information. Some

problems are quite tractable, others are more difficult. For example, if we are trying to learn

association rules with support and confidence thresholds, a common data mining problem, there is

a simple distributed solution that provides a degree of privacy to the individual sites. An example

association rule could be:

Received F lu shot and age > 50 implies hospital admission, where at least 5% of

insured meet all the criteria (support), and at least 30% of those meeting the flu shot

and age criteria actually require hospitalization (confidence).

There are algorithms to efficiently find all association rules with a minimum level of support. We

can easily extend this to the distributed case using the following lemma: If a rule has support > k%
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Figure 1: Data Warehouse approach to Distributed Data Mining

globally, it must have support > k% on at least one of the individual sites.1 A distributed algorithm

for this would work as follows: Request that each site send all rules with support at least k. For

each rule returned, request that all sites send the count of items they have that support the rule,

and the total count of all items at the site. From this, we can compute the global support of each

rule, and (from the lemma) be certain that all rules with support at least k have been found. An

example of how this works is shown in Figure 2.

This is straightforward, but as we vary the problem the challenge becomes more difficult. What

if we want to protect not only the individual items at each site, but also how much each site supports

a given rule? The above method reveals this information. Another variant where this approach

fails is when the data is partitioned vertically: a single item may have part of it’s information at one

site, and part at another. We are building a research program that will address a broad spectrum

of data mining and privacy issues.

We propose to use Purdue Research Foundation funding to address the problem of association

rule discovery, where data is vertically partitioned, and privacy means preventing others from

learning the value of “private” attribute values for each entity.

Related Work

Why is there research to be done here? What happens if we run existing data mining tools at each

site independently, then combine the results? This will not generally give globally valid results.

1For proof of this, assume all the data is together, and divide data items into those that support the rule and those

that don’t. Now try to partition data such that no site has support > k%. For each supporting item sent to a site,

at least 1/k non-supporting items need to be send to that site. It can be seen that we will run out of non-supporting

items before assigning all the supporting items to sites.
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Figure 2: Example of computing association rules from individual site results.

Situations that cause a disparity between local and global results include:

• Values for a single entity may be split across sources. Data mining at individual sites will be

unable to detect cross-site correlations.

• The same item may be duplicated at different sites, and will be overweighted in the results.

• Data at a single site is likely to be from a homogeneous population. Important geographic or

demographic distinctions between that population and others cannot be seen on a single site.

Data mining algorithms that partition the data into subsets have been developed[SON95]. In

particular, work in parallel data mining that may be relevant [Zak99, KC00]. Although the goal of

parallelizing data mining algorithms is performance, the communication cost between nodes is an

issue. Parallel data mining algorithms may serve as a starting point for portions of this research.

Algorithms have been proposed for distributed data mining. Cheung et al. proposed a method

for horizontally partitioned data[CNFF96], this is basically the approach outlined in the Figure 2.

Distributed classification has also been addressed. A meta-learning approach has been developed

that uses classifiers trained at individual to develop a global classifier [Cha96, Cha97, PCS00]. This

could protect the individual entities, but it remains to be shown that the individual classifiers do

not release private information. Recent work has addressed classification in vertically partitioned
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data [CSK01], and situations where the distribution is itself interesting with respect to what is

learned [WBH01]. However, none of this work addresses privacy concerns.

There has been research considering how much information can be inferred, calculated or re-

vealed from the data made available through data mining algorithms, and how to minimize the

leakage of information [LP00, AS00]. However, this has been restricted to classification. The prob-

lem has been treated with an “all or nothing” approach. We desire quantification of the security

of the process. Corporations may not require absolute zero knowledge protocols (that leak no in-

formation at all) as long as they can keep the information shared within strict (though possibly

adjustable) bounds.

There has been work in cooperative computation between entities that mutually distrust one

another. This computation may be of any sort: scientific, data processing or even secret sharing.

Secure two party computation was first investigated by Yao [Yao86] and was later generalized to

multiparty computation. The seminal paper by Goldreich proves that there exists a secure solution

for any functionality[GMW87]. The approach used is as follows: the function F to be computed is

first represented as a combinatorial circuit, and then the parties run a short protocol for every gate

in the circuit. Every participant gets corresponding shares of the input wires and the output wires

for every gate. This approach, though appealing in its generality and simplicity, means that the

size of the protocol depends on the size of the circuit, which depends on the size of the input. This

is highly inefficient for large inputs, as in data mining. Although this shows that secure solutions

exist, achieving efficient secure solutions for distributed data mining is still open.

Significance

There are a number of scenarios where these issues arise. A few (as possible “challenge problems”)

are:

• Identifying public health problem outbreaks (e.g., epidemics, biological warfare instances).

There are many data collectors (insurance companies, HMOs, public health agencies). Indi-

vidual privacy concerns will limit the willingness of the data custodians to share data, even

with government agencies such as the Centers for Disease Control. Can we accomplish the

desired results while still preserving privacy of individual entities?

• Collaborative corporations or entities. Ford and Firestone shared a problem with a jointly

produced product: Ford Explorers with Firestone tires. Ford and Firestone may have been

able to use association rule techniques to discover problems earlier. This would have required

extensive data sharing. Factors such as trade secrets and agreements with other manufacturers

stand in the way of the necessary sharing. Could we obtain the same results, while still
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preserving the secrecy of each side’s data?

Government entities face similar problems, such as limitations on sharing between law en-

forcement, intelligence agencies, and tax collection.

• Multi-national corporations. An individual country’s legal system may prevent sharing of

customer data between a subsidiary and it’s parent.

These examples each define a different problem, or even set of problems. Although we plan to

address only the problem faced in the second example above with this funding, we expect this to

seed a larger research effort that will address a wide variety of distributed data mining problems.

The problems can be characterized by the following three parameters:

1. What is the desired data mining outcome? Do we want to cluster the data, as in the disease

outbreak example? Are we looking for association rules identifying relationships among the

attributes? There are several such data mining tasks, and each poses a new set of challenges.

2. How is the data distributed? Is each entity found only at a single site (as with medical

insurance records)? Or do different sites contain different types of data (Ford on vehicles,

Firestone on tires)?

3. What are the privacy requirements? If the concern is solely that values associated with an

individual entity not be released (e.g., “personally identifiable information”) we will develop

techniques that provably protect such information. In other cases, the notion of “sensitive”

may not be known in advance. This would lead to human vetting of the intermediate results

before sharing, requiring that individual site results be:

• compact;

• human-understandable; and

• complete (i.e., the method must not require numerous rounds of communication, each

requiring human vetting.)

Sometimes it may be difficult (or impossible) to develop an exact solution that meets the privacy

constraints. In data mining an approximate solution is often sufficient. The goal, then, is to obtain

a solution with bounded error, or difference from the “data warehouse” solution.

These solutions can be applied to problems other than privacy. Mining heterogeneous databases

is one such problem – combining results may be easier than combining sources. For exam-

ple, one database has plane type ∈ (fixed wing, rotorcraft), and a model number field. Another

uses plane type to mean the model number. If both databases produce a rule “MD80 and To-

tal Time>50,000 → jack screw replacement”, even though the field for MD80 is different in the
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two databases, it would be easy to manually discover that model number ≡ plane type (at least in

the context of this rule).

Research Plan

This research will have several steps, culminating in the production of a prototype system demon-

strating privacy-preserving distributed data mining. The initial phase will formally define the

problem, and develop an efficient algorithm to solve the problem. Note that this may be an itera-

tive process: As we develop solutions, we may find that we can better solve alternative definitions

of the problem. These alternatives will be measured against the practical impact: Are we defining

the problem in a way that solves real-world problems?

Working with Jaideep Vaidya (nominated for support under this grant) we have developed a

method that enables discovery of association rules in vertically partitioned data, while still preserv-

ing privacy of individual items. This method requires O(n) communication cost (where n is the

number of items in the database), but only two rounds of communication. This method is outlined

in Appendix A.

We are looking for alternative approaches that give cost related to the support of the rule, rather

than the size of the database – this is likely to provide a more practical algorithm. We expect to

develop solutions to several variants of the problem over the course of the project.

Once a solution is discovered, the next step is to formally prove the solution preserves the

privacy of the data items. The method we describe works by adding random values to what is

transmitted, giving n shared equations in more than n unknowns. We are able to recover the

desired results from the equations. However, since there are multiple solution to the equations,

recovery of the original n unknown data items is prevented. Although this is convincing, it remains

to be formally proven that no recovery of the data items is possible.

Beyond this, we must develop a complete association rule mining algorithm. The method in

Appendix A computes a critical figure needed for association rule mining in a secure way. We will

incorporate this in a complete algorithm, and demonstrate that the full algorithm still preserves

the privacy of individual data items.

Another issue to be resolved is the complexity of the algorithm. In distributed computing, we

measure the number of messages, size of data transmitted, and number of communication rounds

required by an algorithm. In database and data mining, complexity is generally thought of in terms

of the number of data items accessed, and the memory size required. We will evaluate both sets

of cost metrics. Many data mining techniques have intractable worst-case performance, but good

performance in practical cases. Rather than traditional worst-case analysis, we will analyze our

algorithms in comparison with existing centralized data mining algorithms (e.g., “3 messages for
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each computational round in the a-priori algorithm[AS94]”.)

To truly validate the efficacy and practicality of the method, we will implement and test the

algorithms. This will require development of a prototype system to enable testing on a distributed

platform. Computing facilities to support this testing already exist within the Indiana Center for

Database Systems.

A Scalar Product Algorithm for Privacy-Preserving Association

Rule Mining

Problem Definition

We consider mining of boolean association rules. The presence or absence of an attribute is repre-
sented as a 1 or 0 respectively. Thus items in the database (transactions) look like strings of 0 and
1. The entire database can be represented as a matrix of {0,1}.

To find out if a particular itemset is frequent, count the number of records where the values
for all attributes in the itemset are 1. This translates to a simple mathematical problem, given the
following definitions:

Let the total number of attributes be l+m, where A has l attributes, and B has the remaining
m attributes. Thus A has the values for the attributes A1 through Al, and B has the values for the
m attributes, B1 through Bm.

k is the support threshold required.
n is the total number of transaction/records.
Transactions/records are a sequence of l +m 1s or 0s.
Let the ~X and ~Y represent the vectors of processed data values at each site, A and B respectively.

We describe how to compute the ~X and ~Y vectors later.
The scalar (dot) product of two vectors ~X and ~Y of cardinality n is defined as

~X.~Y =
n

∑

i=1

xi ∗ yi

To compute the frequency of a 2-itemset where one of the attributes is known to A while
the other is known to B, the vectors ~X and ~Y are same as the attribute vectors with A and B.
Computing whether an itemset is frequent translates to checking if the number of transactions in
which all attributes present in the itemset are present is greater than the support threshold, k.

Since we represent absence or presence of an attribute as 0 and 1, this translates to computing
∑n

i=1 xi ∗ yi where the xi and yi are the attribute values. Thus, this translates to calculating the
scalar dot product of the 2 attributes.

We present an efficient way to do this securely when both of the parties possess one of the
attributes and wish to limit the information revealed in the section on the component algorithm.

This was a description of the protocol for a 2-itemset. The generalization of this protocol to a
w-itemset is straightforward.

To find association rules, then, go through the following steps:

1. L1 = {large 1-itemsets}
2. for (k=2; Lk−1 6= φ; k++)
3. Ck = apriori-gen(Lk−1);
4. for all candidates c ∈ Ck do begin
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5. if all the attributes in c are entirely at A or B, that party independently calculates if the
itemset is frequent

6. else
7. let A have l of the attributes and B have the remaining m attributes
8. construct ~X on A’s side and ~Y on B’s side where ~X =

∏l
i=1

~Ai and ~Y =
∏m

i=1
~Bi

9. compute c.count = ~X.~Y =
∑n

i=1 xi ∗ yi

10. Lk = Lk ∪ c|c.count ≥ minsup
11. end
12. end
13. Answer = ∪kLk

The component algorithm

The scalar product of two vectors ~X = (x1, · · · , xn) and ~Y = (y1, · · · , yn) is defined as ~X.~Y =
∑n

i=1 xi ∗ yi. Computation of the scalar product forms a large part of our protocol. Thus, it
is important to have an efficient (low communication cost) algorithm that computes the scalar
product. We now present such an algorithm.2

A generates n/2 randoms R1 . . . Rn/2

A now computes the following n values:

〈x1 +R1〉

〈x2 +R2〉

...

〈xn/2 +Rn/2〉

〈xn/2+1 + a1,1 ∗R1 + a1,2 ∗R2 + · · ·+ a1,n/2 ∗Rn/2〉

〈xn/2+2 + a2,1 ∗R1 + a2,2 ∗R2 + · · ·+ a2,n/2 ∗Rn/2〉

...

〈xn + an/2,1 ∗R1 + an/2,2 ∗R2 + · · ·+ an/2,n/2 ∗Rn/2〉

All the (n
2
)2 a values, are known to both A and B. The only constraint is that the ai,j should

be coefficients for a set of linear independent equations.
A sends all n values to B. B multiplies each value he gets with the corresponding y value, and

adds all of them up to get a sum, S.
B now sends to A, S and the following n/2 values:

〈y1 + a1,1 ∗ yn/2+1 + a2,1 ∗ yn/2+2 + · · ·+ an/2,1 ∗ yn〉

〈y2 + a1,2 ∗ yn/2+1 + a2,2 ∗ yn/2+2 + · · ·+ an/2,2 ∗ yn〉

...

〈yn/2 + a1,n/2 ∗ yn/2+1 + a2,n/2 ∗ yn/2+2 + · · ·+ an/2,n/2 ∗ yn〉

A can write S as follows:

S =

2We assume that n is even for simplifying the protocol. The protocol can easily be generalized to the case where

n is odd as well.
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[y1 ∗ {x1 + (R1)}

+y2 ∗ {x2 + (R2)}

...

+yn/2 ∗ {xn/2 + (Rn/2)}

+yn/2+1 ∗ {xn/2+1 + (a1,1 ∗R1 + a1,2 ∗R2 + · · ·+ a1,n/2 ∗Rn/2)}

+yn/2+2 ∗ {xn/2+2 + (a2,1 ∗R1 + a2,2 ∗R2 + · · ·+ a2,n/2 ∗Rn/2)}

...

+yn ∗ {xn + (an/2,1 ∗R1 + an/2,2 ∗R2 + · · ·+ an/2,n/2 ∗Rn/2)}
]

Simplifying the equation further, and grouping the xi ∗ yi terms, we get:

S =

(x1 ∗ y1 + x2 ∗ y2 + · · ·+ xn ∗ yn)

+(R1 ∗ y1 +R2 ∗ y2 + · · ·+Rn/2 ∗ yn/2)

+(a1,1 ∗R1 ∗ yn/2+1 + a1,2 ∗R2 ∗ yn/2+1 + · · ·+ a1,n/2 ∗Rn/2 ∗ yn/2+1)

+(a2,1 ∗R1 ∗ yn/2+2 + a2,2 ∗R2 ∗ yn/2+2 + · · ·+ a2,n/2 ∗Rn/2 ∗ yn/2+2)

...

+(an/2,1 ∗R1 ∗ yn + an/2,2 ∗R2 ∗ yn + · · ·+ an/2,n/2 ∗Rn/2 ∗ yn)

The first line of the R.H.S. can be succinctly written as
∑n

i=1 xi ∗ yi, the desired final result.
In the rest, we can group all multiplicative components vertically, and rearrange the equation to
factor out all the Ri values, to get:

S =
n

∑

i=1

xi ∗ yi

+R1 ∗ (y1 + a1,1 ∗ yn/2+1 + a2,1 ∗ yn/2+2 + · · ·+ an/2,1 ∗ yn)

+R2 ∗ (y2 + a1,2 ∗ yn/2+1 + a2,2 ∗ yn/2+2 + · · ·+ an/2,2 ∗ yn)

...

+Rn/2 ∗ (yn/2 + a1,n/2 ∗ yn/2+1 + a2,n/2 ∗ yn/2+2 + · · ·+ an/2,n/2 ∗ yn)

Now, to get the desired result (viz.
∑n

i=1 xi∗yi), A needs to only peel off the remaining baggage.
A already knows the n/2 Ri values. Recall that B sent him n/2 other values earlier that are exactly
the same as the coefficients of the n/2 Ri values. Thus A can easily multiply the n/2 values he
got from B with the corresponding Ri, add it all up, and subtract the total from S to get the
desired result. In this way, A and B are able to cooperatively get the total number of transactions
containing both attributes without revealing any details about any particular transaction.
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