
Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 1

Chapter 11

Recursion

Basics of Recursion
Programming with Recursion

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 2

Overview
Recursion: a definition in terms of itself.

Recursion in algorithms:
Recursion is a natural approach to some problems
» it sounds circular, but in practice it is not

An algorithm is a step-by-step set of rules to solve a problem
» it must eventually terminate with a solution

A recursive algorithm uses itself to solve one or more subcases

Recursion in Java:
Recursive methods implement recursive algorithms
A recursive method is one whose definition includes a call to itself
» a method definition with an invocation of the very method used to define it

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 3

Recursive Methods
Must Eventually Terminate

A recursive method must have
at least one base, or stopping, case.

A base case does not execute a recursive call
» it stops the recursion

Each successive call to itself must be a "smaller version of itself"
so that a base case is eventually reached
» an argument must be made smaller each call so that

eventually the base case executes and stops the recursion

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 4

Example: a Recursive Algorithm
One way to search a phone book (which is an alphabetically
ordered list) for a name is with the following recursive algorithm:

Search:
middle page = (first page + last page)/2
Open the phone book to middle page;
If (name is on middle page)

then done; //this is the base case
else if (name is alphabetically before middle page)

last page = middle page //redefine search area to front half
Search //recursive call with reduced number of pages

else //name must be after middle page
first page = middle page //redefine search area to back half
Search //recursive call with reduced number of pages

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 5

Example: A Recursive Method
RecursionDemo is a class to process an integer and print out its
digits in words
» e.g. entering 123 would produce the output "one two three"
inWords is the method that does the work of translating an integer to
words public static void inWords(int numeral)

 {
 if (numeral < 10)
 System.out.print(digitWord(numeral) + " ");
 else //numeral has two or more digits
 {
 inWords(numeral/10);
 System.out.print(digitWord(numeral%10) + " ");
 }
 }

Here is the
recursive call:
inWords
definition calls
itself

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 6

Example: A Base Case
Each recursive call to inWords reduces the integer by one digit
» it drops out the least significant digit

Eventually the argument to inWords has only one digit
» the if/else statement finally executes the base case and the

algorithm terminates

 public static void inWords(int numeral)
 {
 if (numeral < 10)
 System.out.print(digitWord(numeral) + " ");
 else //numeral has two or more digits
 {

ords(numeral/10);
stem.out.print(digitWord(numeral%10) + " ");

 }

Base case
executes
when only 1
digit is left

 inW
 Sy
 }

Size of problem
is reduced for
each recursive
call

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 7

inWords(987)
if (987 < 10)

// print digit here
else //two or more digits left
{

inWords(987/10);
// print digit here

}

1 What Happens with
a Recursive Call

Suppose that inWords is called from the main method of
RecursionDemo with the argument 987
This box shows the code of inWords (slightly simplified) with
the parameter numeral replaced by the argument 987

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 8

inWords(987)
if (987 < 10)

// print digit here
else //two or more digits left
{

inWords(987/10);
// print digit here

} inWords(98)
if (98 < 10)

// print digit here
else //two or more digits left
{

inWords(98/10);
// print digit here

}

2
Computation
waits here
until recursive
call returns

The argument is getting
shorter and will eventually
get to the base case.

What Happens with
a Recursive Call

The if condition is false, so the else part of the code is
executed
In the else part there is a recursive call to inWords, with
987/10 or 98 as the argument

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 9

In the recursive call, the if
condition is false, so again
the else part of the code is
executed and another
recursive call is made.

inWords(987)
if (987 < 10)

// print digit here
else //two or more digits left
{

inWords(987/10);
// print digit here

} inWords(98)
if (98 < 10)

// print digit here
else //two or more digits left
{

inWords(98/10);
// print digit here

} inWords(9)
if (9 < 10)

// print digit here
else //two or more digits left
{

inWords(numeral/10);
// print digit here

}

3

What Happens with
a Recursive Call

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 10

inWords(9)
if (9 < 10)

// print nine
else //two or more digits left
{

inWords(numeral/10);
// print digit here

}

This time the if condition is
true and the base case is
executed.
The method prints nine and
returns with no recursive call.

inWords(987)
if (987 < 10)

// print digit here
else //two or more digits left
{

inWords(987/10);
// print digit here

} inWords(98)
if (98 < 10)

// print digit here
else //two or more digits left
{

inWords(98/10);
// print 98 % 10

}

4

Output: nine

What Happens with
a Recursive Call

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 11

What Happens with
a Recursive Call

inWords(98)
if (98 < 10)

// print out digit here
else //two or more digits left
{

inWords(98/10);
// print out 98 % 10 here

}

inWords(987)
if (987 < 10)

// print out digit here
else //two or more digits left
{

inWords(987/10);
// print digit here

}

5

Output: nine eight

The method executes the next statement after the recursive call,
prints eight and then returns.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 12

What Happens with
a Recursive Call6

inWords(987)
if (987 < 10)

// print out digit here
else //two or more digits left
{

inWords(987/10);
// print 987 % 10

}
6

Output: nine eight seven

Again the computation resumes where it left off and executes the
next statement after the recursive method call.
It prints seven and returns and computation resumes in the main
method.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 13

Remember:
Key to Successful Recursion

Recursion will not work correctly unless you follow some
specific guidelines:
The heart of the method definition can be an if-else
statement or some other branching statement.
One or more of the branches should include a recursive
invocation of the method.
» Recursive invocations should use "smaller" arguments or

solve "smaller" versions of the task.
One or more branches should include no recursive invocations.
These are the stopping cases or base cases.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 14

Warning: Infinite Recursion May
Cause a Stack Overflow Error

If a recursive method is called and a base case never executes, the
method keeps calling itself

The stack is a data structure that keeps track of recursive calls

Every call puts data related to the call on the stack
» the data is taken off the stack only when the recursion stops

So, if the recursion never stops, the stack eventually runs out of space
» and a stack overflow error occurs on most systems

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 15

Recursive Versus Iterative Methods

All recursive algorithms/methods
can be rewritten without recursion.

Methods rewritten without recursion typically have loops, so they
are called iterative methods

Iterative methods generally run faster and use less memory space

So when should you use recursion?
» when efficiency is not important and it makes the code easier to

understand

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 16

numberOfZeros–A Recursive Method
that Returns a Value

takes a single int argument and returns the number of zeros in
the number
» example: numberOfZeros(2030) returns 2

uses the following fact:
If n is two or more digits long, then the number of zero digits is
(the number of zeros in n with the last digit removed) plus an
additional 1 if that digit is zero.
Examples:
» number of zeros in 20030 is number of zeros in 2003 plus 1

for the last zero
» number of zeros in 20031 is number of zeros in 2003 plus 0

because last digit is not zero

recursive

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 17

numberOfZeros

public static int numberOfZeros(int n)
{

if (n==0)
return 1;

else if (n < 10) // and not 0
return 0; // 0 for no zeros

else if (n%10 == 0)
return (numberOfZeros(n/10) + 1);

else // n%10 != 0
return (numberOfZeros(n/10));

}

Which is (are)
the base
case(s)? Why?

Which is (are)
the recursive
case(s)? Why?

If n is two or more digits long, then the number of zero digits is
(the number of zeros in n with the last digit removed) plus an
additional 1 if that digit is zero.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 18

Recursive
Calls

public static int numberOfZeros(int n)
{

if (n==0)
return 1;

else if (n < 10) // and not 0
return 0; // 0 for no zeros

else if (n%10 == 0)
return (numberOfZeros(n/10) + 1);

else // n%10 != 0
return (numberOfZeros(n/10));

}

Each method
invocation will
execute one of the
if-else cases
shown at right.

numberOfZeros(2005) is numberOfZeros(200) plus nothing

numberOfZeros(200) is numberOfZeros(20) + 1

numberOfZeros(20) is numberOfZeros(2) + 1

numberOfZeros(2) is 0 (a stopping case)

Computation of
each method is
suspended until
the recursive
call finishes.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 19

Recursive
Calls
Returning

public static int numberOfZeros(int n)
{

if (n==0)
return 1;

else if (n < 10) // and not 0
return 0; // 0 for no zeros

else if (n%10 == 0)
return (numberOfZeros(n/10) + 1);

else // n%10 != 0
return (numberOfZeros(n/10));

}

numberOfZeros(2) is 0 (a stopping case)

numberOfZeros(20) is numberOfZeros(2) + 1,
which is 0 + 1 == 1

numberOfZeros(200) is numberOfZeros(20) + 1,
which is 1 + 1 == 2

numberOfZeros(2005) is numberOfZeros(200) plus nothing
which is 2 + 0 plus nothing == 2

Suspended
computations
completed as
follows:

(bottom to top on
previous slide)

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 20

Programming Tip:
Ask Until the User Gets It Right

public void getCount()
{

System.out.println("Enter a positive number:");
count = SavitchIn.readLineInt();
if (count <= 0)
{

System.out.println("Input must be positive.
System.out.println("Try again.");
getCount(); //start over

}
}

read a number

Use a recursive
call to get
another number. getCount method

from class CountDown
Recursion continues until user enters valid input.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 21

The "Name in the Phone Book"
Problem Revisited

A recursive solution to the problem was shown in pseudocode on
an earlier slide and is repeated here:

Search:
middle page = (first page + last page)/2
Open the phone book to middle page;
If (name is on middle page)

then done;//this is the base case
else if (name is alphabetically before middle page)

last page = middle page//redefine search area to
front half

Search//recursive call with reduced number of pages
else //name must be after middle page

first page = middle page//redefine search area to
back half

Search//recursive call with reduced number of pages

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 22

Binary Search Algorithm

Searching a list for a particular value is a very common problem
» searching is a thoroughly-studied topic
» sequential and binary are two common search algorithms

Sequential search: inefficient, but easy to understand and
program

Binary search: more efficient than sequential, but it only works if
the list is sorted first!

The pseudocode for the "find the name in the phone book"
problem is an example of a binary search
» notice that names in a phone book are already sorted, so

you may use a binary search algorithm

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 23

Why Is It Called "Binary" Search?
Compare sequential and binary search algorithms:

How many elements are eliminated from the list each time a
value is read from the list and it is not the "target" value?

Sequential search: each time a value is read from the list and it is
not the "target" value, only one item from the list is eliminated

Binary search: each time a value is read from the list and it is not
the "target" value, half the list is eliminated!

That is why it is called binary -
each unsuccessful test for the target value
reduces the remaining search list by 1/2.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 24

Binary Search
Code

 private int search(int target, int first, int last)
 {
 int result = -1;//to keep the compiler happy.
 int mid;
 if (first > last)
 result = -1;
 else
 {
 mid = (first + last)/2;

 if (target = = a[mid])
 result = mid;
 else if (target < a[mid])
 result = search(target, first, mid - 1);

 else //(target > a[mid])
 result = search(target, mid + 1, last);
 }

 return result;
 }

The find method of
ArraySearcher
implements a binary
search algorithm

It returns the index of
the entry if the target
value is found or -1 if it
is not found

Compare it to the
pseudocode for the
"name in the phone
book" problem

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 25

Binary Search Example

5 7 9 13 32 33 42 54 56 88
0 1 2 3 4 5 6 7 8 9Indexes

Contents

target is 33
The array a looks like this:

mid = (0 + 9) / 2 (which is 4)
33 > a[mid] (that is, 33 > a[4])
So, if 33 is in the array, then 33 is one of:

33 42 54 56 88
5 6 7 8 9

Eliminated half of the remaining elements from
consideration because array elements are sorted.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 26

5 7 9 13 32 33 42 54 56 88
0 1 2 3 4 5 6 7 8 9Indexes

Contents

target is 33
The array a looks like this:

Binary Search Example

mid = (5 + 9) / 2 (which is 7)
33 < a[mid] (that is, 33 < a[7])
So, if 33 is in the array, then 33 is one of:

33 42
5 6

Eliminate
half of the
remaining
elements

mid = (5 + 6) / 2 (which is 5)
33 == a[mid]
So we found 33 at index 5:

33
5

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 27

Merge Sort—
A Recursive Sorting Method

Example of divide and conquer algorithm
Divides array in half and sorts halves recursively
Combines two sorted halves

Merge Sort Algorithm to Sort the Array a
If the array a has only one element, do nothing (stopping case).
Otherwise, do the following (recursive case):

Copy the first half of the elements in a to a smaller array named front.
Copy the rest of the elements in the array a to another smaller array

named tail.
Sort the array front with a recursive call.
Sort the array tail with a recursive call.
Merge the elements in the arrays front and tail into the array a.

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 28

Merge Sort

public static void sort(int[] a)
{

if (a.length >= 2)
{

int halfLength = a.length / 2;
int[] front = new int[halfLength];
int[] tail = new int[a.length – halfLength];
divide(a, front, tail);
sort(front);
sort(tail);
merge(a, front, tail);

}
// else do nothing.

}

recursive
calls

make "smaller"
problems by
dividing array

make "smaller"
problems by
dividing array

base case: a.length == 1 so
a is sorted and no recursive
call is necessary.

do recursive case if
true, base case if false

Chapter 11 Java: an Introduction to Computer Science & Programming - Walter Savitch 29

Summary

If a method definition includes an invocation of the very method
being defined, the invocation is called a recursive call.

Recursive calls are legal in Java and sometimes can make code
easier to read.

To avoid infinite recursion, a recursive method definition should
contain two kinds of cases: one or more recursive calls and one or
more stopping cases that do not involve any recursive calls.

Recursion can be a handy way to write code that says "if there is a
problem then start the whole process over again."

	Chapter 11
	Overview
	Recursive MethodsMust Eventually Terminate
	Example: a Recursive Algorithm
	Example: A Recursive Method
	Example: A Base Case
	What Happens with a Recursive Call
	What Happens with a Recursive Call
	What Happens with a Recursive Call
	What Happens with a Recursive Call
	What Happens with a Recursive Call
	What Happens with a Recursive Call
	Remember:Key to Successful Recursion
	Warning: Infinite Recursion May Cause a Stack Overflow Error
	Recursive Versus Iterative Methods
	numberOfZeros–A Recursive Method that Returns a Value
	numberOfZeros
	Programming Tip:Ask Until the User Gets It Right
	The "Name in the Phone Book" Problem Revisited
	Binary Search Algorithm
	Why Is It Called "Binary" Search?
	Binary SearchCode
	Binary Search Example
	Binary Search Example
	Merge Sort—A Recursive Sorting Method
	Merge Sort
	Summary

